coherent backscattering of bec in 2d disorder and chaotic...

52
Coherent backscattering of BEC in 2D disorder and chaotic billiards Peter Schlagheck 15.12.2010

Upload: vuongdiep

Post on 09-Dec-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

Coherent backscattering of BEC in 2D disorderand chaotic billiards

Peter Schlagheck

15.12.2010

Coworkers

Michael Hartung(Regensburg)

Thomas Wellens(Freiburg)

Cord Muller(Singapore)

Klaus Richter(Regensburg)

Timo Hartmann(Regensburg)

Cyril Petitjean(Grenoble)

Juan-Diego Urbina(Regensburg)

Outline

Weak localization in 2D disorder and chaotic billiards

Coherent backscattering of condensates from 2D disorder:numerical approach and diagrammatic theory

Weak localization of condensates in 2D chaotic billiards:preliminary numerical and semiclassical results

Conclusion

Weak localization in two-dimensional disorder

Constructive interference between reflected paths and theirtime-reversed counterparts

������

������

������

������

������

������

������

������

������

������

���

���

������

������

���

���

������

������

���

���

������

������

������

������

������

������

������

������

������

������

���

���

��������

���

���

������

������

������

������

���

���

���

���

������

������

���

���

������

��������

����

������

������

������

������

������

������

������

������

������

���

���

������

������

������

������

������

������

������

������

���

���

���

���

������

������

���

������

���

���

���

θ

-0.4π -0.2π 0 0.2π 0.4π0

1

2

3

4

back

scat

tere

dcu

rren

t

angle θ

→ coherent backscattering

Weak localization in two-dimensional disorder

Constructive interference between reflected paths and theirtime-reversed counterparts

������

������

������

������

������

������

������

������

������

������

���

���

������

������

���

���

������

������

���

���

������

������

������

������

������

������

������

������

������

������

���

���

��������

���

���

������

������

������

������

���

���

���

���

������

������

���

���

������

��������

����

������

������

������

������

������

������

������

������

������

���

���

������

������

������

������

������

������

������

������

���

���

���

���

������

������

���

������

���

���

���

θ

→ enhanced coherent backscattering of laser light fromdisordered mediaM. P. Van Albada and A. Lagendijk, PRL 55, 2692 (1985)

P.-E. Wolf and G. Maret, PRL 55, 2696 (1985)

Weak localization in two-dimensional disorder

Constructive interference between reflected paths and theirtime-reversed counterparts

������

������

������

������

������

������

������

������

������

������

���

���

������

������

���

���

������

������

���

���

������

������

������

������

������

������

������

������

������

������

���

���

��������

���

���

������

������

������

������

���

���

���

���

������

������

���

���

������

��������

����

������

������

������

������

������

������

������

������

������

���

���

������

������

������

������

������

������

������

������

���

���

���

���

������

������

���

������

���

���

���

θ

→ enhanced coherent backscattering of laser light fromdisordered mediaM. P. Van Albada and A. Lagendijk, PRL 55, 2692 (1985)

P.-E. Wolf and G. Maret, PRL 55, 2696 (1985)

→ magnetoresistance in disordered 2D metalsB. L. Altshuler et al., PRB 22, 5142 (1980)

A. G. Aronov and Yu. V. Sharvin, Rev. Mod. Phys. 59, 755 (1987); . . .

Weak localization in two-dimensional chaotic billiards

Constructive interference between retro-reflectedtrajectories within the same transverse channel of the lead

Weak localization in two-dimensional chaotic billiards

Constructive interference between retro-reflectedtrajectories within the same transverse channel of the lead

0magnetic field

0

0.5

reflection probability (5 open channels)

dephasing in the presence of a magnetic field

Weak localization in two-dimensional chaotic billiards

Constructive interference between retro-reflectedtrajectories within the same transverse channel of the lead

dephasing in the presence of a magnetic field

→ magnetoresistance in ballistic nanostructuresA. M. Chang et al., PRL 73, 2111 (1994)

Transport of condensates through 2D disorder

Possible experimental realization:

BEC

optical lattice+ speckle field

−→ measure angle-resolved flux of backscattered atoms

Transport of condensates through 2D disorder

Gross-Pitaevskii description of the condensate in the2D confinement: g

i~∂

∂tψ(~r, t) =

(

− ~2

2m

∂2

∂~r2+ V (~r) + g|ψ(~r, t)|2

)

ψ(~r, t)

with g =√

8πas

a⊥

~2

m≡ g(x): effective 2D interaction strength

BEC

Transport of condensates through 2D disorder

−→ integrate Gross-Pitaevskii equation in the presence of a−→ source term (atom laser)

i~∂

∂tψ(~r, t) =

(

− ~2

2m

∂2

∂~r2+ V (~r) + g|ψ(~r, t)|2

)

ψ(~r, t)

+S0δ(x− x0) exp(−iµt/~)

BEC reservoirµchem. pot.

scattering potential

coupling (source)

T. Paul, K. Richter, and P.S., PRL 94, 020404 (2005)

Transport of condensates through 2D disorder

Definition of the spatial 2D geometry:

source

periodic boundary conditions

periodic boundary conditions

absorbing boundaryab

sorb

ing

boun

dary

disorder(Gaussian)

Transport of condensates through 2D disorder

Definition of the spatial 2D geometry:

source

periodic boundary conditions

periodic boundary conditions

absorbing boundaryab

sorb

ing

boun

dary

disorder(Gaussian)

h(x)

x

g(x)

Transport of condensates through 2D disorder

Definition of the spatial 2D geometry:

source

periodic boundary conditions

periodic boundary conditions

absorbing boundaryab

sorb

ing

boun

dary

disorder(Gaussian)

BEC

Transport of condensates through 2D disorder

Stationary scattering state of the condensate:

decomposition of reflected wave into transverse eigenmodes→ angle-resolved backscattered current

Transport of condensates through 2D disorder

Stationary scattering state of the condensate:

decomposition of reflected wave into transverse eigenmodes→ angle-resolved backscattered current

Coherent backscattering of the condensate

-0.4π -0.2π 0 0.2π 0.4π0

1

2

3

4 g=0

curr

ent[

arb.

units

]

angle θ [rad]

Coherent backscattering of the condensate

-0.4π -0.2π 0 0.2π 0.4π0

1

2

3

4 g=0g=0.0025

curr

ent[

arb.

units

]

angle θ [rad]

Coherent backscattering of the condensate

-0.4π -0.2π 0 0.2π 0.4π0

1

2

3

4 g=0g=0.005

curr

ent[

arb.

units

]

angle θ [rad]

Coherent backscattering of the condensate

-0.4π -0.2π 0 0.2π 0.4π0

1

2

3

4 g=0g=0.0075

curr

ent[

arb.

units

]

angle θ [rad]

Coherent backscattering of the condensate

-0.4π -0.2π 0 0.2π 0.4π0

1

2

3

4 g=0g=0.01

curr

ent[

arb.

units

]

angle θ [rad]

−→ inverted cone in presence of finite interaction:−→ crossover from constructive to destructive interference

Analytical theory of nonlinear coherent backscattering

T. Wellens and B. Gremaud, PRL 100, 033902 (2008)

Nonlinear Lippmann-Schwinger equation:

ψ(~r) = ψ0eikx +

d2r′ G0(~r − ~r′)[

Vdis(~r′) + g|ψ(~r′)|2

]

ψ(~r′)

with G0(~r)kr≫1= −m

~2

1√2πkr

ei(kr+π/4) :

Green function of free motion in two dimensions

Analytical theory of nonlinear coherent backscattering

T. Wellens and B. Gremaud, PRL 100, 033902 (2008)

Nonlinear Lippmann-Schwinger equation:

ψ(~r) = ψ0eikx +

d2r′ G0(~r − ~r′)[

Vdis(~r′) + g|ψ(~r′)|2

]

ψ(~r′)

−→ diagrams:ψ

ψ

ψ∗

V g

Analytical theory of nonlinear coherent backscattering

T. Wellens and B. Gremaud, PRL 100, 033902 (2008)

Nonlinear Lippmann-Schwinger equation:

ψ(~r) = ψ0eikx +

d2r′ G0(~r − ~r′)[

Vdis(~r′) + g|ψ(~r′)|2

]

ψ(~r′)

−→ diagrams:ψ

ψ

ψ∗

V g

Regime of weak localization (k × ℓtransport ≫ 1):

→ main contributions to disorder average of densitiesfrom ladder (diffuson) and crossed (Cooperon) diagrams

Analytical theory of nonlinear coherent backscattering

T. Wellens and B. Gremaud, PRL 100, 033902 (2008)

Ladder diagrams:

Analytical theory of nonlinear coherent backscattering

T. Wellens and B. Gremaud, PRL 100, 033902 (2008)

Ladder diagrams:

→ no net effect of nonlinearity→ on 〈|ψ(~r)|2〉disorder av.

Analytical theory of nonlinear coherent backscattering

T. Wellens and B. Gremaud, PRL 100, 033902 (2008)

Crossed diagrams:

Analytical theory of nonlinear coherent backscattering

T. Wellens and B. Gremaud, PRL 100, 033902 (2008)

Crossed diagrams:

Analytical theory of nonlinear coherent backscattering

T. Wellens and B. Gremaud, PRL 100, 033902 (2008)

Crossed diagrams:

Analytical theory of nonlinear coherent backscattering

T. Wellens and B. Gremaud, PRL 100, 033902 (2008)

Crossed diagrams:

→ nontrivial contribution to the→ backscattering peak height:

γC =

d2r

Wℓse−x/ℓsRe

{

C(~r) − e−x/ℓs}

with ℓs = scattering mean-free path,

C(~r) = e−x/ℓs +

d2r′e−|~r−~r′|/ℓs

2πℓs|~r − ~r′|C(~r′)

×(

1 + 2ikℓsmg

~2k2〈|ψ(~r′)|2〉

)

00

crossedcontrib.

ladder contrib.

angle

curr

ent

γC

−→ effective phase shift between the reflected paths

Comparison of the total peak height

0 0.01 0.020

numerical result

analytical prediction

back

scat

tere

dcu

rren

tatθ

=0

peak

dip

nonlinearity g

Coherent backscattering of the condensate

-0.4π -0.2π 0 0.2π 0.4π0

1

2

3

4 g=0g=0.01

curr

ent[

arb.

units

]

angle θ [rad]

Coherent backscattering of the condensate

-0.4π -0.2π 0 0.2π 0.4π0

1

2

3

4 g=0g=0.01g=0.015

curr

ent[

arb.

units

]

angle θ [rad]

Coherent backscattering of the condensate

-0.4π -0.2π 0 0.2π 0.4π0

1

2

3

4 g=0g=0.01g=0.02

curr

ent[

arb.

units

]

angle θ [rad]

Coherent backscattering of the condensate

-0.4π -0.2π 0 0.2π 0.4π0

1

2

3

4 g=0g=0.01g=0.03

curr

ent[

arb.

units

]

angle θ [rad]

−→ permanently time-dependent scattering at g = 0.03

−→ loss of coherence−→ T. Ernst, T. Paul, and P.S., PRA 81, 013631 (2010)

Transport of condensates through 2D billiards

−→ two waveguides connected to a chaotic scattering region−→ (hard walls, flat potential background)

−→ inject condensate in the transverse ground mode−→ of the incident waveguide

Transport of condensates through 2D billiards

−→ introduce effective “magnetic field” within the billiard−→ (via laser beams with finite orbital angular momentum)

G. Juzeli unaset al., PRA 71, 053614 (2005)

Y.-J. Lin et al., PRL 102, 130401 (2009)

Transport of condensates through 2D billiards

−→ introduce effective “magnetic field” within the billiard−→ (via laser beams with finite orbital angular momentum)

G. Juzeli unaset al., PRA 71, 053614 (2005)

Y.-J. Lin et al., PRL 102, 130401 (2009)

−→ dephasing of the coherent backscattering contribution

Weak localization in 2D billiards

Probability for retroreflection into the incident channel:(energy average and variation of obstacle position)

-0.001 0 0.0010.05

0.1

0.15 g=0

magnetic field

Weak localization in 2D billiards

Probability for retroreflection into the incident channel:(energy average and variation of obstacle position)

-0.001 0 0.0010.05

0.1

0.15 g=0g=0.01

magnetic field

Weak localization in 2D billiards

Probability for retroreflection into the incident channel:(energy average and variation of obstacle position)

-0.001 0 0.0010.05

0.1

0.15 g=0g=0.02

magnetic field

Weak localization in 2D billiards

Probability for retroreflection into the incident channel:(energy average and variation of obstacle position)

-0.001 0 0.0010.05

0.1

0.15 g=0g=0.03

magnetic field

Weak localization in 2D billiards

Probability for retroreflection into the incident channel:(energy average and variation of obstacle position)

-0.001 0 0.0010.05

0.1

0.15 g=0g=0.04

magnetic field

Weak localization in 2D billiards

Probability for retroreflection into the incident channel:(energy average and variation of obstacle position)

-0.001 0 0.0010.05

0.1

0.15 g=0g=0.05

magnetic field

Weak localization in 2D billiards

Probability for retroreflection into the incident channel:(energy average and variation of obstacle position)

-0.001 0 0.0010.05

0.1

0.15 g=0g=0.05

magnetic field

−→ signature for weak antilocalization

Semiclassical theory of nonlinear transport

ψ(~r) =

d2r′ G0(~r − ~r′)[

S(~r′) + g|ψ(~r′)|2ψ(~r′)]

with

G0(~r − ~r′) = (linear) Green function within the billiard

S(~r′) = S0δ(x− x0)χn(y′): source amplitude in channel n

χn(y) = transverse eigenmode of channel n in the incident lead

Semiclassical theory of nonlinear transport

ψ(~r) =

d2r′ G0(~r − ~r′)[

S(~r′) + g|ψ(~r′)|2ψ(~r′)]

with

G0(~r − ~r′) = (linear) Green function within the billiard

S(~r′) = S0δ(x− x0)χn(y′): source amplitude in channel n

χn(y) = transverse eigenmode of channel n in the incident lead

Probability for retroreflection:

Rnn =

dyχn(y)ψ(x0, y)

2

Semiclassical theory of nonlinear transport

−→ semiclassical expansion of G0 in terms of trajectories

−→ identify ladder and crossed contributions−→ (diagonal approximation)

−→ apply sum rules within the billiard

−→ solve transport equation for the nonlinear crossed intensity

Semiclassical theory of nonlinear transport

−→ semiclassical expansion of G0 in terms of trajectories

−→ identify ladder and crossed contributions−→ (diagonal approximation)

−→ apply sum rules within the billiard

−→ solve transport equation for the nonlinear crossed intensity

⇒ Semiclassical prediction for the retroreflection probability:

Rnn =1

2Nc

(

1 +C0

1 + (2tDgρC0/~)2

)

with C0(B) =tDtH

1

1 + (B/B0)2

tD = dwell time, Nc = number of open channels in the lead,tH = Heisenberg time, ρ = mean density within the billiard

Weak localization in 2D billiards

Fit of horizontal scale, vertical scale, and dwell time:

-0.001 0 0.0010.05

0.1

0.15

g=0g=0.01g=0.02g=0.03g=0.04

magnetic field

T. Hartmann et al., in preparation

Conclusion

Transport of Bose-Einsteincondensates through 2D disorder:

weak nonlinearity reverts the peak ofcoherent backscattering

Quantitative understanding in terms ofanalytical diagrammatic theory

Transport through chaotic billiards:signature for weak antilocalization

00

curr

ent

angle

g = 0g > 0

0magnetic field

retr

oref

lect

ion

g=0g>0

M. Hartung, T. Wellens, C. A. Muller, K. Richter, P.S.,

PRL 101, 020603 (2008)

T. Hartmann, T. Wellens, C. Petitjean, J.-D. Urbina, K. Richter, P.S.,

in preparation