collaborative fluid dynamics research: porous media ... · pdf filecollaborative fluid...

58
Collaborative Fluid Dynamics Research: Porous Media, Microfluidics, and Bio-Flows OU Supercomputing Symposium Oct. 7, 2009 Willy Duffle, Jesse Haubrich, Chris Kiser, Grant Armstrong, Andrew Baker, Daniel Atkinson, Andrew Henderson, Lamar Williams, Tim Handy, and Evan Lemley Department of Engineering and Physics University of Central Oklahoma Dimitrios Papavassiliou, Henry Neeman, Ed O'Rear University of Oklahoma

Upload: ngohuong

Post on 12-Mar-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Collaborative Fluid Dynamics Research: Porous Media ... · PDF fileCollaborative Fluid Dynamics Research: Porous Media, Microfluidics, and Bio­Flows OU Supercomputing Symposium Oct

Collaborative Fluid Dynamics Research: Porous Media, 

Microfluidics, and Bio­FlowsOU Supercomputing Symposium

Oct. 7, 2009Willy Duffle, Jesse Haubrich, Chris Kiser, Grant Armstrong, Andrew Baker, Daniel Atkinson, Andrew Henderson, Lamar 

Williams, Tim Handy, and Evan LemleyDepartment of Engineering and Physics

University of Central Oklahoma

Dimitrios Papavassiliou, Henry Neeman, Ed O'RearUniversity of Oklahoma

Page 2: Collaborative Fluid Dynamics Research: Porous Media ... · PDF fileCollaborative Fluid Dynamics Research: Porous Media, Microfluidics, and Bio­Flows OU Supercomputing Symposium Oct

OverviewBackgroundSimulations

Flow Through Porous Media (FTPM)Flow in Junctions/MicrojunctionsMicroelbowsEntrance Length in Microtubes

ExperimentalMillijunctionsBio­ScaffoldsRenal Artery AneurysmMicrotubes

Future Directions

Page 3: Collaborative Fluid Dynamics Research: Porous Media ... · PDF fileCollaborative Fluid Dynamics Research: Porous Media, Microfluidics, and Bio­Flows OU Supercomputing Symposium Oct

Applications

Flow in microfluidic flow networks and flow in porous networks are of interest in many engineering applications.Applications include porous media, micro­power generation, biomedical, computer chips, chemical separation processes, micro­valves, micro­pumps, and micro­flow sensorsYanuka, M., Dullien, F.A.L., and D.E. Elrick, 1986, “Percolation Processes And Porous Media I. Geometrical And Topological Model Of Porous Media Using A Three­Dimensional Joint Pore Size Distribution,” J.Colloid Interface Sci., 112, pp. 24­41.

Lee, W.Y., Wong, M., and Zohar, Y., 2002, “Microchannels in Series Connected Via a Contraction/expansion Section”, J. Fluid Mech., 459, pp.187­206.

Judy, J., Maynes, D., and Webb, B.W., 2002, “Characterization of Frictional Pressure Drop for Liquid Flows Through Microchannels,” Intl. J. Heat Mass Trans., 45, pp.3477­3489.

Flow in these applications is usually laminarGraveson, P., Branebjerg, J., and Jensen, O.S., 1993, “Microfluidics a Review,” J. Micromech. Microeng., 3, pp.168­182.

Page 4: Collaborative Fluid Dynamics Research: Porous Media ... · PDF fileCollaborative Fluid Dynamics Research: Porous Media, Microfluidics, and Bio­Flows OU Supercomputing Symposium Oct

Porous Media

Highly porous magnesian limestone.  (www.dawntnicholson.org.uk)

Microfluidic Devices

Microfluidic Valve Structure.  (http://www.cchem.berkeley.edu/sjmgrp/people/boris/boris.htm)

Page 5: Collaborative Fluid Dynamics Research: Porous Media ... · PDF fileCollaborative Fluid Dynamics Research: Porous Media, Microfluidics, and Bio­Flows OU Supercomputing Symposium Oct

Artificial Porous Media

Packed Beds, Gas and Liquid FiltersSphere sizes  m to cmHold­up for chemical reaction, thermal processing, or filtering

Page 6: Collaborative Fluid Dynamics Research: Porous Media ... · PDF fileCollaborative Fluid Dynamics Research: Porous Media, Microfluidics, and Bio­Flows OU Supercomputing Symposium Oct

Basics of Porous MediaLow Speed Flow – Darcy's Law

High Speed Flow – Forscheimer's Law

Packed Beds – Ergun's Equation (empirical)

Page 7: Collaborative Fluid Dynamics Research: Porous Media ... · PDF fileCollaborative Fluid Dynamics Research: Porous Media, Microfluidics, and Bio­Flows OU Supercomputing Symposium Oct

Flow Through Porous MediaCollaborative Effort with Dimitrios Papavassiliou and Henry Neeman from OU (began Fall 2004)Simulation of Flow of Fluids through Porous MediaCode FTPM – Flow Through Porous Media.  Solves for velocity and pressure at pore junctions in a randomly generated pore network.

Page 8: Collaborative Fluid Dynamics Research: Porous Media ... · PDF fileCollaborative Fluid Dynamics Research: Porous Media, Microfluidics, and Bio­Flows OU Supercomputing Symposium Oct

Flow Network Analysis

Design and Analysis of networks depends on knowledge of flow and energy losses in arbitrary branches.No systematic studies to generalize these bifurcations

Page 9: Collaborative Fluid Dynamics Research: Porous Media ... · PDF fileCollaborative Fluid Dynamics Research: Porous Media, Microfluidics, and Bio­Flows OU Supercomputing Symposium Oct

Porous Network Simulator (Collaboration with Univ. of Oklahoma)

3D Monte Carlo networks from normal, beta, or empirical distribution (pore size pdf)Coordination Number (1, 2, 3)number of pores enteringand leaving a junction ± 90˚ 

Projection on the xy plane of a 3D network that has 200 entry points at x=0, porosity equal to 10% and a range of ±60˚ relative to the x axis and ±30˚ relative to the y axis.

Page 10: Collaborative Fluid Dynamics Research: Porous Media ... · PDF fileCollaborative Fluid Dynamics Research: Porous Media, Microfluidics, and Bio­Flows OU Supercomputing Symposium Oct

FTPM Results

Page 11: Collaborative Fluid Dynamics Research: Porous Media ... · PDF fileCollaborative Fluid Dynamics Research: Porous Media, Microfluidics, and Bio­Flows OU Supercomputing Symposium Oct

FTPM ResultsForchheimer Coefficient versus Permeability Comparison 

of Simulation to Empirical Results

1.E+06

1.E+08

1.E+10

1.E+12

1.E+14

1.E+16

1.E+18

1.E­17 1.E­15 1.E­13 1.E­11

Permeability (m2)

Forc

hhei

mer

 Coe

ffic

ient

 (m

­1)

Sandstone Data of Jones 

Simulation Results (Porosity 7.3% ­ 24.8%)

Power (Sandstone Data of Jones )Power (Simulation Results (Porosity 7.3% ­24.8%))

Page 12: Collaborative Fluid Dynamics Research: Porous Media ... · PDF fileCollaborative Fluid Dynamics Research: Porous Media, Microfluidics, and Bio­Flows OU Supercomputing Symposium Oct

LiteratureT's and Y's – limited configurations and most are for turbulent flowBasset, M.D., Winterbone, D.E., and Pearson, R.J., 2001, “Calculation of Steady Flow Pressure Loss Coefficients for Pipe Junctions,” Proc. Instn. Mech. Engrs., Part C, Journal of Mechanical Engineering Science, 215 (8), pp. 861­881  .

W.H. Hager, 1984, “An Approximate Treatment of Flow in Branches and Bends,” Proc. Instn. Mech. Engrs., Part C, Journal of Mechanical Engineering Science, 198(4) pp. 63­9.

Blaisdell, F.W., and Manson, P.W., 1967, “Energy loss at pipe junctions,” J. Irrig. and Drainage Div., ASCE, 93(IR3), pp. 59­78.

Schohl, G.A., 2003, “Modeling of Tees and Manifolds in Networks,” Proceedings of the 4th ASME/JSME Joint Fluids Engineering Conference, 2, Part D, pp. 2779­2786.

Bassett, M.D., Pearson, R.J., and Winterbone, D.E., 1998, “Estimation of Steady Flow Loss Cofficients for Pulse Converter Junctions in Exhaust Manifolds,” IMechE Sixth International Conference on Turbocharging and Air Management Systems, IMechE HQ, London, UK,  C554/002, pp.209­218.

Ruus, E., 1970, “Head Losses in Wyes and Manifolds,” J. Hyd. Div., ASCE, 96(HY3), 593­608.

Laminar loss coefficients and elbows, reductions, contractions – much larger loss coefficients than turbulent case – strong dependence on Reynold's number.Edwards, M.F., Jadallah, M.S.M., and Smith, R., 1985, “Head Losses in Pipe Fittings at Low Reynolds Numbers,” Chem. Engr. Res. Des., 63(1), pp. 43­50.

Importance of roughness at microscale

Page 13: Collaborative Fluid Dynamics Research: Porous Media ... · PDF fileCollaborative Fluid Dynamics Research: Porous Media, Microfluidics, and Bio­Flows OU Supercomputing Symposium Oct

Problem Description

Stagnation Loss Coefficient

Parameters:d

2/d

1, d

3/d

1

2 and 

3

f2 (this sets f

3) – (why? other literature and possibility 

of simulations where this is unknown initially)

K 2=[ p1

u12

2 − p2

u22

2 ]u1

2

2

Page 14: Collaborative Fluid Dynamics Research: Porous Media ... · PDF fileCollaborative Fluid Dynamics Research: Porous Media, Microfluidics, and Bio­Flows OU Supercomputing Symposium Oct

Automation of Geometry Generation and CFD Runs

Custom Code was written to:(a) create GAMBIT journal files that instantiate the desired geometry based on existing 2D geometries.(c) create a script that loads journal files into GAMBIT and meshes(d) create all necessary preprocessing files for FLUENT.(e) create post­processing files for FLUENT results and to tabulate results for a complete set of runs

Page 15: Collaborative Fluid Dynamics Research: Porous Media ... · PDF fileCollaborative Fluid Dynamics Research: Porous Media, Microfluidics, and Bio­Flows OU Supercomputing Symposium Oct

Solution Methodology2D Geometry GeneralizationL

1 = 5 d

max

L2 and L

3 = 10d

max

If d2>d

avg, 

then r2=3d

2; 

else r2=2d

2

If d3>d

avg, 

then r3=3d

3; 

else r3=2d

3

r4 = d

max/2

Generalized Geometrylarger and smaller outlet ducts ; 2Dim. ­ 3Dim are underwayavoid sharp edges ; 5 – 90 degrees for angles

Page 16: Collaborative Fluid Dynamics Research: Porous Media ... · PDF fileCollaborative Fluid Dynamics Research: Porous Media, Microfluidics, and Bio­Flows OU Supercomputing Symposium Oct
Page 17: Collaborative Fluid Dynamics Research: Porous Media ... · PDF fileCollaborative Fluid Dynamics Research: Porous Media, Microfluidics, and Bio­Flows OU Supercomputing Symposium Oct

3D Geometry – Mark I

Page 18: Collaborative Fluid Dynamics Research: Porous Media ... · PDF fileCollaborative Fluid Dynamics Research: Porous Media, Microfluidics, and Bio­Flows OU Supercomputing Symposium Oct
Page 19: Collaborative Fluid Dynamics Research: Porous Media ... · PDF fileCollaborative Fluid Dynamics Research: Porous Media, Microfluidics, and Bio­Flows OU Supercomputing Symposium Oct

Simulation ParametersRe

D was maintained at constant value at the 

inlet ductd

1 was 30 microns. The fluid was chosen to be liquid 

water at 20˚C.  The inlet flow velocity, u1, was set to 

0.5 m/s giving a Reynolds number of 15Le

D = 0.06Re

D D ­­­ gives 0.9 D for Re

D = 15

FLUENT output files contain surface averaged static pressure and magnitude of flow velocity at duct cross­sections at the duct inlets and exits.

Page 20: Collaborative Fluid Dynamics Research: Porous Media ... · PDF fileCollaborative Fluid Dynamics Research: Porous Media, Microfluidics, and Bio­Flows OU Supercomputing Symposium Oct

Duct Inlet/Outlets

Duct inlet and exit sections considered to be where geometry of duct is the same as the downstream portion for outlets and upstream portion for inlet.

Page 21: Collaborative Fluid Dynamics Research: Porous Media ... · PDF fileCollaborative Fluid Dynamics Research: Porous Media, Microfluidics, and Bio­Flows OU Supercomputing Symposium Oct

Mesh Automation

Mesh was set to 1/4 of smallest ductTetrahedral MeshLarge number of tests to assess ability to generalize the mesh (1/4 factor determined in this manner)Some testing to verify no change in results with change in mesh size.Inlet was specified as velocity inletOutlets were outflow boundaries – allowed specification of flow fraction

Page 22: Collaborative Fluid Dynamics Research: Porous Media ... · PDF fileCollaborative Fluid Dynamics Research: Porous Media, Microfluidics, and Bio­Flows OU Supercomputing Symposium Oct

Numerical Methods

Finite Volume solution of integral Navier StokesSteady­State 3DImplicitSIMPLE for pressure velocity coupling1st order upwind scheme of momentum discretizationMax number of iterationsConvergence criterion = 0.1%

Page 23: Collaborative Fluid Dynamics Research: Porous Media ... · PDF fileCollaborative Fluid Dynamics Research: Porous Media, Microfluidics, and Bio­Flows OU Supercomputing Symposium Oct

Parameter Values

d2/d

1 and d

3/d

1 = 0.5, 1.0, 1.5

f2 = 0.1, 0.3, 0.5, 0.7, 0.9

2 and 

3 = 5˚, 25˚, 45˚, 65˚, 85˚

600 runs attempted – 475 completed (geometry issues on remainder)Suite of C++ procedures to create geometries, input files, read and collate resultsCreate GAMBIT script to create geometriesCreate input files for GAMBIT and FLUENTRead results files for static pressures and velocities averaged over surfaces in and out of junctions.

Page 24: Collaborative Fluid Dynamics Research: Porous Media ... · PDF fileCollaborative Fluid Dynamics Research: Porous Media, Microfluidics, and Bio­Flows OU Supercomputing Symposium Oct

Fluent Resultf2 = 0.1, d2/d1 = 0.5,  2 = 5˚, d3/d1 = 0.5, and  3 = 45˚θ θ

Page 25: Collaborative Fluid Dynamics Research: Porous Media ... · PDF fileCollaborative Fluid Dynamics Research: Porous Media, Microfluidics, and Bio­Flows OU Supercomputing Symposium Oct

f2 = 0.1,  2=45°,  3=45°, d2/d1=0.5, d3/d1=1.5.θ θ

K2 = 5.47

Page 26: Collaborative Fluid Dynamics Research: Porous Media ... · PDF fileCollaborative Fluid Dynamics Research: Porous Media, Microfluidics, and Bio­Flows OU Supercomputing Symposium Oct

f2 = 0.3,  2=65°,  3=45°, d2/d1=0.5, d3/d1=1.5.θ θ

K2 = 11.6

Page 27: Collaborative Fluid Dynamics Research: Porous Media ... · PDF fileCollaborative Fluid Dynamics Research: Porous Media, Microfluidics, and Bio­Flows OU Supercomputing Symposium Oct

f2 = 0.5,  2=65°,  3=45°, d2/d1=0.5, d3/d1=1.5.θ θ

K2 = 18.4

Page 28: Collaborative Fluid Dynamics Research: Porous Media ... · PDF fileCollaborative Fluid Dynamics Research: Porous Media, Microfluidics, and Bio­Flows OU Supercomputing Symposium Oct

f2 = 0.7,  2=65°,  3=45°, d2/d1=0.5, d3/d1=1.5.θ θ

K2 = 25.7

Page 29: Collaborative Fluid Dynamics Research: Porous Media ... · PDF fileCollaborative Fluid Dynamics Research: Porous Media, Microfluidics, and Bio­Flows OU Supercomputing Symposium Oct

2D vs. 3D Differences

K 2   v a l u e s   f o r   d 2 / d 1   =   0 . 5 ,   d 3 / d 1   =   0 . 5 ,   θ 3   =   5   d e g r e e s

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

0 2 0 4 0 6 0 8 0 1 0 0

θ 2   ( d e g r e e s )

K2

f 2   =   0 . 1   ­   3 D f 2   =   0 . 5   ­   3 D f 2   =   0 . 9   ­   3 Df 2   =   0 . 1   ­   2 D f 2   =   0 . 5   ­   2 D f 2   =   0 . 9   ­   2 D

K 2   v a l u e s   f o r   d 2 / d 1   =   0 . 5 ,   d 3 / d 1   =   1 . 5 ,   θ 3   =   4 5   d e g r e e s

0

0 . 5

1

1 . 5

2

2 . 5

3

3 . 5

4

4 . 5

5

0 2 0 4 0 6 0 8 0 1 0 0

θ 2   ( d e g r e e s )K

2

f 2   =   0 . 1   ­   3 D f 2   =   0 . 5   ­   3 D f 2   =   0 . 9   ­   3 Df 2   =   0 . 1   ­   2 D f 2   =   0 . 5   ­   2 D f 2   =   0 . 9   ­   2 D

[ k 23D

k 22D ]average

=1.55 std. dev. = 0.45k 2=

p /u1

2/2

−u2

2

u121

pressure effects kinetic energy effects

Page 30: Collaborative Fluid Dynamics Research: Porous Media ... · PDF fileCollaborative Fluid Dynamics Research: Porous Media, Microfluidics, and Bio­Flows OU Supercomputing Symposium Oct

3D Mark II Junction

Junction Without Surface Fills Junction With Surface Fills

Page 31: Collaborative Fluid Dynamics Research: Porous Media ... · PDF fileCollaborative Fluid Dynamics Research: Porous Media, Microfluidics, and Bio­Flows OU Supercomputing Symposium Oct

Initial Simulations – 3D Mark IISmall batchComparable results to original 3D runs

Page 32: Collaborative Fluid Dynamics Research: Porous Media ... · PDF fileCollaborative Fluid Dynamics Research: Porous Media, Microfluidics, and Bio­Flows OU Supercomputing Symposium Oct
Page 33: Collaborative Fluid Dynamics Research: Porous Media ... · PDF fileCollaborative Fluid Dynamics Research: Porous Media, Microfluidics, and Bio­Flows OU Supercomputing Symposium Oct

Pipe Mesh Testing

Database Interface

Page 34: Collaborative Fluid Dynamics Research: Porous Media ... · PDF fileCollaborative Fluid Dynamics Research: Porous Media, Microfluidics, and Bio­Flows OU Supercomputing Symposium Oct

Pipe Mesh Testing

Flow­aligned hex coreVaried axial and radial spacingMySQL results databaseAutomatedResults database easy to setup for junction runs

Page 35: Collaborative Fluid Dynamics Research: Porous Media ... · PDF fileCollaborative Fluid Dynamics Research: Porous Media, Microfluidics, and Bio­Flows OU Supercomputing Symposium Oct

Pipe Mesh Testing

“Bell Shaped” Axial Spacing

Page 36: Collaborative Fluid Dynamics Research: Porous Media ... · PDF fileCollaborative Fluid Dynamics Research: Porous Media, Microfluidics, and Bio­Flows OU Supercomputing Symposium Oct

Pipe Mesh Testing

Uniform Axial Spacing

Page 37: Collaborative Fluid Dynamics Research: Porous Media ... · PDF fileCollaborative Fluid Dynamics Research: Porous Media, Microfluidics, and Bio­Flows OU Supercomputing Symposium Oct

Entrance Length in Microtubes

Page 38: Collaborative Fluid Dynamics Research: Porous Media ... · PDF fileCollaborative Fluid Dynamics Research: Porous Media, Microfluidics, and Bio­Flows OU Supercomputing Symposium Oct

Entrance Length Results

Page 39: Collaborative Fluid Dynamics Research: Porous Media ... · PDF fileCollaborative Fluid Dynamics Research: Porous Media, Microfluidics, and Bio­Flows OU Supercomputing Symposium Oct

Entrance Length Results

Page 40: Collaborative Fluid Dynamics Research: Porous Media ... · PDF fileCollaborative Fluid Dynamics Research: Porous Media, Microfluidics, and Bio­Flows OU Supercomputing Symposium Oct

Loss Coefficients in Microelbows

K= p

12V 2

Page 41: Collaborative Fluid Dynamics Research: Porous Media ... · PDF fileCollaborative Fluid Dynamics Research: Porous Media, Microfluidics, and Bio­Flows OU Supercomputing Symposium Oct

Microelbow Loss Coefficients

K= p

12V 2

Page 42: Collaborative Fluid Dynamics Research: Porous Media ... · PDF fileCollaborative Fluid Dynamics Research: Porous Media, Microfluidics, and Bio­Flows OU Supercomputing Symposium Oct

Millijunction Experiments 

Page 43: Collaborative Fluid Dynamics Research: Porous Media ... · PDF fileCollaborative Fluid Dynamics Research: Porous Media, Microfluidics, and Bio­Flows OU Supercomputing Symposium Oct
Page 44: Collaborative Fluid Dynamics Research: Porous Media ... · PDF fileCollaborative Fluid Dynamics Research: Porous Media, Microfluidics, and Bio­Flows OU Supercomputing Symposium Oct
Page 45: Collaborative Fluid Dynamics Research: Porous Media ... · PDF fileCollaborative Fluid Dynamics Research: Porous Media, Microfluidics, and Bio­Flows OU Supercomputing Symposium Oct
Page 46: Collaborative Fluid Dynamics Research: Porous Media ... · PDF fileCollaborative Fluid Dynamics Research: Porous Media, Microfluidics, and Bio­Flows OU Supercomputing Symposium Oct

Data Acquisition

Jesse Haubrich

Page 47: Collaborative Fluid Dynamics Research: Porous Media ... · PDF fileCollaborative Fluid Dynamics Research: Porous Media, Microfluidics, and Bio­Flows OU Supercomputing Symposium Oct

Collecting Data

Page 48: Collaborative Fluid Dynamics Research: Porous Media ... · PDF fileCollaborative Fluid Dynamics Research: Porous Media, Microfluidics, and Bio­Flows OU Supercomputing Symposium Oct

Basic StampPassive FilterPressure SensorsFlow SensorsPython Interface

Page 49: Collaborative Fluid Dynamics Research: Porous Media ... · PDF fileCollaborative Fluid Dynamics Research: Porous Media, Microfluidics, and Bio­Flows OU Supercomputing Symposium Oct

100 10000.00E+00

5.00E+02

1.00E+03

1.50E+03

2.00E+03

2.50E+03

3.00E+03

3.50E+03

4.00E+03

4.50E+03

Re1

K

100 10000.00E+00

1.00E+02

2.00E+02

3.00E+02

4.00E+02

5.00E+02

6.00E+02

7.00E+02

Re1

K

Loss Coefficient Experimental Results

Page 50: Collaborative Fluid Dynamics Research: Porous Media ... · PDF fileCollaborative Fluid Dynamics Research: Porous Media, Microfluidics, and Bio­Flows OU Supercomputing Symposium Oct

Using Network Simulations to Understand Non­Darcy Flow

Objectives

Develop an algorithm to create, mesh, and perform CFD on 

simplified models of real porous media networks.

Equal number of entry and exit pores (no splits)

90° elbows only 

No overlap of pores within media

Compare results of CFD to FTPM and empirical data in literature.

Modify algorithm to allow for complex models of real porous media.

Splits with arbitrary angles

Overlaps

Page 51: Collaborative Fluid Dynamics Research: Porous Media ... · PDF fileCollaborative Fluid Dynamics Research: Porous Media, Microfluidics, and Bio­Flows OU Supercomputing Symposium Oct

Using Network Simulations to UnderstandNon­Darcy Flow

Implementation of Objectives

Use custom codes to extract FTPM networks from code

Page 52: Collaborative Fluid Dynamics Research: Porous Media ... · PDF fileCollaborative Fluid Dynamics Research: Porous Media, Microfluidics, and Bio­Flows OU Supercomputing Symposium Oct

Using Network Simulations to Understand Non­Darcy Flow

Implementation of Objectives

Use Solidworks to create network designs

90° elbows

Phase 1

No overlapping

Phase 2

Arbitrary angles

Possible overlaps

Page 53: Collaborative Fluid Dynamics Research: Porous Media ... · PDF fileCollaborative Fluid Dynamics Research: Porous Media, Microfluidics, and Bio­Flows OU Supercomputing Symposium Oct

Using Network Simulations to Understand Non­Darcy Flow

Implementation of Objectives

Use Gambit to mesh networks

Close up of 90° elbow Close up of arbitrary junction

Page 54: Collaborative Fluid Dynamics Research: Porous Media ... · PDF fileCollaborative Fluid Dynamics Research: Porous Media, Microfluidics, and Bio­Flows OU Supercomputing Symposium Oct

Using Network Simulations to Understand Non­Darcy Flow

Implementation of Objectives

Use Fluent (CFD) to obtain κ and β from pressure and velocity data

Page 55: Collaborative Fluid Dynamics Research: Porous Media ... · PDF fileCollaborative Fluid Dynamics Research: Porous Media, Microfluidics, and Bio­Flows OU Supercomputing Symposium Oct

Bio-Scaffold Testing

Page 56: Collaborative Fluid Dynamics Research: Porous Media ... · PDF fileCollaborative Fluid Dynamics Research: Porous Media, Microfluidics, and Bio­Flows OU Supercomputing Symposium Oct

Top Bottom

Page 57: Collaborative Fluid Dynamics Research: Porous Media ... · PDF fileCollaborative Fluid Dynamics Research: Porous Media, Microfluidics, and Bio­Flows OU Supercomputing Symposium Oct

Renal Artery Aneurysm Experiments

Page 58: Collaborative Fluid Dynamics Research: Porous Media ... · PDF fileCollaborative Fluid Dynamics Research: Porous Media, Microfluidics, and Bio­Flows OU Supercomputing Symposium Oct

AcknowledgmentsThe Office of Research and Grants at the University of Central Oklahoma is acknowledged for support of this research.The Donors of The Petroleum Research Fund, administered by the American Chemical Society, are also be acknowledged for support of this research through grant PRF# 47193­B9.National Science Foundation EPSCoR Research Opportunity Award Program