circuit quantum electrodynamics : beyond the linear...

57
Introduction Beyond linear dispersive Results Conclusion Circuit quantum electrodynamics : beyond the linear dispersive regime Maxime Boissonneault 1 Jay Gambetta 2 Alexandre Blais 1 1 epartement de Physique et Regroupement Qu´ eb´ ecois sur les mat´ eriaux de pointe, Universit´ e de Sherbrooke 2 Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo June 23 th , 2008 Boissonneault, Gambetta and Blais, Phys. Rev. A 77 060305 (R) (2008) Maxime Boissonneault Universit´ e de Sherbrooke

Upload: nguyenhanh

Post on 09-Sep-2018

222 views

Category:

Documents


0 download

TRANSCRIPT

Introduction Beyond linear dispersive Results Conclusion

Circuit quantum electrodynamics : beyond thelinear dispersive regime

Maxime Boissonneault1 Jay Gambetta2 Alexandre Blais1

1Departement de Physique et Regroupement Quebecois sur les materiaux de pointe, Universite de Sherbrooke

2 Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo

June 23th, 2008

Boissonneault, Gambetta and Blais, Phys. Rev. A77 060305 (R) (2008)

Maxime Boissonneault Universite de Sherbrooke

Introduction Beyond linear dispersive Results Conclusion

1 IntroductionAtom and cavityCavity QEDCharge qubit and coplanar resonatorCircuit QEDThe linear dispersive limitCircuit VS cavity QED

2 Beyond linear dispersiveUnderstanding the dispersive transformationThe dispersive limitDissipation in the systemDissipation in the transformed basis

3 ResultsReduction of the SNRMeasurement induced heat bathThe case of the transmon

4 ConclusionConclusion

Maxime Boissonneault Universite de Sherbrooke

Introduction Beyond linear dispersive Results Conclusion

Atom and cavity

Maxime Boissonneault Universite de Sherbrooke

Two-levels system Hamiltonian

H =ωa

2σz σz =

1 00 −1

«

ω01= ωa

En

erg

y

...

Introduction Beyond linear dispersive Results Conclusion

Atom and cavity

Maxime Boissonneault Universite de Sherbrooke

Cavity Hamiltonian

H =X

k

ωk

a†kak +

1

2

«

z

x

y

L

Two-levels system Hamiltonian

H =ωa

2σz σz =

1 00 −1

«

ω01= ωa

En

erg

y

...

Introduction Beyond linear dispersive Results Conclusion

Atom and cavity

Maxime Boissonneault Universite de Sherbrooke

Cavity Hamiltonian

H =X

k

ωk

a†kak +

1

2

«

z

x

y

L

Two-levels system Hamiltonian

H =ωa

2σz σz =

1 00 −1

«

ω01= ωa

En

erg

y

...

Introduction Beyond linear dispersive Results Conclusion

Atom and cavity

Maxime Boissonneault Universite de Sherbrooke

Cavity Hamiltonian

H =X

k

ωk

a†kak +

1

2

«

Single-mode :

H = ωra†a

Re

sp

on

se

Input frequency, rf

κ = ωr/Q

ω2ω1ωr=

Two-levels system Hamiltonian

H =ωa

2σz σz =

1 00 −1

«

ω01= ωa

En

erg

y

...

Introduction Beyond linear dispersive Results Conclusion

Cavity QED

gg

Maxime Boissonneault Universite de Sherbrooke

Introduction Beyond linear dispersive Results Conclusion

Cavity QED

gg

Atom-cavity interaction

HI = − ~D · ~E ≈ g(a† + a)σx ≈ g(a†σ− + aσ+)

g(z) = −d0

r

ω

V ǫ0sinkz

Maxime Boissonneault Universite de Sherbrooke

Introduction Beyond linear dispersive Results Conclusion

Cavity QED

gg

Atom-cavity interaction

HI = − ~D · ~E ≈ g(a† + a)σx ≈ g(a†σ− + aσ+)

g(z) = −d0

r

ω

V ǫ0sinkz

Jaynes-Cummings Hamiltonian

H =ωa

2σz + ωra†a + g(a†σ− + aσ+)

Jaynes and Cummings, Proc. IEEE 51 89-109 (1963)Raimond, Brune and Haroche, Rev. Mod. Phys. 73 565–582 (2001)Mabuchi and Doherty, Science 298 1372-1377 (2002)

Maxime Boissonneault Universite de Sherbrooke

Introduction Beyond linear dispersive Results Conclusion

Charge qubit and coplanar resonator

Maxime Boissonneault Universite de Sherbrooke

Classical Hamiltonian

H = 4EC(n − ng)2 − EJ cos δ

EC =e2

2(Cg + CJ ), ng =

CgVg

2e

EJ =I0Φ0

C J

E JVg

nCg

Vg

Cg

CJEJ

- - - - -

Introduction Beyond linear dispersive Results Conclusion

Charge qubit and coplanar resonator

Maxime Boissonneault Universite de Sherbrooke

Quantum Hamiltonian

H =X

n

4EC(n − ng)2 |n〉 〈n|

−X

n

EJ

2(|n〉 〈n + 1| + h.c.)

Restricting to ng ∈ [0, 1] : H = ωaσz/2

Shnirman, Schon and Hermon, Phys. Rev. Lett. 79 2371–2374 (1997)Bouchiat et al., Physica Scripta T76 165-170 (1998)Nakamura, Pashkin and Tsai, Nature (London) 398 786 (1999)

Classical Hamiltonian

H = 4EC(n − ng)2 − EJ cos δ

EC =e2

2(Cg + CJ ), ng =

CgVg

2e

EJ =I0Φ0

C J

E JVg

nCg

Vg

Cg

CJEJ

- - - - -

Introduction Beyond linear dispersive Results Conclusion

Charge qubit and coplanar resonator

Maxime Boissonneault Universite de Sherbrooke

Quantum Hamiltonian

H =X

n

4EC(n − ng)2 |n〉 〈n|

−X

n

EJ

2(|n〉 〈n + 1| + h.c.)

Restricting to ng ∈ [0, 1] : H = ωaσz/2

Shnirman, Schon and Hermon, Phys. Rev. Lett. 79 2371–2374 (1997)Bouchiat et al., Physica Scripta T76 165-170 (1998)Nakamura, Pashkin and Tsai, Nature (London) 398 786 (1999)

En

erg

ie [A

rb. U

nits]

0 0.2 0.4 0.6 0.8 1

Gate charge, ng = CgVg/2e

EJ/4EC=0.1

EJ

Classical Hamiltonian

H = 4EC(n − ng)2 − EJ cos δ

EC =e2

2(Cg + CJ ), ng =

CgVg

2e

EJ =I0Φ0

C J

E JVg

nCg

Vg

Cg

CJEJ

- - - - -

Introduction Beyond linear dispersive Results Conclusion

Charge qubit and coplanar resonator

Maxime Boissonneault Universite de Sherbrooke

Introduction Beyond linear dispersive Results Conclusion

Charge qubit and coplanar resonator

Maxime Boissonneault Universite de Sherbrooke

Classical Hamiltonian

H =Φ2

2Lr+

1

2CrV 2

ωr =

s

1

LrCr

L r C r

Introduction Beyond linear dispersive Results Conclusion

Charge qubit and coplanar resonator

Maxime Boissonneault Universite de Sherbrooke

Quantum Hamiltonian

V =

r

ωr

2Cr(a† + a), Φ = i

r

ωr

2Lr(a† − a)

H = ωr

a†a +1

2

«

Quantum Fluctuations in Electrical Circuits, M. H. Devoret, LesHouches Session LXIII, Quantum Fluctuations p. 351-386 (1995).

Classical Hamiltonian

H =Φ2

2Lr+

1

2CrV 2

ωr =

s

1

LrCr

L r C r

Introduction Beyond linear dispersive Results Conclusion

Circuit QED

Maxime Boissonneault Universite de Sherbrooke

C g

C J

E J

Atom: super conducting

charge qubitCavity: super conducting 1D

transmission line resonator

Qubit control

and readout

~ 10 GHz

Measurement

output

Introduction Beyond linear dispersive Results Conclusion

Circuit QED

Maxime Boissonneault Universite de Sherbrooke

Blais et al., Phys. Rev. A 69 062320 (2004)

Wallraff et al., Nature 431 162 (2004)

Wallraff et al., Phys. Rev. Lett. 95 060501(2005)

Leek et al., Science 318 1889 (2007)

Schuster et al., Nature 445 515 (2007)

Houck et al., Nature 449 328 (2007)

Majer et al., Nature 449 443 (2007)

Parametersg : Qubit-cavity interaction

ωa : Qubit frequency

ωr : Resonator frequency

∆ = ωa − ωr : Detuning

H =ωa

2σz + ωra†a + g(a†σ− + aσ+)

C g

C J

E J

Atom: super conducting

charge qubitCavity: super conducting 1D

transmission line resonator

Qubit control

and readout

~ 10 GHz

Measurement

output

Introduction Beyond linear dispersive Results Conclusion

Circuit QED

Maxime Boissonneault Universite de Sherbrooke

Blais et al., Phys. Rev. A 69 062320 (2004)

Wallraff et al., Nature 431 162 (2004)

Wallraff et al., Phys. Rev. Lett. 95 060501(2005)

Leek et al., Science 318 1889 (2007)

Schuster et al., Nature 445 515 (2007)

Houck et al., Nature 449 328 (2007)

Majer et al., Nature 449 443 (2007)

Parametersg : Qubit-cavity interaction

ωa : Qubit frequency

ωr : Resonator frequency

∆ = ωa − ωr : Detuning

H =ωa

2σz + ωra†a + g(a†σ− + aσ+)

C g

C J

E J

Introduction Beyond linear dispersive Results Conclusion

The linear dispersive limit

Jaynes-Cummings

H = ωra†a+ωaσz

2+g(a†σ−+aσ+)

Small parameter λ = g/∆

Atom: super conducting

charge qubitCavity: super conducting 1D

transmission line resonator

Qubit control

and readout

~ 10 GHz

Measurement

output

Maxime Boissonneault Universite de Sherbrooke

Introduction Beyond linear dispersive Results Conclusion

The linear dispersive limit

Jaynes-Cummings

H = ωra†a+ωaσz

2+g(a†σ−+aσ+)

Small parameter λ = g/∆

Atom: super conducting

charge qubitCavity: super conducting 1D

transmission line resonator

Qubit control

and readout

~ 10 GHz

Measurement

output

Linear dispersive

HD = (ωa + χ )σz

2+ (ωr + χσz )a†a

Lamb shift (χ = gλ = g2/∆)

Stark shift or cavity pull

Valid if n ≪ ncrit., where ncrit. = 1/4λ2 .

Maxime Boissonneault Universite de Sherbrooke

o is

s i m

sn

arT

n(a

rb. u

nits)

ωa

Ph

ase

Δ ~ 2π 1GHz

ωr − CP ωr + CP

2CP

2χ κ

-2χ κ

κ

Introduction Beyond linear dispersive Results Conclusion

The linear dispersive limit

Jaynes-Cummings

H = ωra†a+ωaσz

2+g(a†σ−+aσ+)

Small parameter λ = g/∆

Atom: super conducting

charge qubitCavity: super conducting 1D

transmission line resonator

Qubit control

and readout

~ 10 GHz

Measurement

output

Linear dispersive

HD = (ωa + χ )σz

2+ (ωr + χσz )a†a

Lamb shift (χ = gλ = g2/∆)

Stark shift or cavity pull

Valid if n ≪ ncrit., where ncrit. = 1/4λ2 .

Maxime Boissonneault Universite de Sherbrooke

o is

s i m

sn

arT

n(a

rb. u

nits)

ωa

Ph

ase

Δ ~ 2π 1GHz

ωr − CP ωr + CP

2CP

2χ κ

-2χ κ

κ

Introduction Beyond linear dispersive Results Conclusion

The linear dispersive limit

Jaynes-Cummings

H = ωra†a+ωaσz

2+g(a†σ−+aσ+)

Small parameter λ = g/∆

Atom: super conducting

charge qubitCavity: super conducting 1D

transmission line resonator

Qubit control

and readout

~ 10 GHz

Measurement

output

Linear dispersive

HD = (ωa + χ )σz

2+ (ωr + χσz )a†a

Lamb shift (χ = gλ = g2/∆)

Stark shift or cavity pull

Valid if n ≪ ncrit., where ncrit. = 1/4λ2 .

Maxime Boissonneault Universite de Sherbrooke

Rabi π-pulseWallraff et al., Phys. Rev. Lett. 95 060501 (2005)

Averaged 50000 times.SNR for single-shot is 0.1.

o is

s i m

sn

arT

n(a

rb. u

nits)

ωa

Ph

ase

Δ ~ 2π 1GHz

ωr − CP ωr + CP

2CP

2χ κ

-2χ κ

κ

Introduction Beyond linear dispersive Results Conclusion

Circuit VS cavity QED

Symbol Optical cavity Microwave cavity Circuitωr/2π or ωa/2π 350 THz 51 GHz 10 GHz

g/π 220 MHz 47 kHz 100 MHzg/ωr 3 × 10−7 10−7 5 × 10−3

Hood et al., Science 287 1447 (2000)Raimond, Brune and Haroche, Rev. Mod. Phys. 73 565–582 (2001)

Blais et al., Phys. Rev. A 69 062320 (2004)

Maxime Boissonneault Universite de Sherbrooke

Introduction Beyond linear dispersive Results Conclusion

Circuit VS cavity QED

Symbol Optical cavity Microwave cavity Circuitωr/2π or ωa/2π 350 THz 51 GHz 10 GHz

g/π 220 MHz 47 kHz 100 MHz

g/ωr 3 × 10−7 10−7 5 × 10−3

Hood et al., Science 287 1447 (2000)Raimond, Brune and Haroche, Rev. Mod. Phys. 73 565–582 (2001)

Blais et al., Phys. Rev. A 69 062320 (2004)

MotivationCircuit QED is harder than cavity QED on the dispersive limit (ncrit. is smaller)

Maxime Boissonneault Universite de Sherbrooke

Introduction Beyond linear dispersive Results Conclusion

Circuit VS cavity QED

Symbol Optical cavity Microwave cavity Circuitωr/2π or ωa/2π 350 THz 51 GHz 10 GHz

g/π 220 MHz 47 kHz 100 MHz

g/ωr 3 × 10−7 10−7 5 × 10−3

Hood et al., Science 287 1447 (2000)Raimond, Brune and Haroche, Rev. Mod. Phys. 73 565–582 (2001)

Blais et al., Phys. Rev. A 69 062320 (2004)

MotivationCircuit QED is harder than cavity QED on the dispersive limit (ncrit. is smaller)

The SNR is low, we want to measure harder... how does higher order termsaffect measurement ?

Maxime Boissonneault Universite de Sherbrooke

Introduction Beyond linear dispersive Results Conclusion

Circuit VS cavity QED

Symbol Optical cavity Microwave cavity Circuitωr/2π or ωa/2π 350 THz 51 GHz 10 GHz

g/π 220 MHz 47 kHz 100 MHz

g/ωr 3 × 10−7 10−7 5 × 10−3

Hood et al., Science 287 1447 (2000)Raimond, Brune and Haroche, Rev. Mod. Phys. 73 565–582 (2001)

Blais et al., Phys. Rev. A 69 062320 (2004)

MotivationCircuit QED is harder than cavity QED on the dispersive limit (ncrit. is smaller)

The SNR is low, we want to measure harder... how does higher order termsaffect measurement ?

Must consider higher order corrections in perturbation theory

Maxime Boissonneault Universite de Sherbrooke

Introduction Beyond linear dispersive Results Conclusion

Understanding the dispersive transformation

J-C : block diagonal

H = ωra†a + ωaσz/2 + g(a†σ− + aσ+)

Maxime Boissonneault Universite de Sherbrooke

Introduction Beyond linear dispersive Results Conclusion

Understanding the dispersive transformation

J-C : block diagonal

H = ωra†a + ωaσz/2 + g(a†σ− + aσ+)

1x1 block : H0 = −ωaI/2

2x2 blocks : Hn = ∆

2σn

z + g√

nσnx

Total Hamiltonian

H = H0 ⊕ H1 ⊕ H2 · · · ⊕ H∞

Maxime Boissonneault Universite de Sherbrooke

Introduction Beyond linear dispersive Results Conclusion

Understanding the dispersive transformation

J-C : block diagonal

H = ωra†a + ωaσz/2 + g(a†σ− + aσ+)

1x1 block : H0 = −ωaI/2

2x2 blocks : Hn = ∆

2σn

z + g√

nσnx

Total Hamiltonian

H = H0 ⊕ H1 ⊕ H2 · · · ⊕ H∞

Z

X

Hn

θn

θn = arctan(2g√

n/∆)

Maxime Boissonneault Universite de Sherbrooke

Introduction Beyond linear dispersive Results Conclusion

Understanding the dispersive transformation

J-C : block diagonal

H = ωra†a + ωaσz/2 + g(a†σ− + aσ+)

1x1 block : H0 = −ωaI/2

2x2 blocks : Hn = ∆

2σn

z + g√

nσnx

Total Hamiltonian

H = H0 ⊕ H1 ⊕ H2 · · · ⊕ H∞

Diagonalization

Rotation around Y axis

In all subspaces En

E0 = {|g, 0〉}En = {|g, n〉 , |e, n − 1〉} ≡ {|gn〉 , |en〉}

Z

X

Hn

θn

θn = arctan(2g√

n/∆)

HZ

Z

X

D

XD

D

θn

n

Maxime Boissonneault Universite de Sherbrooke

Introduction Beyond linear dispersive Results Conclusion

Understanding the dispersive transformation

J-C : block diagonal

H = ωra†a + ωaσz/2 + g(a†σ− + aσ+)

1x1 block : H0 = −ωaI/2

2x2 blocks : Hn = ∆

2σn

z + g√

nσnx

Total Hamiltonian

H = H0 ⊕ H1 ⊕ H2 · · · ⊕ H∞

Diagonalization

Rotation around Y axis

In all subspaces En

E0 = {|g, 0〉}En = {|g, n〉 , |e, n − 1〉} ≡ {|gn〉 , |en〉}The qubit is now part photon and

vice-versa

Z

X

Hn

θn

θn = arctan(2g√

n/∆)

HZ

Z

X

D

XD

D

θn

n

Maxime Boissonneault Universite de Sherbrooke

Introduction Beyond linear dispersive Results Conclusion

Understanding the dispersive transformation

J-C : block diagonal

H = ωra†a + ωaσz/2 + g(a†σ− + aσ+)

1x1 block : H0 = −ωaI/2

2x2 blocks : Hn = ∆

2σn

z + g√

nσnx

Total Hamiltonian

H = H0 ⊕ H1 ⊕ H2 · · · ⊕ H∞

Diagonalization

Rotation around Y axis

In all subspaces En

E0 = {|g, 0〉}En = {|g, n〉 , |e, n − 1〉} ≡ {|gn〉 , |en〉}The qubit is now part photon and

vice-versa

Z

X

Hn

θn

θn = arctan(2g√

n/∆) ≈2g

√n/∆

HZ

Z

X

D

XD

D

θn

n

Maxime Boissonneault Universite de Sherbrooke

Introduction Beyond linear dispersive Results Conclusion

The dispersive limit

Dispersive limitJaynes-Cummings hamiltonian

H = ωra†a + ωaσz

2+ g(a†σ− + aσ+)

Exact transformation : D

Small parameter λ = g/∆4λ2n ≪ 1

Maxime Boissonneault Universite de Sherbrooke

Introduction Beyond linear dispersive Results Conclusion

The dispersive limit

Dispersive limitJaynes-Cummings hamiltonian

H = ωra†a + ωaσz

2+ g(a†σ− + aσ+)

Exact transformation : D

Small parameter λ = g/∆4λ2n ≪ 1

Result at order λ

HD = (ωa + χ )σz

2+(ωr + χσz )a†a

Lamb shift (χ = gλ = g2/∆)

Stark shift or cavity pull

o is

s i m

sn

arT

n(a

rb. u

nits)

ωa

Ph

ase

Δ ~ 2π 1GHz

ωr − CP ωr + CP

2CP

2χ κ

-2χ κ

κ

Maxime Boissonneault Universite de Sherbrooke

Introduction Beyond linear dispersive Results Conclusion

The dispersive limit

Dispersive limitJaynes-Cummings hamiltonian

H = ωra†a + ωaσz

2+ g(a†σ− + aσ+)

Exact transformation : D

Small parameter λ = g/∆4λ2n ≪ 1

Result at order λ

HD = (ωa + χ )σz

2+(ωr + χσz )a†a

Lamb shift (χ = gλ = g2/∆)

Stark shift or cavity pull

Result at order λ2

HD = (ωa + χ′ )σz

2+ [ωr + (χ′ − ζa†a)σz ]a†a

χ′ = χ(1 − λ2) , ζ = λ2χ

The cavity pull decrease : 〈CP 〉 = χ′ − ζ˙

a†a¸

o is

s i m

sn

arT

n(a

rb. u

nits)

ωa

Ph

ase

Δ ~ 2π 1GHz

ωr − CP ωr + CP

2CP

2χ κ

-2χ κ

κ

Maxime Boissonneault Universite de Sherbrooke

Introduction Beyond linear dispersive Results Conclusion

Dissipation in the system

Maxime Boissonneault Universite de Sherbrooke

Parametersκ : Rate of photon loss

γ1 : Transverse decay rate

Model for dissipationCoupling to a bath

Hκ =R ∞0

p

gκ(ω)[b†κ(ω) + bκ(ω)][a† + a]dω

Hγ =R ∞0

p

gγ(ω)[b†γ(ω) + bγ(ω)]σxdω

γ1

γϕ

κ

Introduction Beyond linear dispersive Results Conclusion

Dissipation in the system

Maxime Boissonneault Universite de Sherbrooke

Parametersκ : Rate of photon loss

γ1 : Transverse decay rate

Model for dissipationCoupling to a bath

Hκ =R ∞0

p

gκ(ω)[b†κ(ω) + bκ(ω)][a† + a]dω

Hγ =R ∞0

p

gγ(ω)[b†γ(ω) + bγ(ω)]σxdωE

ne

rgie

[A

rb. U

nits]

0 0.2 0.4 0.6 0.8 1

Gate charge, ng = CgVg/2e

EJ/4EC=0.1

δng

γ1

γϕ

κ

Introduction Beyond linear dispersive Results Conclusion

Dissipation in the system

Maxime Boissonneault Universite de Sherbrooke

Parametersκ : Rate of photon loss

γ1 : Transverse decay rate

γϕ : Pure dephasing rate

Model for dissipationCoupling to a bath

Hκ =R ∞0

p

gκ(ω)[b†κ(ω) + bκ(ω)][a† + a]dω

Hγ =R ∞0

p

gγ(ω)[b†γ(ω) + bγ(ω)]σxdω

DephasingHϕ = ηf(t)σz

En

erg

ie [A

rb. U

nits]

0 0.2 0.4 0.6 0.8 1

Gate charge, ng = CgVg/2e

EJ/4EC=0.1

δng

γ1

γϕ

κ

Introduction Beyond linear dispersive Results Conclusion

Dissipation in the transformed basis

Z

X

γϕ

Hn

θn

γ1

Maxime Boissonneault Universite de Sherbrooke

Introduction Beyond linear dispersive Results Conclusion

Dissipation in the transformed basis

Z

X

γϕ

Hn

θn

γ1

HZ

Z

X

γϕeff

γϕeff

γ↓

γ↓ γ↑,

D

XD

D

θn

n

Transformation of system-bath hamiltonian

aD→ a + λσ− + O

`

λ2´

σ−D→ σ− + λaσz + O

`

λ2´

σzD→ σz − 2λ(a†σ− + aσ+) + O

`

λ2´

Maxime Boissonneault Universite de Sherbrooke

Introduction Beyond linear dispersive Results Conclusion

Dissipation in the transformed basis

Z

X

γϕ

Hn

θn

γ1

HZ

Z

X

γϕeff

γϕeff

γ↓

γ↓ γ↑,

D

XD

D

θn

n

Transformation of system-bath hamiltonian

aD→ a + λσ− + O

`

λ2´

σ−D→ σ− + λaσz + O

`

λ2´

σzD→ σz − 2λ(a†σ− + aσ+) + O

`

λ2´

MethodTransform the system-bath hamiltonian

Trace out heat bath and cavity degrees of freedom(Gambetta et al., Phys. Rev. A 77 012112 (2008))

Maxime Boissonneault Universite de Sherbrooke

Introduction Beyond linear dispersive Results Conclusion

Dissipation in the transformed basis

Z

X

γϕ

Hn

θn

γ1

HZ

Z

X

γϕeff

γϕeff

γ↓

γ↓ γ↑,

D

XD

D

θn

n

Transformation of system-bath hamiltonian

aD→ a + λσ− + O

`

λ2´

σ−D→ σ− + λaσz + O

`

λ2´

σzD→ σz − 2λ(a†σ− + aσ+) + O

`

λ2´

MethodTransform the system-bath hamiltonian

Trace out heat bath and cavity degrees of freedom(Gambetta et al., Phys. Rev. A 77 012112 (2008))

New rates (assuming white noises)

γ↓ = γ1

ˆ

1 − 2λ2`

n + 12

´˜

+ γκ + 2λ2γϕn

γ↑ = 2λ2γϕn

γκ = λ2κ

Maxime Boissonneault Universite de Sherbrooke

Introduction Beyond linear dispersive Results Conclusion

Reduction of the SNR

Parameters for the SNRNumber of measurement photons

SNR ∼ Num. phot.

Maxime Boissonneault Universite de Sherbrooke

Introduction Beyond linear dispersive Results Conclusion

Reduction of the SNR

Parameters for the SNRNumber of measurement photons

Output rate : κ

SNR ∼ κ Num. phot.

Maxime Boissonneault Universite de Sherbrooke

Introduction Beyond linear dispersive Results Conclusion

Reduction of the SNR

Parameters for the SNRNumber of measurement photons

Output rate : κ

Fraction of photons detected : η

SNR ∼ κ×η×Num. phot.

Maxime Boissonneault Universite de Sherbrooke

Introduction Beyond linear dispersive Results Conclusion

Reduction of the SNR

Parameters for the SNRNumber of measurement photons

Output rate : κ

Fraction of photons detected : η

Info per photon : cavity pull

SNR ∼ κ×η×Num. phot.×Info per phot.

Maxime Boissonneault Universite de Sherbrooke

Introduction Beyond linear dispersive Results Conclusion

Reduction of the SNR

Parameters for the SNRNumber of measurement photons

Output rate : κ

Fraction of photons detected : η

Info per photon : cavity pull

Mixing rate :γ↓+γ↑ = γ1

ˆ

1 − 2λ2`

n + 12

´˜

+γκ+4λ2γϕn

SNR ∼ κ×η×Num. phot.×Info per phot.Mixing rate

Maxime Boissonneault Universite de Sherbrooke

Introduction Beyond linear dispersive Results Conclusion

Reduction of the SNR

Parameters for the SNRNumber of measurement photons

Output rate : κ

Fraction of photons detected : η

Info per photon : cavity pull

Mixing rate :γ↓+γ↑ = γ1

ˆ

1 − 2λ2`

n + 12

´˜

+γκ+4λ2γϕn

SNR ∼ κ×η×Num. phot.×Info per phot.Mixing rate

ConclusionSNR levels off with non-linear effects !

Explains low experimental SNR

Applies to all dispersive homodynemeasurement

Maxime Boissonneault Universite de Sherbrooke

∆/2π = 1.7 GHz, g/2π = 170 MHzκ/2π = 34 MHz, γ1/2π = 0.1 MHzγϕ = 0.1 MHz, η = 1/80

ncrit. = 1/4λ2 = 25

0

5

10

15

0.0 0.1 0.2 0.3 0.4 0.5

SN

R

n/ncrit.

Linear

Cooper-Pair Box

Withcorrections

Introduction Beyond linear dispersive Results Conclusion

Reduction of the SNR

Parameters for the SNRNumber of measurement photons

Output rate : κ

Fraction of photons detected : η

Info per photon : cavity pull

Mixing rate :γ↓+γ↑ = γ1

ˆ

1 − 2λ2`

n + 12

´˜

+γκ+4λ2γϕn

SNR ∼ κ×η×Num. phot.×Info per phot.Mixing rate

ConclusionSNR levels off with non-linear effects !

Explains low experimental SNR

Applies to all dispersive homodynemeasurement

Maxime Boissonneault Universite de Sherbrooke

∆/2π = 1.7 GHz, g/2π = 170 MHzκ/2π = 34 MHz, γ1/2π = 0.1 MHzγϕ = 0.1 MHz, η = 1/80

ncrit. = 1/4λ2 = 25

Transmon

0

5

10

15

0.0 0.1 0.2 0.3 0.4 0.5

SN

R

n/ncrit.

Linear

Cooper-Pair Box

Withcorrections

Introduction Beyond linear dispersive Results Conclusion

Measurement induced heat bath

Mixing ratesDownward rate : γ↓(n)

Upward rate : γ↑(n)

Heat bath with temperature T (n) = (~ωr/kB)/ log(1 + 1/n)

Maxime Boissonneault Universite de Sherbrooke

-101

-1

0 5 10 15

〈σz〉

Time [µs]

Introduction Beyond linear dispersive Results Conclusion

Measurement induced heat bath

Mixing ratesDownward rate : γ↓(n)

Upward rate : γ↑(n)

Heat bath with temperature T (n) = (~ωr/kB)/ log(1 + 1/n)

Maxime Boissonneault Universite de Sherbrooke

Increasing

power

-101

-101

-1

0 5 10 15

〈σz〉

Time [µs]

〈σz〉

Introduction Beyond linear dispersive Results Conclusion

Measurement induced heat bath

Mixing ratesDownward rate : γ↓(n)

Upward rate : γ↑(n)

Heat bath with temperature T (n) = (~ωr/kB)/ log(1 + 1/n)

Maxime Boissonneault Universite de Sherbrooke

-101

-101

-101

0 5 10 15

〈σz〉

Time [µs]

〈σz〉

〈σz〉

Increasing

power

Introduction Beyond linear dispersive Results Conclusion

The case of the transmon

Maxime Boissonneault Universite de Sherbrooke

Koch et al., Phys. Rev. A 76 042319 (2007)

En

erg

ie [A

rb. U

nits]

0 0.2 0.4 0.6 0.8 1

Gate charge, ng = CgVg/2e

EJ/4EC=0.1

EJ

Vg

Cg

CJEJ

- - - - -

Introduction Beyond linear dispersive Results Conclusion

The case of the transmon

Maxime Boissonneault Universite de Sherbrooke

Koch et al., Phys. Rev. A 76 042319 (2007)

C S

Vg

C g

En

erg

ie [A

rb. U

nits]

0 0.2 0.4 0.6 0.8 1

Gate charge, ng = CgVg/2e

EJ/4EC=0.1

EJ

Vg

Cg

CJEJ

- - - - -

Introduction Beyond linear dispersive Results Conclusion

The case of the transmon

Maxime Boissonneault Universite de Sherbrooke

Koch et al., Phys. Rev. A 76 042319 (2007)

C S

Vg

C g

C S

Vg

C g

En

erg

ie [A

rb. U

nits]

0 0.2 0.4 0.6 0.8 1

Gate charge, ng = CgVg/2e

EJ/4EC=0.1

EJ

Vg

Cg

CJEJ

- - - - -

Introduction Beyond linear dispersive Results Conclusion

The case of the transmon

Maxime Boissonneault Universite de Sherbrooke

Koch et al., Phys. Rev. A 76 042319 (2007)

C S

Vg

C g

C S

Vg

C g

En

erg

ie [A

rb. U

nits]

0 0.2 0.4 0.6 0.8 1

Gate charge, ng = CgVg/2e

EJ/4EC=0.1

EJ

Vg

Cg

CJEJ

- - - - -

Introduction Beyond linear dispersive Results Conclusion

Conclusion

Main resultsSimple model describing the physics of measurement

Side-effect of measuring harder : you heat your qubit (even with photons thatcan’t be directly absorbed)

Side-effect of measuring harder : each photon you add carries less informationthan the previous one

Measuring harder 6= bigger SNR

Coming soonThe transmon (3 level system) (Koch et al., Phys. Rev. A 76 042319 (2007))

Taking advantage of the non-linearity

Comparison with experiments

More information : Boissonneault, Gambetta and Blais, Phys. Rev. A 77 060305 (R)(2008)

FQRNT

Maxime Boissonneault Universite de Sherbrooke