younes sina, backscattering spectrometry

44
Backscattering Spectrometry Younes Sina The University of Tennessee, Knoxville Professor C.J.McHargue Part 1

Upload: younes-sina

Post on 10-Jun-2015

602 views

Category:

Technology


3 download

DESCRIPTION

Rutherford Backscattering Spectroscopy, Ion Implantation, Modern Ion Beam Materials Analysis, Younes Sina

TRANSCRIPT

Page 1: Younes Sina, Backscattering spectrometry

Backscattering Spectrometry

Younes Sina

The University of Tennessee, Knoxville

Professor C.J.McHargue

Part 1

Page 2: Younes Sina, Backscattering spectrometry

Backscattering spectrometry using ion beams with energies inthe megaelectronvolt range has been used extensively foraccurate determination of stoichiometry , elemental arealdensity ,and impurity distributions in thin films.

Page 3: Younes Sina, Backscattering spectrometry

EEKi

i 01/

MM

MMMK

21

112cos)sin( 222 2/1

2

Kinematic factor

E0 -ΔEZ1M1Z1M1E0

Z2

M2

Page 4: Younes Sina, Backscattering spectrometry
Page 5: Younes Sina, Backscattering spectrometry

),(

cos

EQ

A

i

ii

iNt

Areal density, Nt, as atoms per unit area

Detector solid angle

Integrated peak count

Incident ionsCross section

Areal density

Page 6: Younes Sina, Backscattering spectrometry

)sin(sin

]cos)sin[(4

4 221

22

42

222

122

2/12

),(2/1

2

21

2

MMM

MMM

E

eZZER

Rutherford scattering cross section

E0 -ΔEZ1M1Z1M1

Z2

M2

E0

e2≈1.44x10-13

Page 7: Younes Sina, Backscattering spectrometry

),(

),(.

E

E

A

A

N

N

m

n

B

A

A

B

A

B

The average stoichiometric ratio for the compound film AmBn

Ratio of measured integrated peak count

Cross section ratio

AB

AB

M

NmN

AB

A

0

AB

AB

M

NnN

AB

B

0

Page 8: Younes Sina, Backscattering spectrometry

AB

AB

M

NmN

AB

A

0

AB

AB

M

NnN

AB

B

0

NNAB

B

B

AB

A

A NtNtt

)()(

BAAB nMmMM

nmBAPhysical film thickness

Page 9: Younes Sina, Backscattering spectrometry

2

2

01 EMdM

dKEE

2

0

2

dM

dKE

EM

FUNDAMENTALS

mass resolution for fixed θ:

Energy separation

Minimum energy separation that can be experimentally resolved

Page 10: Younes Sina, Backscattering spectrometry
Page 11: Younes Sina, Backscattering spectrometry

)(

1)

)((

1),(

Q

EdQ

NtE

Elastic scattering cross section

Average differential cross section

Number of target atoms per unit area

Detector solid angle

Fraction of incident particles scattered to the detector

Page 12: Younes Sina, Backscattering spectrometry

2

1421

2

22

02073.0),( sin4 M

ME

E

ZZR

Rutherford cross section

Unit: barn/ sr1 b(barn)=10-24 cm2

Z1M1Z1M1

Z2

M2

E0

Page 13: Younes Sina, Backscattering spectrometry

EZZ

CMR

21

3/4

049.01

EZZ

CMR

21

2/7

0326.01

Non-Rutherford cross section

L’Ecuyer Eq. for Low energy ion

Wenzel and Whaling for light ion with MeV energy

Center-of-mass kinetic energy (keV)

ECM≈Elab

Low energy

Page 14: Younes Sina, Backscattering spectrometry

)1.05.0()01.012.0( 2 ZENR

Lab

For 1H:

)2.04.0()01.025.0( 2 ZENR

Lab

)1.04.1()005.0330.0( 2 ZENR

Lab

For 7Li:

For 4He:

Labo

ratory p

rojectile kin

etic energy(M

eV)

Laboratory projectile kinetic energyNon-Rutherford

Page 15: Younes Sina, Backscattering spectrometry
Page 16: Younes Sina, Backscattering spectrometry

21 π

Experimental geometry

θ1

θ2

cosθ2= cos (π-θ).cosθ1

Page 17: Younes Sina, Backscattering spectrometry

2cos

xdout

1cos

xdin

For Cornel

For IBM geometry

1cos

xdin

21 cos,cos

xdout

Experimental geometry

Page 18: Younes Sina, Backscattering spectrometry

Ndx

dE

For a compound of AmBn:εAB =mεA+nεB

B

AB

BA

AB

A

ABAB

AB

NNNdx

dE

Effects of energy loss of ions in solids

Atomic density

Stopping cross section

Molecular densityAtomic density

stopping power

Page 19: Younes Sina, Backscattering spectrometry

Example:

εAl= 44x10-15 eVcm2 εO= 35x10-15 eVcm2

εAl2O3=(2x44+3x35)x10-15 =193x10-15eVcm2

3

3222

23

30

cm

moleculesOAl1035.2

mol

g102

mol

molecules106

cm

g4

32

M

NN

OAl

A

eV46101931035.2

0

15223232

32

OAlOAl

OAl

Ndx

dE

3

OAl

Al cm

atomsAlN

222232107.41035.22 3

222232

cm

atomsO101.71035.23 N

OAl

O

Calculate the stopping cross section and stopping power of2 MeV 4He+ in Al2O3 using Bragg rule

From appendix 3:

For a compound of AmBn:εAB =mεA+nεB

Page 20: Younes Sina, Backscattering spectrometry

A

eV46101931035.2

0

15223232

32

OAlOAl

OAl

Ndx

dE

A

eV46

eV10461035101.71044107.4

0

815221522

cm

x

dxdxdEE0

)/(

Example:

Page 21: Younes Sina, Backscattering spectrometry

Depth scale

xSE

21 cos

1

cos

1

outin dx

dE

dx

dEKS

xNE .

21 cos

1

cos

1

outinK

xNE ABAB

AA

2,

1 cos

1

cos

1

AB

Aout

AB

inA

AB

AK

x

dxdxdEE0

)/(Energy loss factor

Stopping cross section factor

Page 22: Younes Sina, Backscattering spectrometry

Depth resolution

ExampleCalculate the depth- scattered ion energy differences for 2 MeV 4He+ in Al2O3

θ1=0°and θ2=10°K factor for4He on Al=0.5525K factor for4He on O=03625

0KEE 1

MeVEAl

105.125525.01

MeVEO

725.023625.01

Using the surface-energy approximation

2151515 1019310353104423232

eVcmO

in

Al

in

OAl

in

2151515

,,,10240104631051232

32

eVcmO

Alout

Al

Alout

OAl

Alout

2151515

,,,10252104831054232

32

eVcmO

Oout

Al

Oout

OAl

Oout

εAB =mεA+nεB ε at E0,surface

ε at E1

Page 23: Younes Sina, Backscattering spectrometry

2,

10

cos

1

cos

1 323232

][

OAl

Alout

OAl

inAl

OAl

AlK

We can now calculate the stopping cross section factors

21515150

32

10350015.110240101935525.0][ eVcmOAl

Al

2,

10

cos

1

cos

1 323232

][

OAl

Oout

OAl

inO

OAl

OK

21515150

32

10326015.110252101933625.0][ eVcmOAl

O

Using the molecular density N Al2O3=2.35x1022 molecules/cm3 we find:

xxNEOAlOAl

AlAl

A

eV3.82

0 0

3232

xxNEOAlOAl

OO

A

eV6.76

0 0

3232

Example

Page 24: Younes Sina, Backscattering spectrometry

Surface spectrum height

10

0 cos][

)(

EQE

H

Surface height of the two elemental peaks in the compound AmBn are given by

1

0

0,

cos0

m)(

AB

A

A

A

QEH

E

2

0

0,

cos0

n)(

AB

B

B

B

QEH

E

Energy width per channel

stopping cross section factors

Page 25: Younes Sina, Backscattering spectrometry

Mean energy in thin films

)()(1

0 NtEESEA

i

r

i

iSEA

in

Mean energy of the ions in the film ,Ē(1)

20

)1( ESEA

inEE

)(0

),(

cosNtNt

SEA

iEE

i

ii

i EQ

A

Surface Energy Approximation

E0E1E2

Page 26: Younes Sina, Backscattering spectrometry

For the second iteration, the values of (Nt)i(1) should

be calculated using with

E= Ē(1) then ∆Ei(1) and Ē(2)

),(

cos

EQ

A

i

ii

iNt

)()1(

)1(

1

)1(

NtE i

r

i

i

inE

2

)1(

0

)2( EinEE

Mean energy in thin films

E0E1E2

Page 27: Younes Sina, Backscattering spectrometry

Example Calculate surface height for 2 MeV 4He+ on Al2O3:Ω=10-3srE=1 keV/channelQ=6.24x1013 incident particles (10μC charge)θ1=0°, θ2=10° (scattering angle=170°)

From appendix 6: σRAl=0.2128x10-24 & σR

O=0.0741x10-24

From previous example:

2150

32

10326][ eVcmOAl

O

2150

32

10350][ eVcmOAl

Al

1

0

0,

cos0

)(

AB

A

A

A

EQmEH

cnt

EQOAl

Al

Al

AlH 7610350

1021024.610102128.0

0

215

33324

320,

cnt

EQOAl

O

O

OH 4310326

1031024.610100741.0

0

315

33324

320,

Page 28: Younes Sina, Backscattering spectrometry

For not too thick film

)()(0

)(2

)(

NtE

ENt

SEA

i

f

i

f

E=Ē(f)

E0E1E2

Page 29: Younes Sina, Backscattering spectrometry

Sample analysis

Experimental Parameter Units Values

Analysis ion energy MeV 1.0-5.0

Beam cross section mm x mm 1.5x1.5

Beam current nA 10-200

Integrated charge μC 5-100

Detector energy resolution for 4He ions keV 15

Data acquisition time min 5-10

Vacuum Torr 2x10-6

Pump-down time min 15

Typical experimental operating conditions and parameter ranges used duringacquisition of backscattering spectra

Page 30: Younes Sina, Backscattering spectrometry

Thin-film analysisThe peak integration method

iR

i

R

Bii

EQ

DTReCAiNt

))(,('

cos)(

1

Integrated peak countsThat can be accurately determined from the spectrum

Non Rutherford correction factor

Correction factor

Dead time ratio

Integrated charge deposited on the sample during the run

solid angle subtended by the detector at the target

Page 31: Younes Sina, Backscattering spectrometry

an application of the peak integration method of analysis of the two-element thin film

E0=3776 keVθ=170˚θ1=0˚θ2=10˚Ω=0.78 msrCBi=(0.99±0.03)E=(3.742±0.005)keV/channelÉ=(8±3) keVKFe=(170˚)=0.7520KGd=(170˚)=0.90390

E1= nE+ É

Example

Energy intercept

Page 32: Younes Sina, Backscattering spectrometry

sr

cmE

Fe

R

22424

20 102469.010776.3

521.3)170,(

sr

cmE

Gd

R

22424

20 10510.110776.3

53.21)170,(

998.03776

)26)(2)(049.0(1

3/4

FeR

993.03776

)64)(2)(049.0(1

3/4

GdR

From appendix 6

EZZ

CMR

21

3/4

049.01

From

Example

Center-of-mass energy

Page 33: Younes Sina, Backscattering spectrometry

From Trim 1985:

215104.51)3776( eVcmkeVFe

215102.52)3676( eVcmkeVFe

215103.86)3776( eVcmkeVGd

215105.87)3676( eVcmkeVGd

Example

Page 34: Younes Sina, Backscattering spectrometry

008.1

)201020(

)1660('

)1757(

01.20'

0,

DTR

cts

nB

nB

CQ

HAB

A

cts

nA

nA

HAB

B)20640(

)1812('

)1910(

0,

Integrated counts in spectral regions of interest (initialand final channel numbers are listed:Channels (789-918)=103978 cts; (920-960)=49 ctsChannels (640-767)=64957 cts; (768-788)=79 cts

Example

Page 35: Younes Sina, Backscattering spectrometry

From: E1= nE+ É and Ki=Ei1/E0 :

keVEnB

B

E )62841()38()005.0742.3)(1757('1

E

keVEnA

A

E )73413()38()005.0742.3)(1910('1

E

002.0752.0)53776(

)62841(

0

1

E

EK

B

B

002.0904.0)53776(

)73413(

0

1

E

EK

A

A

Therefore, element A and B are Gd and Fe, respectively. Note that element A could also be Tb, because KTb=0.9048

Example

Energy intercept

Page 36: Younes Sina, Backscattering spectrometry

Calculation of elemental areal densities,(Nt)

Values of Ai are calculated from the integrated counts in the regions of interests

ctsAFe )26164475()128(21

7964957

ctsAGd )323103823()130(41

49103978

In this case, the background correction is almost negligible

Example

Page 37: Younes Sina, Backscattering spectrometry

The areal densities in the surface-energy approximation,(Nt)SEAi

using E=E0

22436

19

)998.0)(102469.0)(1078.0)(1001.20(

)10602.1)(03.099.0)(008.1)(26164475()(

cmatomsNt

SEA

Fe

21810)021.0709.0()(

cmatomsNt

SEA

Gd

21810)08.068.2(

cmatoms

iR

i

R

Bii

EQ

DTReCAiNt

))(,('

cos)(

1

DTR CBiAi

1

Q’ Ω

0.998

σ

e

Example

Page 38: Younes Sina, Backscattering spectrometry

The mean energy of the 4He ion in the film, Ē(1), is calculated (to first order) using the following equation

)()(1

0 NtEESEA

i

r

i

iSEA

in

For the first-order energy loss, ΔESEAin ,of the ions in the film:

20

)1( ESEA

inEE

keV

eV

EE NtNtESEA

Gd

GdSEA

Fe

FeSEA

in

199

)10709.0)(103.86()1068.2)(104.51(

)()(

18151815

00 )()(

keVE 36762

1993776

)1(

Example

Page 39: Younes Sina, Backscattering spectrometry

From the following Eq. we can calculate the areal densities:

)()(0

)(2

)(

NE

ENt

SEA

i

f

i

f

218

2

)1(

/1054.2)(3776

3676)( cmatomsNNt

SEA

FeFe

218)1(

/10672.0)( cmatomsNtGd

Example

Page 40: Younes Sina, Backscattering spectrometry

Results of an additional iteration of this procedure using the following equations we have: (Note that Fe and Gd are evaluated at Ē(1) )

eVeVEin191)10672.0)(105.87()1054.2)(102.52( 18151815)1(

)()1(

)1(

1

)1(

NtE i

r

i

i

inE

2

)1(

0

)2( EinEE

)()(0

)(2

)(

NtE

ENt

SEA

i

f

i

f

eVEin3681

2

1923776

)2(

218

2

)2(

/10)08.055.2()(3776

3681)( cmatomsNtNt

SEA

FeFe

218)2(

/10)021.0674.0()( cmatomsNtGd

Example

Page 41: Younes Sina, Backscattering spectrometry

The average stoichiometric ratio for this film using the following Eq.:

),(

),(.

E

E

A

A

N

N

m

n

B

A

A

B

A

B

02.078.3998.0

993.0.

521.3

53.21.

323103823

)26164475(

.)170,(

)170,(

/

/

0

0

R

R

E

E

A

A

N

N

Fe

Gd

Fe

R

Gd

R

Gd

Fe

Gd

Fe

Example

Page 42: Younes Sina, Backscattering spectrometry

If the molecular formula for the film is written as GdmFen , then:

m=0.209±0.001 and n=0.791±0.001

n+m=1

Example

Page 43: Younes Sina, Backscattering spectrometry

The value of the physical film thickness:

nmcmtFe 3021044.8

1055.222

18

Elemen

tal bu

lk den

sity

3220 /1044.8 cmatomsM

NN

Fe

FeFe

3220 /1002.3 cmatomsM

NN

Gd

GdGd

nmcmtGd 2231002.3

10674.022

18

nmtGdFe 525

Example

NNAB

B

B

AB

A

A NtNtt

)()(

Page 44: Younes Sina, Backscattering spectrometry

Thank you

My hometown