co storage in geological formations · 2 storage in geological formations as hydrate ... – develo...

38
CO 2 Storage in Geological Formations as Hydrate Mehran PooladiDarvish, Olga Zatsepina, Farhad Qanbari, Hamed Tabatabaie Energy from clathrate hydrates Energy from clathrate hydrates Advances in gas production and CCS IASS, Potsdam November 8 – 9, 2011 1

Upload: dotruc

Post on 04-Jun-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

CO2 Storage in Geological Formations as Hydrate

Mehran Pooladi‐Darvish, Olga Zatsepina, Farhad Qanbari, Hamed Tabatabaie

Energy from clathrate hydrates –Energy from clathrate hydrates –Advances in gas production and CCS

IASS, PotsdamNovember 8 – 9, 2011

1

Background (Hydrate Research)g ( y )• University of Calgary; since 1998

– Development of two numerical simulators, forp• Improved understanding• Answering some research questions (e.g. upscaling, ice formation, etc)

– Development of reservoir engineering models• Material balance• Welltesting

• Fekete Associates Inc.– Used STARS– Consulting projects (e.g., Mt. Elbert MDT modeling & MMS 

recovery estimate in GoM)A id di l d CO i if– Acid gas disposal and CO2 storage in aquifers

• University and Fekete– CO2 storage in a depleted gas reservoir

2

Motivation100

onStructural, Stratigraphic & Hydrodynamic Trapping

ontr

ibut

io

Residual CO2

Trapping

rapp

ing

C Trapping

S l bilit

% T

r Solubility Trapping

Mineral TrappingAccelerate the processes

01 10 100 1000 10000

Time Since Cessation of Injection (Years)

TrappingpStore as Hydrate

Time Since Cessation of Injection (Years)

Fekete Technical Video’s 10 and 15 3

1‐ STORAGE IN DEPLETED GAS POOLS1 STORAGE IN DEPLETED GAS POOLS

4

Possibilities in AlbertaPossibilities in Alberta

• Wright et al. 2008Wright et al. 2008– 62 depleted gas pools

– Capacity for many years of         oil sands emissions 

• “Considerable work remains …”

5

MotivationMotivationComparison with storage in aquifers

• CO2 emissions from the oil sands

in aquifers

• Distributed vs. centralized

• Small scale vs large scaleoil sands– 45 Mega Tonnes (2009)

– 15‐20% of Alberta’s 

• Small scale vs. large scale

• More understanding of the cap‐rock and reservoir

Natural gas production (in volume)

cap‐rock and reservoir

• Easy to monitor – it is containedcontained

• Store in solid form – Unless heatedUnless heated

6

Effect of Gas Composition

• CO2 : Pressure  (T: constant)• Heat of formation: 60 KJ/mole needs to be dissipated  7

Modeling Studies (with STARS of CMG)Modeling Studies (with STARS of CMG)

• Formulation– General heat transfer 

• Mixing Vessel – Isothermal

• Mixing Vessel – Non‐– Multi‐phase  flow

– Simplified thermodynamics

– Reaction

Mixing Vessel  Nonisothermal

• Reservoir modeling– Reaction

• Assumptions– No geomechanics

– Homogeneous properties

– Fast kinetics (i.e. equilibrium)

8

MIXING VESSEL ‐ ISOTHERMALMIXING VESSEL  ISOTHERMAL

9

Mixing Vessel ‐ isothermal• Pressure: 2 MPa

• Temperature: 5 °C

P it 30%

• Swi: 25%

• Final P: 4 MPa

I j t t t t t• Porosity: 30%

14000

e

• Inject at constant rate

0 6

0.83000

and

hydr

ate

Pa)

P

0.4

0.6

2000

s of

wat

er a

ress

ure

(kP

ShLimiting factor: Water

0.21000

Satu

ratio

nsPr Sw

000 5 10 15 20 25

S

Time (days) 10

Mixing Vessel ‐ isothermal4000

Pa)

0 8

1

Peq(Y)

3000

e, P

ress

ure

(k

0.6

0.8

atur

atio

n

P

2000

rium

Pre

ssur

e

0.4

Hyd

rate

Sa

0

1000

Equi

lib

0

0.2Sh

00 0.2 0.4 0.6 0.8 1

Mole fraction of CO2 in the vapor phase

0

11

MIXING VESSEL – NON‐ISOTHERMALMIXING VESSEL  NON ISOTHERMAL

12

Mixing Vessel – Non‐isothermal

8

10

e (

C)

0.8

1

6

, Tem

pera

ture

0.6

Satu

ratio

n

T

2

4

essu

re (M

Pa),

0.2

0.4

Hyd

rate

P

00 2 4 6 8 10 12 14

Pre

0

Sh

Time (days)

• T and p increase• Slope of pressure increase: declinesSlope of pressure increase: declines• Final hydrate saturation: 6%

13

Mixing Vessel – Non‐isothermal

5000

6000Pa

)

0 8

1

4000

, Pre

ssur

e (k

P

0.6

0.8

tura

tion

2000

3000

um P

ress

ure,

0.4

Hyd

rate

satPeq. (T) at 40% CO2

P

1000Equi

libriu

0.2

H

Peq. (T) at 70% CO2

Sh

02 4 6 8 10

Temperature (C)

0

• Limiting factor: Heat capacity14

RESERVOIR MODELINGRESERVOIR MODELING

15

Base Case

qinj= 0.1 106 m3/dayqinj 0.1 10 m /day

Tinj = 10 C 300 m

5 = 30%K = 500 mD

Sw = 0.25pi = 500 kPa Ti = 5 C

5 m Sg = 0.75

OGIP = 1 7106 m3OGIP 1.710 m

p = 4 MPa then shut-inpmax= 4 MPa, then shut-in

16

Results

10 1 4500 1Average T/p/SH T/p on Phase diagram

8

10

ratu

re (

C)

0.8

1

tura

tion

3500

500

ure

(kPa

)

0.8

tion

4

6

re (M

Pa),

Tem

pe

0.4

0.6

e H

ydra

te S

atT

2500

ssur

e, P

ress

u

0.4

0.6

ydra

te S

atur

at

Peq(T)

0

2

Av.

Pre

ssu

0

0.2 Ave

rag

PSh

500

1500

Eq. P

re0

0.2

Hy

P

Sh

00 50 100 150 200 250

Time (days)

0 5004 5 6 7 8 9 10

Temperature (C)

0

17

ResultsResults

Temperature Hydrate Saturation10 0.18

8

9

(C

)

180 days

240 days

0.12

0.15

ratio

n7

8

Tem

pera

ture

120 days

y

0.06

0.09

Hyd

rate

sat

ur180 days

240 days

5

6

0 50 100 150 200 250 300

Radial distance (m)

60 days0

0.03

0 50 100 150 200 250 300

Radial distance (m)

60 days

120 days

Radial distance (m) Radial distance (m)

18

Results180 Days 240 Days

Temperature

HydrateSaturation

19

What happens after shut‐in?What happens after shut in?5 1

4

MPa

) 0.8

atio

n

Pressure

3

ress

ure

(M

0.6

ate

Satu

ra

1

2

vera

ge P

r

0 2

0.4

Av.

Hyd

ra

0

1A

0

0.2 A

Sh

5 6 7 8 9 10Average Temperature (C)

20

Case 2: Continued Injection (2 yrs)Case 2: Continued Injection (2 yrs)12

8

10

sm3 /d

ay)

6

Rat

e (1

04 s

2

4

njec

tion

R

Base CaseShut inContinued Inj.

Base Case

0

2

0 100 200 300 400 500 600 700 800

In Shut-inBase Case

0 100 200 300 400 500 600 700 800

Time (days)

21

ResultsResults10

C)

8

Tem

p. (C

Temperature

4

6

Pa),

Av.

BCContinued Inj.

2

4

Pres

. (M

Pressure SHUT-IN

j

Base Case

0

2

Av.

0 125 250 375 500 625 750Time (days) 22

Results20

m3 )

BC

Results

Continued Inj.OGIP = 1.7106 m3

16

te (1

06 sm BCContinued Inj.

8

12

n hy

drat SHUT-INBase Case

4

8

sto

red

i

0

4

CO

2

0 125 250 375 500 625 750Time (days)

23

Ongoing Projects: Modeling

24

2‐STORAGE BELOW OCEAN FLOOR2 STORAGE BELOW OCEAN FLOOR

26

Density kg/m3

Density of CO2 vs. Water – Negative Buoyancy Zone

0

500

0 200 400 600 800 1000Density  kg/m3

500

1000

15001500

2000

2500h m

ρCO2 ρwater2500

3000

3500

Depth

ρCO2 ρwater

3500

4000

4500 Density of carbon dioxide NBZ

27

4500

5000

Density of waterρCO2 ρwater

ρCO2 ρwater

(Schrag et al. 2006)

Hydrate Formation Zone (HFZ)Hydrate Formation Zone (HFZ)

28

Interaction between NBZ and HFZ

29

HFZ and NBZ –h dThe Cascadia Accretionary Prism

30

Common Propertiesqinj= 1 Mtonne/yr

Injection time: 50 Years80 km

KH = 100 mDSw = 100%KV = 20 mD

= 15%

KV 20 mD

• Ocean depths• Ocean depths– 600 m (shallow), 

2800 m (deep), 

– 2800 m (deep)

• Injection depth: 800 m below ocean floor31

Shallow Injection @ 600 m (50 years)Shallow Injection @ 600 m (50 years)CO2 Saturation No hydrate forms

32

Shallow Injection @ 600 m (1000 years)Shallow Injection @ 600 m (1000 years)CO2 Saturation

33

Deep Injection @ 2800 m (50 years)Deep Injection @ 2800 m (50 years)

CO2 Saturation Hydrate Saturation

34

Deep Injection @ 2800 m (1000 years)Deep Injection @ 2800 m (1000 years)

CO2 Saturation Hydrate Saturation

35CO2 can move past the initial NBZ and HFZ boundaries

Summary & ConclusionsSummary & Conclusions

• Modeling studies of CO2 storage as hydrateModeling studies of CO2 storage as hydrate have been carried out

• Two geological settings have been consideredTwo geological settings have been considered– Depleted gas pools (of low temperature)– Beneath the oceanfloor

• These could provide attractive alternatives• For CO2 storage in depleted gas reservoirsFor CO2 storage in depleted gas reservoirs

– Field‐scale modeling is under way– Addition of H2S is being considered

36

Addition of H2S is being considered

AcknowledgmentsAcknowledgments

• Dr. Dennis Coombe of CMG, and ,• Dr. Tadahiro Okazawa of Imperial Oil• Former students: Huifang Hong, Dr. Shahab Gerami, 

D A i Sh hb iDr. Amir Shahbazi• NSERC, Imperial Oil, NRCan, CMG for funding

37

ReferencesReferences• Qanbari, F., Pooladi‐Darvish, M., Tabatabaie, S.H., and Gerami, S.: 

“Disposal as hydrate in ocean sediments” accepted for publication in the“Disposal as hydrate in ocean sediments”; accepted for publication in the Journal of Natural Gas Science and Engineering; (October 21, 2011)

• K.Z. House, D.P. Schrag, C.F. Harvey, K.S. Lackner, Permanent Carbon Dioxide Storage in Deep‐Sea Sediments, Applied Physical Sciences 103, 33 ( )(2006) 12291‐12295

• Wright, J., Côté, M., and Dallimore, S. Overview of regional opportunities for geological sequestration of CO2 as gas hydrate in Canada. Proc. 6thIntern. Conf. Gas Hydrates. (2008). Vancouver, Canadaf y ( ) ,

• Zatsepina, O., and Pooladi‐Darvish, M.: “CO2 Storage as Hydrate in Depleted Gas Reservoirs" SPE‐137313 accepted for publication in SPE Reservoir Evaluation & Engineering‐Reservoir Engineering (August 26, 2011)2011)

• Zatsepina, O.Y., and Pooladi‐Darvish, M.: “Storage of CO2 Hydrate in Shallow Gas Reservoirs – Pre‐ and Post‐Injection Periods”, in Journal of Greenhouse Gases: Science and Technology, (May 2011) Vol. 1, pp.223‐236

38

THANK YOU!THANK YOU!

Questions:[email protected]

39