complex number pt2

Upload: kevin-quach

Post on 28-Feb-2018

224 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/25/2019 Complex Number Pt2

    1/12

    Complex Numbers

    (Part 2)

  • 7/25/2019 Complex Number Pt2

    2/12

    Geometrical Implications As a complex number has two components, x and y, we need a number

    plane to represent the complex number geometrically !hus (",2) can represent# 3 2z i= +

    Its con$ugate is# 3 2z i=

    -1 1 2 3 4 5

    -3

    -2

    -1

    1

    2

    3

    4

    Z

    -

    1 1 2 3 4 5

    -3

    -2

    -1

    1

    2

    3

    4

    Z

    Z'

    -

    1 1 2 3 4 5

    -3

    -2

    -1

    1

    2

    3

    4

    Z

    Z'

    O

    !hey are on a circle with centre (%,%)

    2 23 2

    13

    r= +

    =-

    1 1 2 3 4 5

    -3

    -2

    -1

    1

    2

    3

    4

    Z

    Z'

    O

    !he radius is

    &ith angle gi'es a lin withtrigonometry

    Called the *odulus+Argument orm#

    (short -orm)

    ( )cos sinz r i

    rcis

    = +

    =

    -

    1 1 2 3 4 5

    -3

    -2

    -1

    1

    2

    3

    4

    O

    Z

    Z'

    -

    1 1 2 3 4 5

    -3

    -2

    -1

    1

    2

    3

    4

    O

    Z

    Z'

  • 7/25/2019 Complex Number Pt2

    3/12

    -1 1 2 3 4 5

    -3

    -2

    -1

    1

    2

    3

    4

    O

    Z

    Z'

    -

    1 1 2 3 4 5

    -3

    -2

    -1

    1

    2

    3

    4

    O

    Z

    Z'

    Geometrical Implications .elationship between a complex number and its con$ugate

    is the re-lection o- in the x/axisz z

    Note that ( )

    ( ) ( )( )( )

    cos sin

    cos sin

    cos sin

    z r i

    z r ir i

    = +

    = + =

    because ( )

    ( )

    cos cos

    sin sin

    =

    =

    adding, gi'es# ( ) ( )

    ( )

    2

    2 Re

    z z x iy x iy

    x

    z

    + = + +

    =

    =

  • 7/25/2019 Complex Number Pt2

    4/12

    Geometrical Implications .elationship between a complex number and its con$ugate

    -1 1 2 3 4 5 6

    -4

    -3

    -2

    -1

    1

    2

    3

    4

    O

    Z

    Z'

    0ubtracting gi'es# ( ) ( )

    ( )

    2

    2 Im

    z z x iy x iy

    iy

    z

    = +

    =

    =

    &e note that this leads to a 1C!3.representation -or complex numbers#

    plus 4z z ( )z z+

    minus 4z z ( )z z

    multiplying a complex number by /5 re'erses itsdirection

    !his is the e6ui'alent o- a 57% degree rotation8

  • 7/25/2019 Complex Number Pt2

    5/12

    -1 1 2 3 4 5 6 7 8

    -5

    -4

    -3

    -2

    -1

    1

    2

    3

    4

    5

    O

    A

    B

    -1

    1 2 3 4 5 6 7 8

    -5

    -4

    -3

    -2

    -1

    1

    2

    3

    4

    5

    O

    A

    C

    B

    Geometrical Implications Adding complex numbers as 'ectors 9 the parallelogram connection

    -1

    1 2 3 4 5 6 7 8

    -5

    -4

    -3

    -2

    -1

    1

    2

    3

    4

    5

    O

    I- is the 'ector1 3 2z i= + OA

    -1

    1 2 3 4 5 6 7 8

    -5

    -4

    -3

    -2

    -1

    1

    2

    3

    4

    5

    O

    A

    and i- is the 'ector2 2z i= OB

    then ( ) ( )1 2 3 2 2

    5

    z z i i

    i

    + = + +

    = +1

    z

    2z

    1 2z z+

    &e can also see that we reach thesame endpoint by putting the

    'ectors :top to tail;

    And it doesn

  • 7/25/2019 Complex Number Pt2

    6/12

    -3 -2 -1 1 2 3 4 5 6

    -5

    -4

    -3

    -2

    -1

    1

    2

    3

    4

    5

    O

    A

    C

    B

    D

    E

    -3 -2 -1

    1 2 3 4 5 6

    -5

    -4

    -3

    -2

    -1

    1

    2

    3

    4

    5

    O

    A

    C

    B

    D

    -3 -2 -1

    1 2 3 4 5 6

    -5

    -4

    -3

    -2

    -1

    1

    2

    3

    4

    5

    O

    A

    C

    B

    Geometrical Implications Adding complex numbers as 'ectors 9 the parallelogram connection

    1z

    2z

    I- then2 2z i= 2 2z i = +

    2z

    so doing :top to tail; will gi'e the:resultant 'ector;# 2 2 1 3z z i = +

    &e also note that, in sliding the'ectors around to :top to tail; them,there are two 'ersions#

    !he :-ixed; (starts at the origin)2

    z

    and the :-ree; (starts elsewhere)2

    z

    !hese ha'e the same mod and arg, soare essentially the same

    0o mo'ing 2 2z z

    shows us that and arethe diagonals o- the parallelogram

    2 2z z+

    2 2z z

    1 2z z

  • 7/25/2019 Complex Number Pt2

    7/12

    Geometrical Implications Naming -ree 'ectors

    =ow do we name >

    A

    B

    C

    O

    AC

    &e need to connect A to C 'ia 3

    I- we now the name o- 'ectorsand , we trace -rom A to 3 to

    C, naming the 'ectors as we go

    OA

    OC

    ?et and1

    OA z= 2OC z=

    1z

    2z

    A to 3 is (re'erse direction)1

    z

    3 to C is (same direction)2

    z+

    A to 3 to C is1 2

    2 1

    z z

    z z

    +=

    Note# C to 3 to A is( )

    2 1

    2 1

    CA z z

    z z

    AC

    = +

    =

    = uuurie 57%@ rotation

    3z

    Name AB

  • 7/25/2019 Complex Number Pt2

    8/12

    Geometrical Implications *odulus+Argument -orm

    As indicated earlier in the circle, usingtrigonometry#

    ( )cos sinz r i

    rcis

    = +

    =

    -1 1 2

    -1

    1

    O

    Z1

    Z2

    I- is on the unit circle with

    then (r45)#1

    z3

    =

    ( )

    1 cos sin3 3

    3

    1 3

    2 2

    11 3

    2

    z i

    cis

    i

    i

    = +

    =

    = +

    = +

    *od+Arg orm

    xiy -orm

    2 1

    24

    z i

    cis

    =

    =

    xiy -orm

    *od+Arg orm, where

    ( )

    2

    221 1

    2

    r z=

    = +

    =

    1 1tan

    1

    4

    =

    =

  • 7/25/2019 Complex Number Pt2

    9/12

    Geometrical Implications *ultiplication using *odulus+Argument -orm

    &hile it is easier to add or subtract using the -orm , it is easier to multiply or di'ideusing the -orm z x iy= +( )cos sinz r i = +or example, compare the pre'ious example#

    ( )

    ( ) ( )

    1 31

    2 21 3 1 3

    2 2 2 2

    1 3 1 3

    2 2 2 2

    1 3 1 3

    2 2

    i i

    i i i i

    i

    i

    +

    = + + +

    = + + +

    + +

    = +

    which is $ust a bit too messy8

    with the *od+Arg 'ersion

  • 7/25/2019 Complex Number Pt2

    10/12

    Geometrical Implications *ultiplication using *odulus+Argument -orm

    13

    z cis =Bsing the *od+Arg orm 2 2 4z cis =

    ( )( )( )

    ( ) ( )( )

    ( )

    1 2

    1 2

    1 2

    1 2

    1 2

    .

    cos cos sin cos sin cos sin sin

    cos cos sin sin sin cos sin cos

    cos sin

    r cis r cis

    r r i i i i

    r r i

    r r i

    r r cis

    = + + += + +

    = + + +

    = +

    ?et

  • 7/25/2019 Complex Number Pt2

    11/12

    -3 -2 -1 1 2 3

    -3

    -2

    -1

    1

    2

    O

    Z

    Z'

    Geometrical Implications *odulus+Argument -orm geometrically>

    In *od+Arg -orm, our 57%@ rotation ismultiplication by /5#

    1 1 0

    cos sin

    i

    i

    = += +

    !his leads to , ie =

    1 cos sini

    cis

    = +

    =xample#

    (xiy) -ormD

    or

    mod+arg -ormD

    ( )1 1

    1

    i

    i

    +

    =

    24

    24

    5

    2 4

    cis cis

    cis

    cis

    = +

    -3 -2 -1 1 2 3

    -3

    -2

    -1

    1

    2

    O

    Z

  • 7/25/2019 Complex Number Pt2

    12/12

    -3 -2 -1 1 2 3

    -3

    -2

    -1

    1

    2

    O

    ZA

    -3 -2 -1 1 2 3

    -3

    -2

    -1

    1

    2

    O

    ZZ'

    Geometrical Implications *odulus+Argument -orm geometrically>

    !his then leads to the 6uestion, what doesmultiplying by do>i

    0 1

    cos sin

    i i

    i

    = += +

    !his leads to , ie

    2

    =

    cos sin2 2

    2

    i i

    cis

    = +

    =

    Now# which is#( )1

    24 2

    32

    4

    i i

    cis cis

    cis

    + =

    =

    3 3

    2 cos sin4 4

    1 12

    2 2

    1

    i

    i

    i

    = +

    = +

    = +

    -3 -2 -1 1 2 3

    -3

    -2

    -1

    1

    2

    O

    Z

    ie a E%@ rotation8