coherent synchrotron radiation modelling with

32
23. Januar 2017 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder Coherent Synchrotron Radiation Modelling with Discontinuous Galerkin David Bizzozero

Upload: others

Post on 04-Dec-2021

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Coherent Synchrotron Radiation Modelling with

23. Januar 2017 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder

Coherent Synchrotron Radiation

Modelling with Discontinuous Galerkin

David Bizzozero

Page 2: Coherent Synchrotron Radiation Modelling with

23. Januar 2017 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder

Outline of Talk

▪ Introduction of Method and Numerical Algorithm

- Maxwell’s equations with several transformations

- Discontinuous Galerkin (DG) formulation

▪ Validation of Numerical Method

- Convergence studies in test model

▪ Simulations of Wake Fields and CSR

- Wake field from transitions in geometry

- CSR in a circular bend of rectangular cross-section

- CSR in model of DESY BC0

▪ Conclusions and Future Outlook

Page 3: Coherent Synchrotron Radiation Modelling with

23. Januar 2017 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder

Maxwell’s Equations and Coodinates

▪ Maxwell’s Equations

- Starting with Cartesian coordinates:

with

- Next consider a planar reference orbit (along ):

parameterized by arc length

- Define Frenet-Serret (FS) coordinate components by:

- Also, define signed curvature and scale factor by:

Page 4: Coherent Synchrotron Radiation Modelling with

23. Januar 2017 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder

Example of Frenet-Serret Coordinates

▪ Example of mapping to FS coordinates:

- Geometry in Cartesian coordinates:

- Geometry in Frenet-Serret coordinates:

- Advantage: source orbit is straight: allows for modelling

of thin sources with DG and simpler RHS terms

- Disadvantage: boundary may be curved, Maxwell’s

equations include new terms where curvature is nonzero

Page 5: Coherent Synchrotron Radiation Modelling with

23. Januar 2017 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder

Maxwell’s Equations in Frenet-Serret

▪ Maxwell’s equation’s in FS coordinates:

Page 6: Coherent Synchrotron Radiation Modelling with

23. Januar 2017 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder

Source Term Definitions

▪ Charge and current density (“ribbon” model)

- In Frenet-Serret coordinates:

with Gaussian distributions:

- Note: distribution avoids issue of shearing

- Rephrased: rigid source distributions (independent of )

in FS may not be rigid in Cartesian (this may be unphysical)

Page 7: Coherent Synchrotron Radiation Modelling with

23. Januar 2017 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder

Fourier Series Decomposition

▪ Consider domain with parallel planar walls:

- For PEC walls: use the Fourier series

- use sine series and use cosine

- If source is symmetric about then even modes vanish

- If , more Fourier series terms may be required

Page 8: Coherent Synchrotron Radiation Modelling with

23. Januar 2017 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder

Combining FS, Fourier Series, Sources

▪ The story so far:

- Maxwell’s Eqs

- Frenet-Serret

- Source Term

- Fourier Series

- Source not smooth

- Initial Cond.?

- Boundary Cond.?

Page 9: Coherent Synchrotron Radiation Modelling with

23. Januar 2017 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder

Initial Conditions – Part 1

▪ Assume “steady-state” fields (satisfy )

▪ Consider a rectangular straight pipe with

▪ Maxwell’s wave

equations with

these restrictions:

Page 10: Coherent Synchrotron Radiation Modelling with

23. Januar 2017 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder

Initial Conditions – Part 2

▪ With PEC boundary conditions for

Page 11: Coherent Synchrotron Radiation Modelling with

23. Januar 2017 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder

Smoothing the Source Term

▪ Issue: how to evaluate in equation?

▪ Fix: replace by

▪ Result:

- Maxwell’s Eqs

- Frenet-Serret

- Source Term

- Fourier Series

- Smoother Src.

- Initial Condition

- - Boundary Cond.

Page 12: Coherent Synchrotron Radiation Modelling with

23. Januar 2017 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder

Discontinuous Galerkin – Part 1

▪ Nodal DG cake recipe

- Partition domain into triangular elements

- Approximate fields on element by order

polynomials: with nodes: where

and

- Example field:

- Example mesh:

Page 13: Coherent Synchrotron Radiation Modelling with

23. Januar 2017 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder

Discontinuous Galerkin – Part 2

- Construct residuals of each field :

- Example:

- Now set residuals to be orthogonal to each

- Integrate by parts!

Page 14: Coherent Synchrotron Radiation Modelling with

23. Januar 2017 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder

Discontinuous Galerkin – Part 3

- Couple elements together by introducing numerical flux

- Integrate by parts again!

- Store each field as array

- Construct discrete matrix operators:

Page 15: Coherent Synchrotron Radiation Modelling with

23. Januar 2017 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder

Discontinuous Galerkin – Part 4

- Combine everything together for each element

With similar expressions for

Note: defines jumps along element interfaces

Page 16: Coherent Synchrotron Radiation Modelling with

23. Januar 2017 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder

Final Steps for the Numerical Method

▪ Boundary conditions?

- Impose PEC with where

- Close end pipes with PEC (future work to add ABC)

▪ Evolve fields with 4th order low-storage RK

▪ Additional Notes:

- Important: align elements along and where is

discontinuous (i.e. when using piecewise-defined orbits)

- Elements along curved boundaries conformal

- Sum over modes for full 3D solution

- Field values can be interpolated at any location in any

element and can be averaged along element edges

Page 17: Coherent Synchrotron Radiation Modelling with

23. Januar 2017 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder

Validation of Numerical Method

▪ Consider fundamental TM-mode in

- Set with no source term for

- Initial condition:

- Solution:

- Examine CPU times and errors for and

for one period

Page 18: Coherent Synchrotron Radiation Modelling with

23. Januar 2017 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder

Convergence and CPU Time Scaling

Page 19: Coherent Synchrotron Radiation Modelling with

23. Januar 2017 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder

Convergence and CPU Time Scaling

Page 20: Coherent Synchrotron Radiation Modelling with

23. Januar 2017 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder

Convergence and CPU Time Scaling

Page 21: Coherent Synchrotron Radiation Modelling with

23. Januar 2017 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder

Stability Analysis for

Page 22: Coherent Synchrotron Radiation Modelling with

23. Januar 2017 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder

Wake Field and CSR Simulations

▪ Experiment 1

- No curvature – straight trajectory

- Geometry generates wake

- sampled along near source for

- Source size:

- Additional parameters:

• Total length:

• End pipe width:

• Protrusion width:

• Vertical height:

Page 23: Coherent Synchrotron Radiation Modelling with

23. Januar 2017 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder

Experiment 1 Simulation

Page 24: Coherent Synchrotron Radiation Modelling with

23. Januar 2017 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder

Wake Field and CSR Simulations

▪ Experiment 2

- Constant curvature – circular trajectory

- CSR generates wake

- sampled along near source for

- Source size:

- Additional parameters:

• Bending radius:

• Horizontal width:

• Vertical height:

• Total angle:

Page 25: Coherent Synchrotron Radiation Modelling with

23. Januar 2017 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder

Experiment 2 Simulation

Page 26: Coherent Synchrotron Radiation Modelling with

23. Januar 2017 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder

Longitudinal Electric Field View

Page 27: Coherent Synchrotron Radiation Modelling with

23. Januar 2017 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder

Wake Field and CSR Simulations

▪ Experiment 3

- DESY BC0 – Piecewise constant curvature

- CSR and geometry generates wake

- sampled along near source, sum over

- Source size:

- Additional parameters:

• Bending radius:

• Deflection angle:

• BC chamber height:

• BC chamber length:

• BC chamber max width:

Page 28: Coherent Synchrotron Radiation Modelling with

23. Januar 2017 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder

Experiment 3 Simulation

Page 29: Coherent Synchrotron Radiation Modelling with

23. Januar 2017 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder

Longitudinal Electric Field View

Page 30: Coherent Synchrotron Radiation Modelling with

23. Januar 2017 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder

Conclusions and Comments

▪ Developed DG Method based on “Nodal

Discontinuous Galerkin Methods” by J. Hesthaven,

T. Warburton

▪ Demonstrated stability and convergence

▪ Computed geometrical and CSR wakes

▪ GPU-enabled MATLAB code

▪ Performed calculations for Canadian Light Source

▪ Other available codes:

- Moving-window code for simple geometries

- Paraxial frequency-domain code with DG

Page 31: Coherent Synchrotron Radiation Modelling with

23. Januar 2017 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder

Future Directions

▪ Implement surface impedance boundary conditions

(SIBCs) to examine wall losses

▪ Export code to C++ or Fortran

- Increase performance

- Interface with existing PIC codes

- Improve ease-of-use

▪ Compute transverse momentum kicks with

Panofsky-Wenzel Theorem

▪ Test with other geometries and experiments

Page 32: Coherent Synchrotron Radiation Modelling with

23. Januar 2017 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder

Thank you for your attention!