cognitive computational neuroscience of...

23
Artificial intelligence Computational neuroscience Cognitive science Nikolaus Kriegeskorte Department of Psychology, Department of Neuroscience Zuckerman Mind Brain Behavior Institute Affiliated member, Electrical Engineering, Columbia University Cognitive computational neuroscience of vision

Upload: others

Post on 04-Jun-2020

35 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Cognitive computational neuroscience of visionalgonauts.csail.mit.edu/slides/Algonauts2019_Nikolaus_Kriegeskorte.pdf · Computational neuroscience Cognitive science Nikolaus Kriegeskorte

Artificial intelligence

Computational neuroscience

Cognitive science

Nikolaus KriegeskorteDepartment of Psychology, Department of Neuroscience

Zuckerman Mind Brain Behavior Institute

Affiliated member, Electrical Engineering, Columbia University

Cognitive computational neuroscience

of vision

Page 2: Cognitive computational neuroscience of visionalgonauts.csail.mit.edu/slides/Algonauts2019_Nikolaus_Kriegeskorte.pdf · Computational neuroscience Cognitive science Nikolaus Kriegeskorte

Artificial intelligence

Computational neuroscience

Cognitive science

Kriegeskorte & Douglas 2018

neural

network

models

Cognitive computational neuroscience

A common language for

expressing theories about

brain information processing

Page 3: Cognitive computational neuroscience of visionalgonauts.csail.mit.edu/slides/Algonauts2019_Nikolaus_Kriegeskorte.pdf · Computational neuroscience Cognitive science Nikolaus Kriegeskorte

How can we test

neural network models

with brain-activity data?

Page 4: Cognitive computational neuroscience of visionalgonauts.csail.mit.edu/slides/Algonauts2019_Nikolaus_Kriegeskorte.pdf · Computational neuroscience Cognitive science Nikolaus Kriegeskorte

?activity

patterns

experimental

stimuli ...

... ...

brain model

Predicting representational spaces

activity patternstim

uli

responses

activity p

rofile

activity pattern

stim

uli

responses

activity p

rofile

Diedrichsen & Kriegeskorte 2017, Kriegeskorte & Diedrichsen 2019

Page 5: Cognitive computational neuroscience of visionalgonauts.csail.mit.edu/slides/Algonauts2019_Nikolaus_Kriegeskorte.pdf · Computational neuroscience Cognitive science Nikolaus Kriegeskorte

Predicting representational spaces

activity patternstim

uli

responses

activity p

rofile

Diedrichsen & Kriegeskorte 2017, Kriegeskorte & Diedrichsen 2019

Page 6: Cognitive computational neuroscience of visionalgonauts.csail.mit.edu/slides/Algonauts2019_Nikolaus_Kriegeskorte.pdf · Computational neuroscience Cognitive science Nikolaus Kriegeskorte

Predicting representational spaces

encoding

model

representational similarity

analysis

Diedrichsen & Kriegeskorte 2017, Kriegeskorte & Diedrichsen 2019

distance matrix

response 1(e.g. neuron, voxel)

stimulus 1

activity pattern

stim

uli

responses

activity p

rofile

weights

model

features

stim

ulu

s 3

activity

respo

nse

3

activity

L2 weight penalty

Page 7: Cognitive computational neuroscience of visionalgonauts.csail.mit.edu/slides/Algonauts2019_Nikolaus_Kriegeskorte.pdf · Computational neuroscience Cognitive science Nikolaus Kriegeskorte

Predicting representational spaces

model activity-profiles distribution

encoding

model

pattern component

model

representational similarity

analysis

model representational

distances

model each response

separatelymodel stimulus-by-stimulus matrix

of summary statistics

Diedrichsen & Kriegeskorte 2017, Kriegeskorte & Diedrichsen 2019

distance matrixsecond-moment matrix

response 1(e.g. neuron, voxel)

stimulus 1

weights

model

features

respo

nse

3

activity

Core commonality: All three test hypotheses about the

second moment of the activity profiles.

stim

ulu

s 3

activity

stim

ulu

s 3

activity

L2 weight penalty

Page 8: Cognitive computational neuroscience of visionalgonauts.csail.mit.edu/slides/Algonauts2019_Nikolaus_Kriegeskorte.pdf · Computational neuroscience Cognitive science Nikolaus Kriegeskorte

1 spatially organized neuronal population code (neuronal locations and activity profiles

)L U

2 activity-profiles distribution(activity profiles or all moments U

of activity-profiles distribution)

3 representational geometry(2 moment of activity profiles or

ndG

representational distance matrix )D

4 total encoded information(downstream neuron can perform arbitrary

linear or nonlinear readout from all neurons)

5 linear neuronal readout(downstream neuron can perform

linear readout from all neurons)

6 restricted-input linear readout(downstream neuron can perform linear

readout from a limited number of neurons)

7 local linear readout(downstream neuron can perform linear or radial-basis

readout from neurons in a restricted spatial neighborhood)

The onion of brain representationsinformation potentially usedby researchers

information potentially extractedby single readout neurons

encoded information

explicitimplicit

researcher information

focusedcomprehensive

Kriegeskorte & Diedrichsen 2019

Page 9: Cognitive computational neuroscience of visionalgonauts.csail.mit.edu/slides/Algonauts2019_Nikolaus_Kriegeskorte.pdf · Computational neuroscience Cognitive science Nikolaus Kriegeskorte

1 spatially organized neuronal population code (neuronal locations and activity profiles

)L U

2 activity-profiles distribution(activity profiles or all moments U

of activity-profiles distribution)

3 representational geometry(2 moment of activity profiles or

ndG

representational distance matrix )D

4 total encoded information(downstream neuron can perform arbitrary

linear or nonlinear readout from all neurons)

5 linear neuronal readout(downstream neuron can perform

linear readout from all neurons)

6 restricted-input linear readout(downstream neuron can perform linear

readout from a limited number of neurons)

7 local linear readout(downstream neuron can perform linear or radial-basis

readout from neurons in a restricted spatial neighborhood)

The onion of brain representationsinformation potentially usedby researchers

information potentially extractedby single readout neurons

encoded information

explicitimplicit

researcher information

focusedcomprehensive

Kriegeskorte & Diedrichsen 2019

Page 10: Cognitive computational neuroscience of visionalgonauts.csail.mit.edu/slides/Algonauts2019_Nikolaus_Kriegeskorte.pdf · Computational neuroscience Cognitive science Nikolaus Kriegeskorte

?

sti

mu

li

stimuli

00

00

00

00

00

00

sti

mu

li

stimuli

00

00

00

00

00

00

activity

patterns

experimental

stimuli ...

... ...

brain model

representational

dissimilarity matrix

(RDM)

dissimilarity

(e.g. crossvalidated Mahalanobis

distance estimator)

Representational similarity analysis

!

Kriegeskorte et al. 2008

Page 11: Cognitive computational neuroscience of visionalgonauts.csail.mit.edu/slides/Algonauts2019_Nikolaus_Kriegeskorte.pdf · Computational neuroscience Cognitive science Nikolaus Kriegeskorte

Representational feature weighting with

non-negative least-squares

f1

w2 f2

f2 fk

w1 f1 wk fk

. . .

. . .

model RDM

weighted-model

RDM

Page 12: Cognitive computational neuroscience of visionalgonauts.csail.mit.edu/slides/Algonauts2019_Nikolaus_Kriegeskorte.pdf · Computational neuroscience Cognitive science Nikolaus Kriegeskorte

Representational feature weighting with

non-negative least-squares

wk weight given to model feature k

fk(i) model feature k for stimulus i

di,j distance between stimuli i,j

w is the weight vector [w1 w2 ... wk] that minimizes the sum of squared errors

𝐰 = arg min𝐰∈𝐑+𝒏

𝑖≠𝑗

𝑑𝑖,𝑗2 − መ𝑑𝑖,𝑗

2 2

መ𝑑𝑖,𝑗2 =

𝑘=1

𝑛

[𝑤𝑘𝑓𝑘 𝑖 − 𝑤𝑘𝑓𝑘 𝑗 ]2

=

𝑘=1

𝑛

𝑤𝑘2 ∙ [𝑓𝑘 𝑖 − 𝑓𝑘 𝑗 ]2

w1 2 feature-1 RDM

+w22 feature-2 RDM

+wk2 feature-k RDM

= weighted-model RDM

...

= arg min𝐰∈𝐑+𝒏

𝑖≠𝑗

𝑑2 −

𝑘=1

𝑛

𝑤𝑘2 ∙ RDM𝑘

𝑖,𝑗

2

The squared distance RDM

of weighted model features

equals a weighted sum

of single-feature RDMs.

model feature kweight k

stimuli i, j

predicted

distance

Page 13: Cognitive computational neuroscience of visionalgonauts.csail.mit.edu/slides/Algonauts2019_Nikolaus_Kriegeskorte.pdf · Computational neuroscience Cognitive science Nikolaus Kriegeskorte

convolutional fullyconnected

weighted combination oflayers and SVM discriminants

highest accuracy any

model can achieve

other subjects’ average

as model

accuracy above 0

p < 0.05, Bonf. corr.

(stimulus bootstrap)

SE

(stimulus bootstrap)

Khaligh-Razavi & Kriegeskorte 2014, Nili et al. 2014 (RSA Toolbox), Storrs et al. (in prep.)

model comparisons (stimulus bootstrap, p < 0.05,

Bonferroni corrected for all pairwise comparisons)

Deep convolutional networks predict

IT representational geometry

accuracy

of human IT

dissimilarity matrix

prediction[group-average of Spearman’s ]

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

accuracy below noise ceiling

p < 0.05, Bonf. corr.

(stimulus bootstrap)

noise ceiling

performance range of

computer-vision features

Page 14: Cognitive computational neuroscience of visionalgonauts.csail.mit.edu/slides/Algonauts2019_Nikolaus_Kriegeskorte.pdf · Computational neuroscience Cognitive science Nikolaus Kriegeskorte

Do recurrent neural networks

provide better models of vision?

Courtney Spoerer

Page 15: Cognitive computational neuroscience of visionalgonauts.csail.mit.edu/slides/Algonauts2019_Nikolaus_Kriegeskorte.pdf · Computational neuroscience Cognitive science Nikolaus Kriegeskorte

Recurrent networks can recycle their limited

computational resources over time.

Kriegeskorte & Golan 2019

This might boost the performance of a physically finite model or brain.

Page 16: Cognitive computational neuroscience of visionalgonauts.csail.mit.edu/slides/Algonauts2019_Nikolaus_Kriegeskorte.pdf · Computational neuroscience Cognitive science Nikolaus Kriegeskorte

Layer 1 lateral connectivity is consistent

with primate V1 connectivity

RCNN, layer 1, lateral connectivity templates(first 5 principal components)

Spoerer et al. pp2019

Page 17: Cognitive computational neuroscience of visionalgonauts.csail.mit.edu/slides/Algonauts2019_Nikolaus_Kriegeskorte.pdf · Computational neuroscience Cognitive science Nikolaus Kriegeskorte

Spoerer et al. pp2019

recurrent convolutionalaccu

racy

computational cost[floating-point operations ×1011]

Recurrent models can trade off

speed of computation for accuracy

feedforward models

Page 18: Cognitive computational neuroscience of visionalgonauts.csail.mit.edu/slides/Algonauts2019_Nikolaus_Kriegeskorte.pdf · Computational neuroscience Cognitive science Nikolaus Kriegeskorte

Spoerer et al. pp2019

recurrent convolutionalaccu

racy

computational cost[floating-point operations ×1011]

Recurrent models can trade off

speed of computation for accuracy

feedforward models

Page 19: Cognitive computational neuroscience of visionalgonauts.csail.mit.edu/slides/Algonauts2019_Nikolaus_Kriegeskorte.pdf · Computational neuroscience Cognitive science Nikolaus Kriegeskorte

RCNN reaction times tend to be slower

for images humans are uncertain about

correlation

between

human certainty and

RCNN reaction time

[Spearman]

Page 20: Cognitive computational neuroscience of visionalgonauts.csail.mit.edu/slides/Algonauts2019_Nikolaus_Kriegeskorte.pdf · Computational neuroscience Cognitive science Nikolaus Kriegeskorte

Tim Kietzmann

Can recurrent neural network models

capture the representational dynamicsin the human ventral stream?

Page 21: Cognitive computational neuroscience of visionalgonauts.csail.mit.edu/slides/Algonauts2019_Nikolaus_Kriegeskorte.pdf · Computational neuroscience Cognitive science Nikolaus Kriegeskorte

Fitting model representational dynamics

with deep representational distance learning

Task: find an image-computable network to model the first 300ms

of representational dynamics of the ventral stream.

McClure & Kriegeskorte 2016

Page 22: Cognitive computational neuroscience of visionalgonauts.csail.mit.edu/slides/Algonauts2019_Nikolaus_Kriegeskorte.pdf · Computational neuroscience Cognitive science Nikolaus Kriegeskorte

magnetoencephalography functional magnetic resonance imaging

Recurrent networks significantly outperform ramping feedforward models

in predicting ventral-stream representations (MEG and fMRI).

feedforward recurrent

Recurrent models better explain

representations and their dynamics

Page 23: Cognitive computational neuroscience of visionalgonauts.csail.mit.edu/slides/Algonauts2019_Nikolaus_Kriegeskorte.pdf · Computational neuroscience Cognitive science Nikolaus Kriegeskorte

How can we build neural network models

of mind and brain?

big models

Divergent: Exploring the

space of computational

models with world data• Training

• different sets of stimuli

• different tasks

• Units

• stochasticity

• context-modulation

• Architecture

• skipping connections

• recurrent connections

Convergent: Constraining models

with brain and behavioral data• inferential model selection (model

parameters learned for a task)

• reweighting of units

• linear remixing of units

• deep learning of model parameters

from brain-activity data

big world

data

big behavioral

data

big brain

data