chuong 3 he thong viba va ve tinh

41
Chương 6: Hthng thông tin viba và vtinh Chương 6 HTHNG THÔNG TIN VIBA VÀ VTINH 6.1. Truyn sóng viba 6.1.1. Băng tn viba Phviba thường được xác định là năng lượng đin tcó tn skhong t1 GHz đến 1000 GHz, nhưng trước đây cũng bao gm cnhng tn sthp hơn. Nhng ng dng viba phbiến nht khong 1 đến 40 GHz. Khong băng tn viba được xác định theo bng sau Băng tn viba Ký hiu Di tn Băng L 1 đến 2 GHz Băng S 2 đến 4 GHz Băng C 4 đến 8 GHz Băng X 8 đến 12.4 GHz Băng Ku 12.4 đến 18 GHz Băng K 18 đến 26.5 GHz Băng Ka 26.5 đến 40 GHz Băng Q 30 đến 50 GHz Băng U 40 đến 60 GHz Băng V 50 đến 75 GHz Băng E 60 đến 90 GHz Băng W 75 đến 110 GHz Băng F 90 đến 140 GHz Băng D 110 đến 170 GHz 125

Upload: dinh-cong-thien-taydo-university

Post on 31-May-2015

16.065 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Chuong 3 he thong viba va ve tinh

Chương 6: Hệ thống thông tin viba và vệ tinh

Chương 6 HỆ THỐNG THÔNG TIN VIBA VÀ VỆ TINH

6.1. Truyền sóng viba

6.1.1. Băng tần viba Phổ viba thường được xác định là năng lượng điện từ có tần số khoảng từ 1 GHz

đến 1000 GHz, nhưng trước đây cũng bao gồm cả những tần số thấp hơn. Những ứng dụng viba phổ biến nhất ở khoảng 1 đến 40 GHz. Khoảng băng tần viba được xác định theo bảng sau

Băng tần viba

Ký hiệu Dải tần

Băng L 1 đến 2 GHz

Băng S 2 đến 4 GHz

Băng C 4 đến 8 GHz

Băng X 8 đến 12.4 GHz

Băng Ku 12.4 đến 18 GHz

Băng K 18 đến 26.5 GHz

Băng Ka 26.5 đến 40 GHz

Băng Q 30 đến 50 GHz

Băng U 40 đến 60 GHz

Băng V 50 đến 75 GHz

Băng E 60 đến 90 GHz

Băng W 75 đến 110 GHz

Băng F 90 đến 140 GHz

Băng D 110 đến 170 GHz

125

Page 2: Chuong 3 he thong viba va ve tinh

Chương 6: Hệ thống thông tin viba và vệ tinh

12

Bảng trên theo cách dùng của Hội vô tuyến điện Anh (Radio Society of Great Britain, RSGB). Đôi lúc người ta ký hiệu dải tần số cực cao (UHF) thấp hơn băng L là băng P. 6.1.2. Cự ly truyền sóng

Sóng truyền thẳng có cự ly bị hạn chế bởi độ cong trái đất . Do bán kính trái đất r = 6,37.106 m . Gọi h1 [m] và h2 [m] là 2 độ cao an ten thì cự ly thông tin tối đa cho tuyến vi ba là d [Km]

1 23, 57( )[ ]d h h= + Km Sự khúc xạ không khí và bán kính giả tưởng của trái đất Trong khí quyển chiết suất khúc xạ đối với sóng cao tần giảm dần theo độ cao, nên

nó có tác dụng uốn cong tia sóng về phía mặt đất, làm tăng cự ly truyền. Để dễ dàng tính cự ly truyền, ta coi như sóng cao tần truyền thẳng , bán kính của trái

đất tăng lên là R’ = 4.R/3 = 8500 Km, thì

6.1.3. Tán xạ trên chướng ngại vật - Vùng Fresnel

1 24,12( )[ ]d h h= + Km

Hình 6.1. Vùng Fresnel

Giả sử tia sóng 1 truyền thẳng từ A đến B , có AB

6

Page 3: Chuong 3 he thong viba va ve tinh

Chương 6: Hệ thống thông tin viba và vệ tinh

12

Giả sử tia sóng 2 truyền từ A đến B , theo đường gấp khúc AXB với X là chướng ngại vật phản xạ sóng

Nếu AXB – AB = (2n-1).λ/2 , thì 2 sóng đến B nghịch pha nhau , làm biên độ suy giảm đáng kể

Tập hợp tất cả các điểm X nói trên tạo thành các mặt elip tròn xoay Khi AB >> λ , bán kính Fresnel ρ của mặt elip tròn xoay đầu tiên (n=1) sẽ là

1 .

2A Br l=

Ta gọi

• E: độ cao hiệu chỉnh do độ cong mặt đất

• O: độ cao chướng ngại vật

• F: bán kính fresnel An ten cần có độ cao H = F + E + O

Hình 6.2. Các yếu tố ảnh hưởng đến độ cao anten

7

Page 4: Chuong 3 he thong viba va ve tinh

Chương 6: Hệ thống thông tin viba và vệ tinh

6.1.4. Hiện tượng Fading

Hình 6.3. Sóng phát ra từ 1 nguồn nhưng theo nhiều đường khác nhau Fading là hiện tượng tại nơi thu nhận được đồng thời 2 hay nhiều sóng cùng đến 1

lúc, các sóng này xuất phát cùng 1 nguồn nhưng đi theo nhiều đường khác nhau Tuỳ thuộc vào hiệu các đường đi mà hiệu pha của chúng cũng khác nhau

• Nếu hiệu pha = 2n.π thì cường độ chúng tăng cường nhau

• Nếu hiệu pha = (2n+1).π thì cường độ chúng triệt tiêu nhau Hiện tượng Fading gây ra sự thu chập chờn, gây gián đoạn thông tin trong một thời

gian ngắn, trong kỹ thuật truyền hình , tạo ra hiện tượng bóng ma Để khắc phục Fading , người ta sử dụng phân tập tần số hay phân tập không gian

Hình 6.4. Phân tập tần số

128

Page 5: Chuong 3 he thong viba va ve tinh

Chương 6: Hệ thống thông tin viba và vệ tinh

Hình 6.5. Phân tập không gian 6.1.4. Anten

Sóng mang vô tuyến có tính định hướng hướng rất cao nhờ các an ten định hướng. Sóng viba mặt đất thường sử dụng an ten parabol phản xạ . Bề mặt anten là dạng

parabol tròn xoay, tiêu cự chính là nguồn phát sóng , thường là anten loa . Lúc nầy sóng cầu tại anten loa sẽ biến thành sóng phẳng

Độ lợi G của an ten được tính

• η là hiệu suất bức xạ, xấp xỉ 0,5

2

4. .G Aphl

=

• λ là bước sóng

• A là bề mặt bức xạ của an ten, thẳng góc với hướng phát Việc lựa chọn kiểu an ten phụ thuộc vào

• Độ lợi cần thiết để bù vào suy hao , sao cho độ lợi chung ở mức chấp nhận được

• Hướng tính của anten

• Tần số sóng mang đang sử dụng

• Giá thành và không gian dự tính

129

Page 6: Chuong 3 he thong viba va ve tinh

Chương 6: Hệ thống thông tin viba và vệ tinh

Hình 6.6. Anten và bề mặt bức xạ của anten 6.2. Khái niệm về hệ thống viba

Hình 6.7. Mô hình 1 tuyến viba (Microwave link) Kết nối viba (Microwave link) là hệ thống thông tin giữa 2 điểm cố định bằng sóng

vô tuyến có hướng tính cao nhờ các an ten định hướng Có 2 dạng viba : viba tương tự và viba số Nếu đường truyền xa hoặc gặp chướng ngại vật , người ta sử dụng các trạm chuyển

tiếp (Repeater ) chỉ thu nhận tín hiệu , khuếch đại , rồi tái phát lại

Trong thực tế , người ta sử dụng chỉ vài dải tần viba mà thôi •

Vùng tần số thấp có băng thông hẹp sử dụng cho các hệ thống nhỏ •

130

Page 7: Chuong 3 he thong viba va ve tinh

Chương 6: Hệ thống thông tin viba và vệ tinh

Vùng tần số cao > 12 GHz suy hao tăng do mưa • Việc thiết lập hệ thống viba cần xét các điều kiện sau

Ghép ký sinh của an tentrên cùng 1 giá đỡ •

Tương tác giữa các chùm viba gần nhau can nhiễu lẫn nhau •

• Độ chọn lọc máy thu

• Khả năng xoay phân cực của sóng ở các kênh lân cận nhau

• Khả năng sử dụng tối ưu dải tần của sóng mang 6.2.1. Viba số

Hình 6.8. Mô hình mạng viba Hệ thống viba có thể được sử dụng làm:

• Các đường trung kế số nối giữa các tổng đài số

• Các đường truyền dẫn nối giữa tổng đài chính đến các tổng đài vệ tinh

• Các đường truyền dẫn nối các thuê bao với các tổng đài chính Một trạm viba số bao gồm 2 khối chính:

• Khối thu phát vô tuyến (Transceiver)

• Khối tách ghép kênh (Multiplex và Demultiplex) Khối thu phát vô tuyến (Transceiver) bao gồm các phần xử lý băng tần gốc (

chuyển mã (line-code ) điều chế và giải điều chế , chuyển đổi tần số …

131

Page 8: Chuong 3 he thong viba va ve tinh

Chương 6: Hệ thống thông tin viba và vệ tinh

Hình 6.9. Sơ đồ khối thu phát vô tuyến

Hình 6.10.Ích lợi của FEC Nếu đầu vào Multiplex PDH bao gồm thoại 2Wire , 4Wire , dữ liệu, thì đầu ra là

luồng số cấp thấp E1 ( Nếu theo chuẩn châu Âu). Nếu đầu vào Multiplex bao gồm các luồng số cấp thấp , thì đầu ra là luồng số cấp

cao . Thoại trong Multiplex có thể mã hoá dạng

• Xung mã (PCM)

132

Page 9: Chuong 3 he thong viba va ve tinh

Chương 6: Hệ thống thông tin viba và vệ tinh

• Xung mã vi sai(DPCM)

• Xung mã vi sai tự thích nghi(ADM). 6.2.2. Phân loại VIBA số

Phụ thuộc vào tốc độ bít của tín hiệu PCM cần truyền , các thiết bị vô tuyến phải được thiết kế phù hợp để có khả năng truyền dẫn tín hiệu đó, có thể phân loại như sau: + Viba số băng hẹp ( tốc độ thấp): được dùng truyền các luồng số có tốc độ 2Mbit/s,và 8 Mbit/s tương ứng dung lượng kênh thoại là 30 và 120 kênh. Tần số sóng vô tuyến thông thường (0,4 – 1,5)GHz

+ Viba số băng trung bình ( tốc độ trung bình): được dùng để truyền các tín hiệu có tốc độ( 8 – 34)Mbit/s tương ứng dung lượng kênh thoại là 120 đến 480 kênh. Tần số sóng vô tuyến thông thường (2–6)GHz.

+ Viba số băng rộng ( tốc độ cao): được dùng để truyền các tình hiệu có tốc độ( 34 – 140)Mbit/s tương ứng dung lượng kênh thoại là 480 đến 1920 kênh. Tần số sóng vô tuyến thông thường 4,6,8,12GHz. 6.2.3. So sánh VIBA số với VIBA tương tự

Viba tương tự Viba tương tự có băng tần gốc Base Band ở dạng tương tự Đầu vào và đầu ra Multiplex là các tín hiệu ở dạng tương tự

Một số ưu điểm hệ thống viba số Viba số có băng tần gốc Base Band ở dạng số

√ Nhờ sử dụng các bộ lặp tái tạo lại luồng số liệu (repeater ) trên đường truyền nên tránh được nhiễu tích luỹ trong hệ thống số. việc tái sinh này có thể được tiến hành ở tốc độ bit cao nhất của băng tần gốc mà không cần đưa xuống tốc độ bít ban đầu,

√ Nhờ tính chống nhiễu tốt , các hệ thống viba số có thể hoạt động tốt với tỷ số C/N (sóng mang /nhiễu ) vừa phải ( C/N > 30dB, theo khuyến nghị của CCIR). Điều này cho phép sử dụng lại tần số đó bằng phương pháp phân cực trực giao, tăng phổ hiệu dụng và dung lượng kênh.

√ Cùng một lượng truyền dẫn , công suất phát cần thiết nhỏ hơn so với hệ thống tương tự , giảm chi phí thiết bị, tăng độ tin cậy, tiết kiệm nguồn . ngoài ra công suất phát nhỏ ít gây nhiễu cho các hệ thống khác.

Một số khuyết điểm hệ thống viba số

√ Khi áp dụng hệ thống truyền dẫn số, phổ tần tín hiệu thoại rộng hơn so với hệ thống tương tự.

133

Page 10: Chuong 3 he thong viba va ve tinh

Chương 6: Hệ thống thông tin viba và vệ tinh

√ Khi các thông số đường truyền dẫn như trị số BER , S/N thay đổi không đạt giá trị cho phép thì thông tin sẽ gián đoạn, khác với hệ thống tương tự thông tin vẫn tồn tại nhưng rất kém

√ 3, Hệ thống này dễ bị ảnh hưởng bởi méo phi tuyến do các đặc tính bão hoà, do linh kiện bán dẫn gây nên, đặc tính này không xảy ra cho hệ thống tương tự FM

√ Các vấn đề trên đã được khắc phục nhờ áp dụng các tiến bộ khoa học kỹ thuật mới như điều chế số nhiều mức dùng thiết bị dự phòng và sử dụng các mạch bảo vệ.

6.3. Các đặc tính kỹ thuật 6.3.1 Các mã đường truyền ( line-code ) Các tín hiệu nhị phân từ thiết bị ghép kênh được biến đổi thành các mã truyền dẫn để giảm lỗi tín hiệu trong quá trình truyền. Để đạt được điều đó các mã truyền dẫn phải thoả mãn yêu cầu sau:

Phải phối hợp đặc tính phổ của tín hiệu với đặc tính của kênh truyền. Dễ dàng tách xung đồng bộ và tái sinh tín hiệu Giảm thành phần một chiều của tín hiệu xuống mức 0 Giảm các thành phần tần số thấp để giảm xuyên âm và kích thước các bộ phận

và các linh kiện trong mạch. Tín hiệu nhị phân đơn cực có thành phần một chiều, có chứa năng lượng lớn trong phổ tần thấp vì vậy không thích hợp cho việc truyền dẫn .

Trong thực tế người ta sử dụng các mã lưỡng cực chẳng hạn như mã truyền dẫn HDB3( mã nhị phân mật độ cao có cực đại ba số 0 liên tiếp), CMI….

Mã HDBn ( high density binary with maximum of 3 consecutive zero) Mã HDBn là mã lưỡng cực có mật độ cao có cực đại n số 0 , đây là loại mã cải

tiến của mã AMI thực hiện việc thay thế N+1 số 0 liên tiếp bằng N+1 xung nhịp chứa 1 xung phạm luật V và xung phạm luật này sẽ ở lại bít thứ N+1 của các mã số 0 liên tục. Với loại mã HDBn này thì dạng HDB3 thường sử dụng trong hệ thống truyền thông tin viba số.

Mã HDB3: Mã HDB3 là mã lưỡng cực mật độ cao có cực đại 3 số 0 liên tiếp.

Qui tắc mã hoá o Mức logic 1 dược mã hoá dạng lưỡng cực o Mức logic 1 dược mã hoá dạng 0

134

Page 11: Chuong 3 he thong viba va ve tinh

Chương 6: Hệ thống thông tin viba và vệ tinh

o Nếu có 4 số 0 liên tiếp thì mã hoá 000V hay B00V , sao cho số bit B nằm giữa 2 bit V là lẻ

Hình 6.11. Dạng sóng HDB3 dùng cho luồng số E1, E2 , E3

Mã CMI ( code mark inversion) Mã CMI là mã đảo dấu mã, đây chính là loại NRZ 2 mức.

Quy tắc mã hoá: o Mức logic 0 được mã hoá thành các sóng vuông dương – âm – dương nhưng

mỗi mức chỉ chiếm 1 khoảng thời gian T/2 o Mức logic 1 được mã hoá thành các sóng vuông dương – dương hoặc âm – âm

nhưng mỗi mức chỉ chiếm 1 khoảng thời gian T theo luật luân phiên. Mã CMI được ITU-T khuyến nghị sử dụng ở tốc độ bít 140Mbps theo tiêu chuẩn châu Âu. (Khuyến nghị G-703) Theo khuyến nghị G703 về các giao tiếp của CCITT cho chi tiết trở kháng , loại đôi dây dẫn mức tín hiệu dạng khung, tải khung phân bố cũng như mã truyền dẫn ở những tốc độ bít khác nhau dung cho hệ châu Âu.

135

Page 12: Chuong 3 he thong viba va ve tinh

Chương 6: Hệ thống thông tin viba và vệ tinh

13

6.3.2. Điều chế viba số

• Xác suất bit thu bị lỗi phụ thuộc vào nhiễu và phương pháp điều chế

• Người ta sử dụng băng thông BW vừa đủ để truyền số liệu .

• Nếu BW quá nhỏ sẽ gây méo tín hiệu sau khi giải điều chế

• Nếu BW quá lớn sẽ lãng phí và gây can nhiễu giữa các kênh viba Người ta thông thường sử dụng điều chế PSK vì:

• BW thấp hơn FSK

• Xác suất nhận tin sai là thấp hơn ( Với cùng tỉ số S/N)

• Dễ dàng nâng lên mPSK (m = 2,4,8, các kênh tốc độ < 140 Mbps)

• Các kênh tốc độ >= 140 Mbps sử dụng QAM ( m=16)

Hình 6.12. Thông số BER của các dạng điều chế pha (QPSK)

6

Page 13: Chuong 3 he thong viba va ve tinh

Chương 6: Hệ thống thông tin viba và vệ tinh

13

7

Hình 6.13. QAM ( m=16)

6.3.3. Các mô hình dự phòng thường gặp

Hình 6.14. Dự phòng khối vô tuyến

Page 14: Chuong 3 he thong viba va ve tinh

Chương 6: Hệ thống thông tin viba và vệ tinh

Hình 6.15. Dự phòng sóng vô tuyến bằng phân tập tần số

2 máy phát, phát ở 2 tần số khác nhau . 2 máy thu , thu ở 2 tần số khác nhau

Hình 6.16. Dự phòng sóng vô tuyến bằng phân tập không gian

2 máy phát, phát ở 1 tần số giống nhau . 2 máy thu , thu ở 1 tần số giống nhau

138

Page 15: Chuong 3 he thong viba va ve tinh

Chương 6: Hệ thống thông tin viba và vệ tinh

6.4. Hệ thống thông tin vệ tinh

6.4.1. ác loại quỹ đạo

C

Hình 6.21. Các loại quỹ đạo Đa số các vệ tinh thường được phân nhóm dựa theo quỹ đạo của chúng. Các vệ

tinh thường được xếp loại dựa theo độ cao của chúng.

• Quỹ đạo Trái Đất tầm thấp (LEO-Low Earth Orbit: 200 đến 1200 km bên trên bề mặt Trái Đất) sử dụng cho chụp ảnh khí tượng, thông tin di động …

• Quỹ đạo Trái Đất tầm trung (ICO hay MEO-Medium Earth Orbit: 1200 đến 35 286 km) , sử dụng cho GPS …

• Quỹ đạo địa tĩnh (GSO / GEO-Geostationary Earth Orbit 35 786 km trên bề mặt Trái Đất)

• Quỹ đạo Trái Đất tầm cao ( HEO-Highly Elliptical Orbit: trên 35 786 km)

139

Page 16: Chuong 3 he thong viba va ve tinh

Chương 6: Hệ thống thông tin viba và vệ tinh

6.4.2 Các đặc điểm của thông tin vệ tinh.

ệ tinh so với các phương tiện thông tin khác là :

ập.

• Vùng phủ sóng rộng.

• Ổn định, chất lượng và khả năng cao về thông tin băng rộng.

• Có thể ứng dụng cho thông tin di động.

• Hiệu quả kinh tế cao trong thông tin cự ly lớn, đặc biệt trong thông tin liên lục địa.

• Sóng vô tuyến điện phát đi từ một vệ tinh ở quỹ đạo vệ tinh địa tĩnh có thể bao phủ 1/3 toàn bộ bề mặt trái đất.

Nhược điểm. Tổng số chiều dài của đường lên và xuống ở thông tin vệ tinh là trên 70.000 Km, sóng phải đi mất khoảng 1/4 giây gây ra một thời gian trễ đáng kể.

6.4.3 Đa truy nhập của thông tin vệ tinh.

• Kỹ thuật sử dụng một vệ tinh chung cho nhiều trạm mặt đất và việc tăng hiệu quả sử dụng của nó tới cực đại được gọi là đa truy nhập.

• Đa truy nhập là phương pháp dùng một bộ phát đáp trên vệ tinh chung cho nhiều trạm mặt đất.

• Đa truy nhập có thể phân chia ra nhiều dạng Phân chia đa truy cập theo FDMA, TDMA, CDMA, SDMA

• Trong FDMA (Đa truy nhập phân chia theo tần số) , các trạm mặt đất riêng phát đcác sóng mang với tần số khác nhau nhưng các băng tần bảo vệ thích hợp sao cho các tầsố sóng mang này không chồn

• Ở Tmặ mang của chúng nằm trong khe thời gian đượ

• Tru

• khô

• CD một phương pháp đa truy nhập trong đó mỗi trạm mặt đất phát đi một n một mã bít ặc biệt (code) quy định cho mỗi trạm mặt đất trước khi phát tín hiệu đã điều chế.

• Các ưu điểm chính của thông tin v

• Có khả năng đa truy nh

i n

g lẫn lên nhau.

DMA ( Đa truy nhập phân chia theo thời gian ) sóng mang phát đi từ mỗi trạm t đất cần phải được điều khiển chính xác sao cho sóng

c phân phối trước bằng cách

yền tín hiệu một cách gián đoạn

Dự phòng một thời gian bảo vệ giữa các sóng mang phát gián đoạn sao cho chúngng chồng lấn lên nhau.

Do đó phải có một trạm chuẩn, phát đi một tín hiệu chuẩn.

MA (SSMA) là tầ số mang như nhau nhưng sóng mang này trước đó đã được điều chế bằngđ

140

Page 17: Chuong 3 he thong viba va ve tinh

Chương 6: Hệ thống thông tin viba và vệ tinh

có nhiều tín hiệu điều chế được đưa vào một phá

• ột phương pháp đa truy nhập trong đó các búp sóng an ten chùm hẹp được chuyển từ hướng nầy sang hướng khác, hay có nhiều

• lại tại các vị trí khác nhau

• Ở loại đa truy nhập này, ngay cả khi bộ t đáp, thì trạm mặt đất thu có thể tách tín hiệu cần thu từ các tín hiệu khác bằng cách s dụng một mã bit đặc biệt, thực hiện được giải điều chế.

SDMA (Space Division Multiple Access) là m

búp sóng theo các hướng khác nhau

Về cơ bản, các sóng mang được tái sử dụng

Hình 6.22. FDMA (Đa truy nhập phân chia theo tần số)

Đa truy nhập phân chia theo thời gian )

Hình 6.23. TDMA (

141

Page 18: Chuong 3 he thong viba va ve tinh

Chương 6: Hệ thống thông tin viba và vệ tinh

Hình 6.24. CDMA ( Đa truy nhập phân chia theo mã )

Hình 6.25. SDMA ( Space Division Multiple Access)

với búp sóng có thể xoay được

142

Page 19: Chuong 3 he thong viba va ve tinh

Chương 6: Hệ thống thông tin viba và vệ tinh

Phân chia đa truy cập theo phân phối kênh

• Nếu xét đa truy nhập theo quan điểm phân phối kênh thì có thể được chia ra đa truy nhập phân phối trước (cố định) và đa truy nhập phân phối theo yêu cầu (linh hoạt )

• Đa truy nhập phân phối trước (FAMA – Fixed Assiggned Multiple Access ) các kênh vệ tinh được phân bố cố định cho các trạm mặt đất khác nhau, bất chấp có hay không có các cuộc gọi phát đi.

• Đa truy nhập phân phối theo yêu cầu (DAMA – Demand Assiggned Multiple Access ): là phương pháp truy nhập trong đó các kênh vệ tinh được sắp xếp lại mỗi khi có yêu cầu thiết lập kênh đưa ra từ các trạm mặt đất liên quan.

• Đa truy nhập phân phối theo yêu cầu cho phép sử dụng hiệu quả dung lượng kênh của vệ tinh, đặc biệt khi nhiều trạm mặt đất có dung lượng kênh nhỏ sử dụng chung một bộ phát đáp.

Hình 6.26. TDMA kiểu phân phối trước (FAMA )

Và TDMA kiểu phân phối theo yêu cầu (DAMA )

143

Page 20: Chuong 3 he thong viba va ve tinh

Chương 6: Hệ thống thông tin viba và vệ tinh

g mang

Hình 6.27. MCPC ( Multiple Channel Per Carrier )

6.4.4 Truyền sóng trong thông tin vệ tinh

Tần số làm việc của thông tin vệ tinh

Phân chia đa truy cập theo số kênh trên 1 són

• Nếu xét theo quan điểm ghép kênh thì có thể được chia ra SCPC và MCPC

• SCPC ( Single Channel Per Carrier )

• MCPC ( Multiple Channel Per Carrier ) Các tín hiệu được ghép kênh trước khi điều chế sóng mang

144

Page 21: Chuong 3 he thong viba va ve tinh

Chương 6: Hệ thống thông tin viba và vệ tinh

inh

• in vệ tinh cần phải xuyên qua tầng điện ly và khí y và bị c s

h ”.

Hình 6.28. Mô hình thông tin vệ t

Sóng vô tuyến điện sử dụng trong thông t qu ển bao quanh trái đất, nhưng sóng vô tuyến điện với các tần số cao bị hấp thụác uy hao khác trong khí quyển, đặc biệt trong mưa.

• K oảng tần số bị suy hao nhỏ là 1 đến 10 Ghz được gọi là” cửa sổ tần số

Hình 6.29. cửa sổ tần số

• Khoảng tần số sử dụng nhiều hơn hiện nay trong thông tin vệ tinh là băng C có tần số 4 Ghz đến 6Ghz. ( B = 500 MHz)

• Băng Ku từ 11 Ghz đến 14 Ghz bị hấp thụ lớn trong mưa nhưng cũng được sử dụng thường xuyên, do thiếu các băng tần.

• Để sử dụng hiệu quả tần số, có thể tiến hành các biện pháp sau đây :

• Giới hạn số vệ tinh phóng.

• Sử dụng lại cùng một tần số bằng cách dùng phân cực vuông góc.

• Chiếu xạ vùng phục vụ bằng nhiều búp sóng điểm từ vệ tinh và sử dụng tối đa tần số giống nhau với sự phân cách thích hợp các búp sóng này.

145

Page 22: Chuong 3 he thong viba va ve tinh

Chương 6: Hệ thống thông tin viba và vệ tinh

• Tăng số bit truy ế số nhiều mức, nhiều pha.

Ph

ụng trong thông tin vệ tinh:

óng phân cực thẳng có thể được tạo ra bằng cách dẫn các tín hiệu từ một ống dẫn sóng chữ nhật đến một anten loa.

• Người ta chia ra 2 loại phân cực thẳng là phân cực đứng và phân cực ngang

ền trong một Hz bằng cách sử dụng điều ch

ân cực sóng.

• Hướng phân cực là hướng dao động của điện trường.

• Có hai loại phân cực sóng vô tuyến điện được sử dsóng phân cực thẳng và sóng phân cực tròn.

• S

Hình 6.30. anten loa

• Sóng phân cực tròn là sóng trong khi truyền lan, phân cực của nó quay tròn. Có th tạ ại sóng này bằng cách kết hợp hai sóng phân cực thẳng có phân cực vuông góc với nhau và góc lệch pha là 90°

ệ thống thông

• Đ ách ghép các sóng p

• d. T ầu.

ểo ra lo

• Sóng phân cực tròn là phân cực phải hay trái phụ thuộc vào sự khác pha giữa sóng phân cực thẳng là sớm pha hay chậm pha

• Yêu cầu hoạt động đối với anten thông tin vệ tinh.

• a. Hệ số tăng ích cao và hiệu suất cao.

• b. Hướng tính cao và búp sóng phụ nhỏ: để chúng không can nhiễu vào htin khác (vệ tinh và mặt đất).

c. ặc tính phân cực tốt: để sử dụng tần số một cách hiệu quả bằng chân cực ngang và đứng .

ạp âm thấp. Cần giảm tạp âm để bảo đảm được các tỷ số G/T yêu c

146

Page 23: Chuong 3 he thong viba va ve tinh

Chương 6: Hệ thống thông tin viba và vệ tinh

Ph

bol, có sơ cấp đặt tại tiêu điểm.

ấp nhất. Nó được dùng ủ yế g lượng thấp.

có quy mô trung bình.

nten có bộ phận fiđơ, gương phản xạ phụ được đặt ở vị trí lệch một ít so với hướng trục của gương phản xạ để các bộ phận fiđơ và gương phản xạ nhỏ không chặn đường đi của sóng. Do đó búp sóng phụ được cải thiện rất lớn so với anten cassegrain, dẫn đến hệ số tăng ích lớn hơn.

ân loại Anten

• a. Anten para

• Đây là loại anten có cấu trúc đơn giản nhất và giá thành thch u ở các trạm chỉ thu ( không phát) và các trạm nhỏ dun

• b. Anten cassegrain.

• Là loại anten có thêm một gương phản xạ phụ vào gương phản xạ chính, hệ số tăng ích của anten được nâng cao và đặc tính búp phụ cũng được cải thiện chút ít. Anten được sử dụng cho các trạm bình thường,

• c. Anten lệch ( bù).

• A

Hình 6.31. Anten và búp sóng

147

Page 24: Chuong 3 he thong viba va ve tinh

Chương 6: Hệ thống thông tin viba và vệ tinh

max

2 2 D.f/c)2 = η.(πD/λ)2

• 2

• g = c/f (c: vận tốc ánh sáng, f: tần số)

• độ mở của anten (mặt phản xạ)(m)

3dB = .λ / D [rad]

• = 57.3 η -0,5 .λ / D [degrees]

• Khi ta sử dụng anten càng lớn, tần số càng cao thì độ lợi của anten càng lớn và độ rộng búp sóng càng hẹp.

• Với một anten cho trước ( D không đổi ), tính định hướng của nó sẽ càng lớn khi ta sử dụng tần số càng cao.

• Khi tần số sử dụng f không đổi, tính định hướng của anten sẽ càng cao khi ta sử dụng anten càng lớn.

6.4.5 Tính toán đường truyền vệ tinh

Mô hình thông tin vệ tinh

• T : Transmitter (Trạm phát)

• S : Satellite (Vệ tinh)

• R : Receiver (Trạm thu)

• U : Uplink (Tuyến lên)

• D : Downlink (Tuyến xuống)

Độ lợi của anten G

Gmax = (4π/λ )Aeff = η.4π (f/c) .A = η.(π

( Do A = π D /4, Aeff = η.A )

• Gmax : Độ lợi cực đại ở hướng bức xạ của anten

λ [m] : Bước són

Aeff [ m2] : Diện tích độ mở hiệu dụng

• η : Hiệu suất của Antenn (55 đến 75%)

D [m] : Đường kính

• Độ rộng búp sóng 3dB (nửa công suất) được tính theo θ3dB

• θ3dB là góc giữa 2 hướng mà độ lợi giảm còn một nửa so với hướng cực đại.

• θ η -0,5

148

Page 25: Chuong 3 he thong viba va ve tinh

Chương 6: Hệ thống thông tin viba và vệ tinh

C i m v

• Với d là kho á và an

t

RP của vệ tinh tại 1 vị trí cụ thể trên mặt đất thông qua sơ đồ

Hình 6.32. MCPC ( Multiple Channel ác khá niệ ề công suất phát và thu tín hiệu

ảng cách giữa anten ph t ten thu

• EIRP (Công suất bức xạ đẳng hướng tương đương) đặc trưng cho khả năng phátại anten

• EIRP = PA = PT .GT = [(Công suất phát) * (Độ lợi của anten)] [W]

• Người ta xác định EIvùng phủ sóng vệ tinh footprint

Hình 6.33. Vùng phủ sóng vệ tinh footprint

149

Page 26: Chuong 3 he thong viba va ve tinh

Chương 6: Hệ thống thông tin viba và vệ tinh

• Công suất tín hiệu thu được PR bởi anten có độ lợi GR là

• PR = ( PA / Lfs ) GR = ( PT .GT / Lfs ) GR

• Ở đây Lfs suy hao không gian tự do ( Free Space Loss)

• Lfs = (4π d / λ)2

• G/T [dB/ 0K] đặc trưng cho độ nhạy của hệ thống thu tại vị trí anten

• T trị số nhiệt tạp âm tại đầu vào máy thu qui đổi từ công suất tạp âm Ví dụ cho T = 100 0K , G = 60 dB thì G/T = 60-20 = 40 [dB/ 0K] ( Do T = 100 0K 20 dB = 10 lg T )

Khi thiết kế năng lượng đường truyền ta cũng cần chú ý đến các suy hao và các nguồn tạp âm, nhiễu khác tuyến, nhiễu cùng tuyến

Suy hao

ăng...) : LA

LfTX ; LfRX

Suy hao do mất phối hợp phân cực. Các nguồ

• Tạp âm khí quyển như oxy, nitơ

• Tạp âm trái đất

• Tạp âm giao thoa. Nó sinh ra do sthông tin vệ tinh với các trạm

• Tạp âm mặt trời

• Suy hao trong khí quyển (mưa, mây, tuyết, b

• Suy hao do feeder của thiết bị phát và thu :

• Suy hao do đặt anten phát và thu bị lệch : LT ; LR

n tạp âm nơi thu Các nguồn tạp âm bên ngoài hệ thống gây ra nhiệt tạp âm của anten TA gồm

• Tạp âm vũ trụ

, hơi nước, mưa , sương mù...

ự giao thoa sóng điện từ của trạm mặt đất vi ba trên mặt đất.

Hình 6.34. Noise-sun xảy ra khi trạm mặt đất, vệ tinh, mặt trời thẳng hàng

Các nguồn tạp âm bên trong hệ thống

150

Page 27: Chuong 3 he thong viba va ve tinh

Chương 6: Hệ thống thông tin viba và vệ tinh

• Nguồn tạp âm do suy hao trên dây feeder

số nhiệt tạp âm tại đầu vào máy thu nh sau

]

c tính bằng K

0-13 W

p âm tương đương của hệ thống M1 và M2

Nhiệt tạp âm tương đương của hệ thống M1 và M2

• Tổng quát nhi ương đương của hệ thống gồm n thành phần

• T

• Ta nhận ng khuếch đại, nên tác động của t ỏ đi.

• Nếu như hệ số khuếch đại của tầng đầu là đủ lớn, thì tạp âm xảy ra tại tầng thứ hai và các tầng khuếch đại tiếp theo có thể bỏ qua. Vì vậy khi cần phải giảm tạp âm trong máy thu xuống nhỏ hơn. Trong hệ thống thông tin vệ tinh, ta phải sử dụng tầng khuếch đại đầu tiên có hệ số khuếch đại cao và có tạp âm thấp ( LNA ).

Nguồn tạp âm do bên trong máy thu

• Công suất các nguồn tạp âm nầy có thể qui đổi ra một trịư

• Công suất tạp âm N tỉ lệ thuận với nhiệt độ T

• Công suất tạp âm N = k.T.B [W] -23 0• k : Hằng số Boltzmans = 1.38*10 [J/ K

0• T : Nhiệt tạp âm đượ

• B : Độ rộng băng tần 3 dB của thiết bị [Hz] Ví dụ cho T = 300 0K , B = 40 MHz thì N = 1,66*1

• Nhiệt tạ

Te = Te1 + Te2 / G1

Hình 6.35.

ệt tạp âm t

e = Te1 + Te2 / G1 + . . . + Ten / (G1 G2 . . . Gn-1)

thấy : vì tín hiệu trở nên lớn hơn khi đi qua mỗi tầạp âm tại mỗi tầng lại nh

151

Page 28: Chuong 3 he thong viba va ve tinh

Chương 6: Hệ thống thông tin viba và vệ tinh

ủ ệ thống anten thu

A sky + Tground

R

• TR = TLNA + TMX / GLNA + TIF / GLNA GMX

hau :

• Vệ tinh thông tinh khác trạm mặt đất

• Trạm mặt đất khác vệ tinh thông tin

• Tuyến vi ba mặt đất vệ tinh thông tin

Hình 6.36. Nhiệt tạp âm tương đương c a h

• Đối với anten của trạm mặt đất (tuyến xuống) T = T

• Nhiệt tạp âm của máy thu : T

Hình 6.37. Nhiệt tạp âm tương đương của máy thu Nhiễu khác tuyến

• Có bốn cách , trong đó các tuyến thông tin có thể nhiễu với n

152

Page 29: Chuong 3 he thong viba va ve tinh

Chương 6: Hệ thống thông tin viba và vệ tinh

• Tuyến vi ba mặt đất trạm mặt đất

• Nhiễu lớn nhất xảy ra giữa tuyến vi ba mặt đất và trạm mặt đất.

• Nhiễu từ tuyến vi ba mặt đất đến hệ thống vệ tinh là không đáng kể.

.38. Nhiễu khác tuyến N

• Nhiễu cùng tuyến do thực hiện kỹ thuật dùng lại tần số để sử dụng hiệu quả phổ tần

• Hai phương pháp thường được thực hiện để sử dụng lại tần số là phân cách búp sóng và phân cực kép.

• Tạp âm nhiễu kênh lân cận . khi thành phần kênh lân cận có cùng phân cực với tuyến vệ tinh

yến

Hình 6hiễu cùng tuyến

Hình 6.39. Nhiễu cùng tu

153

Page 30: Chuong 3 he thong viba va ve tinh

Chương 6: Hệ thống thông tin viba và vệ tinh

6.4.6. Sơ khuếch đại công suất

Hình 6.41. Codec và Modem - Chi tiết

Bộ UP/DOWN CONVERTER ( Băng C ) được đặt giữa MODEM và LNA hoặc HPA, có nhiệm vụ đổi tần từ trung tần IF (70 MHz) thành tần s RF ( 6GHz) đối với tuyến lên hay đổi tần từ tần g tần IF (70 MHz) đối với

ến xuống ( đổi tần 2 lần )

đồ hối trạm mặt đất Bao gồm phần giao tiếp, mã hoá, Modem, chuyển đổi tần số , kHPA ở phần phát hoặc khuếch đại tạp âm thấp LNA ở phần thu

Hình 6.40. Codec và Modem

ố số RF ( 4GHz) thành tần số trun

tuy

154

Page 31: Chuong 3 he thong viba va ve tinh

Chương 6: Hệ thống thông tin viba và vệ tinh

Hình 6.42. Bộ chuyển đổi tần số

H

Tạp âm điều biến tương hỗ (xuyên điều chế) trên HPA trong vệ tinh , sinh ra khi bộ phát đ

là bão hòa.

Để méo do điều biến tương hổ nhỏ hơn giá trị cho phép, bộ khuếch đại phải làm việc ở mức thấp hơn điểm bão hòa.

ình 6.43. Bộ khuếch đại công suất HPA

• áp của nó khuếch đại đồng thời nhiều sóng mang. Các đặc tính phi tuyến vào ra của

bộ phát đáp là nguyên nhân sinh ra tạp âm điều biến tương hổ.

• Khi mức vào vượt quá một giá trị nào đó, thì mức ra của bộ khuếch đại HPA không tăng nữa. Hiện tượng này gọi

155

Page 32: Chuong 3 he thong viba va ve tinh

Chương 6: Hệ thống thông tin viba và vệ tinh

15

• Mức công suất chênh lệch được gọi là độ lùi đầu vào (back-off).

Hình 6.4 t HPA 6.4.6. Sơ đồ khối của trạm lặp vệ tinh

4. Đặc tính bộ khuếch đại công suấ

Hình 6.45. Vệ tinh Thaicom 3

6

Page 33: Chuong 3 he thong viba va ve tinh

Chương 6: Hệ thống thông tin viba và vệ tinh

BPF LNA

LO

Bộ dao động nội

TWTA BPF

Tín hiệu từ tuyến lên

Bộ lọc thông thấp

Bộ khuếch đại tạp âm thấp

Bộ lọc thông thấp

Bộ chuyển đổi xuống

Tuyến xuống

Anten thu 6GHz

Bộ khuếch đại công suất đèn sóng chạy

Anten phát 4GHz

ăng của một bộ phát đáp (trên vệ tinh)

.4.7. Giới thiệu các hệ thống vệ tinh toàn cầu

• Các dịch vụ vệ tinh :

• DBS (Direct Broadcast Satellite) Dịch vụ phát thanh trực tiếp qua vệ tinh ở Mỹ, sử dụng vệ tinh địa tĩnh

• VSAT ( Very Small Aperture Terminal) với đường kính an ten < 2,4 m , sử dụng trong hàng không , ngân hàng

• MSAT (Mobile Satellite Service) Dịch vụ vệ tinh di động , sử dụng trong liên lạc xe cộ, tàu thuyền , máy bay…

• Radarsat Vệ tinh thám hiểm từ xa các nguồn tài nguyên của trái đất , sử dụng trong vẽ bản đồ , theo dõi ô nhiễm dầu , quản lý rừng …

• GPS

• Microsat sử dụng trong thông tin liên lạc cá nhân do Motorola phát triển

Hình 6.46. Sơ đồ khối chức n 6

157

Page 34: Chuong 3 he thong viba va ve tinh

Chương 6: Hệ thống thông tin viba và vệ tinh

158

6.5.

Bộ

Hệ thống định vị toàn cầu (Global Positioning System - GPS) là hệ thống xác định vị trí dựa t

Hệ thống GPS (Global positioning system) gồm có 24 vệ tinh phân phối thành 6 và ở độ cao 12 nghìn dặm cách mặt đất. nh, hai vòng quỹ đạo trong khoảng thời

gian g này chuyển động với vận tốc 7 nghìn dặm một giờ.

cách đ thì sẽ tính được toạ độ của vị trí đó. o

phép m bất kể quốc tịch.

tính nă , dự tính sẽ bắt đầu hoạt động năm 2010

6.5. Hệ thống vệ tinh định vị toàn cầu GPS 1. Giới thiệu hệ thống vệ tinh định vị toàn cầu GPS

Một số thông tin về các vệ tinh GPS (còn gọi là NAVSTAR, tên gọi chính thức của Quốc phòng Mỹ cho GPS):

• Vệ tinh GPS đầu tiên được phóng năm 1978.

• Hoàn chỉnh đầy đủ 24 vệ tinh vào năm 1994.

• Mỗi vệ tinh được làm để hoạt động tối đa là 10 năm.

• Vệ tinh GPS có trọng lượng khoảng 1500 kg và dài khoảng 17 bộ (5 m) với các tấm năng lượng Mặt Trời mở (có độ rộng 7 m²).

• Công suất phát bằng hoặc dưới 50 watts.

rên vị trí của các vệ tinh nhóm bay theo 6 quỹ đạo hình tròn quanh trái đất ( Khoảng 20 200 km. ) Chúng chuyển động ổn đị

ần 24 giờ. Các vệ tinh Trong cùng một thời điểm, ở một vị trí trên mặt đất nếu xác định được khoảng ến ba vệ tinh (tối thiểu)GPS được thiết kế và quản lý bởi Bộ quốc phòng Mỹ, nhưng chính phủ Mỹ chọi người sử dụng nó miễn phí, Các nước trong Liên minh châu Âu đang xây dựng Hệ thống định vị Galileo, cóng giống như GPS của Hoa Kỳ

Hình 6.47. sơ đồ 24 vệ tinh GPS

Hệ thống dẫn đường truyền thống dựa trên các trạm phát tín hiệu

• hệ thống LORAN – (LOng RAnge Navigation) dùng cho hàng hải

Page 35: Chuong 3 he thong viba va ve tinh

Chương 6: Hệ thống thông tin viba và vệ tinh

tion) – dùng cho quân đội Mỹ

istance Measuring

ho các mục đích quân sự, nhưng từ năm 1980 chính phủ Mỹ cho phép s m bảo tồn tại liên tục và độ chính xác. C cho dẫn đường dân sự

g được xây dựng) ngay từ đầu đã đặt mụ định vị dân sự.

• TACAN – (TACtical Air Naviga

• VOR/DME – VHF (Omnidirectional Range/DEquipment) – dùng cho hàng không dân dụng.

GPS ban đầu chỉ dành cử dụng dân sự. Chúng không đưa ra sự đả

húng không thoả mãn được những yêu cầu an toànHệ thống dẫn đường vệ tinh châu Âu Galileo (đanc tiêu đáp ứng các yêu cầu nghiêm ngặt của dẫn đường và

Hình 6.48. Định vị máy bay qua 4 vệ tinh GPS

6.5.2.

Về bản chất máy thu GPS so sánh thời gian tín hiệu được phát đi từ vệ tinh với thời gian nhận được chúng. Sai lệch về thời gian cho biết máy thu GPS ở cách vệ tinh bao xa. Rồi với nhiều quãng cách đo được tới nhiều vệ tinh máy thu có thể tính được vị trí của người dùng và hiển thị lên bản đồ điện tử của máy.

Máy thu GPS phải khoá được với tín hiệu của ít nhất ba vệ tinh để tính ra vị trí hai chiều (kinh độ, vĩ độ ) và để theo dõi được chuyển động. Với bốn hay nhiều hơn số vệ tinh trong tầm nhìn thì máy thu có thể tính được vị trí ba chiều (kinh độ, vĩ độ và độ cao).

Một khi vị trí người dùng đã tính được thì máy thu GPS có thể tính các thông tin khác, như tốc độ, hướng chu ng hành trình, quãng cách

i điểm đến, và nhiều thứ khác n

Sự hoạt động của GPS

Các vệ tinh GPS bay vòng quanh Trái Đất hai lần trong một ngày theo một quỹ đạo rất chính xác và phát tín hiệu có thông tin xuống Trái Đất. Các máy thu GPS nhận thông tin này và tính được vị trí của người dùng.

yển động, bám sát di chuyển, khoảữa tớ

159

Page 36: Chuong 3 he thong viba va ve tinh

Chương 6: Hệ thống thông tin viba và vệ tinh

Hình 6.49. máy thu GPS

6.5.4. Tín hiệu GPS Các vệ tinh GPS phát hai tín hiệu dải tần số L1 và L2. (d i tần L trải rộng từ 0,39

tới 1,55 GHz). GPS dân sự dùng tần số L1 575,42 MHz. Tín hiệu GPS hiên, dữ liệu thiên

Mã giả ngẫu nhiên đơn giản chỉ là mã định danh để xác định được vệ tinh nào là

trong n

ệu là cốt lõi để phát hiện ra vị trí.

xác trung bình trong vòng 15 mét. Các máy thu mới hơn với khả năng WAAS (Hệ Tăng Vùng Rộng, Wide Area

Augmentation System) có thể tăng độ chính xác trung bình tới dưới 3 mét.

chứa ba mẩu thông tin khác nhau – mã giả ngẫu nvăn và dữ liệu lịch.

phát thông tin nào. Có thể nhìn số hiệu của các quả vệ tinh trên trang vệ tinh của máy thu Garmin để biết nó nhận được tín hiệu của vệ tinh nào.

Dữ liệu thiên văn cho máy thu GPS biết vệ tinh ở đâu trên quỹ đạo ở mỗi thời điểm gày. Mỗi vệ tinh phát dữ liệu thiên văn chỉ ra thông tin quỹ đạo cho vệ tinh đó và

mỗi vệ tinh khác trong hệ thống. Dữ liệu lịch được phát đều đặn bởi mỗi vệ tinh, chứa thông tin quan trọng về trạng

thái của vệ tinh, ngày giờ hiện tại. Phần này của tín hi 6.5.5. Độ chính xác của GPS

Tình trạng nhất định của khí quyển và các nguồn gây sai số khác có thể ảnh hưởng tới độ chính xác của máy thu GPS.

Các máy thu GPS có độ chính

160

Page 37: Chuong 3 he thong viba va ve tinh

Chương 6: Hệ thống thông tin viba và vệ tinh

161

GPS vi sai (Differential GPS, DGPS) sửa lỗi các tín hiệu GPS để có độ chính xác trong khoảng 3 đến 5 mét. Các yếu tố ảnh hưởng tới độ chính xác GPS

• Tín hiệu vệ tinh bị chậm đi khi xuyên qua tầng khí quyển.

• Tín hiệu đi nhiều đường – do tín hiệu phản xạ trước khi tới máy thu.

• Lỗi máy thu – Đồng hồ có trong máy thu không chính xác như đồng hồ nguyên tử trên các vệ tinh GPS.

• Lỗi quĩ đạo –do vệ tinh thông báo vị trí không chính xác.

• Số lượng vệ tinh nhìn thấy – Càng nhiều vệ tinh được máy thu GPS nhìn thấy thì càng chính xác.

• Nhà cao tầng, địa hình, nhiễu loạn điện tử, gây lỗi nh vị

• Phân bố vệ tinh lý tưởng óc rộng với nhau. Phân bố xấu xảy ra khi các vệ tinh cụm

• Sự giảm có chủ tâm tín hiệu vệ tinh – Là sự làm giảm tín hiệu cố ý do sự áp đặt hòng Mỹ, nhằm chống lại việc đối thủ quân sự dùng tín hiệu GPS

• điều này là tiềm ẩn hạn chế an toàn cho dẫn đường và định vị dân sự.

đị

là khi các vệ tinh ở vị trí g thành nhóm.

của Bộ Quốc pchính xác cao. Chính phủ Mỹ đã ngừng việc này từ tháng 5 năm 2000, làm tăng đáng kể độ chính xác của máy thu GPS dân sự.

Tuy nhiên biện pháp này hoàn toàn có thể được sử dụng lại trong những điều kiện cụ thể. Chính

6.6. Hệ thống mobile toàn cầu (MSAT)

Hình 6.50. Liên kết MSAT với hệ thống thông tin di động

Page 38: Chuong 3 he thong viba va ve tinh

Chương 6: Hệ thống thông tin viba và vệ tinh

nh thị , đất liền. ả ở khu vực mật độ thấp như hàng không

, hà thành hệ

thố

(Chỉnh n hiệu truyền thẳng và phản xạ . Do đó có thể có hiện tượng fad

sóng . ép sử dụng lại phổ tần , tại 2 búp sóng cách nhau ít nhất 1 búp són

CD A

cầuCác d

vụ thông tin di động có tầm phủ rộng h

để mở rộng tầm phủ ấp các đường truyền dữ liệu 2 chiều giữa các

đầu cuối cố định và di động

Hệ thống thông tin di động Mobile ở mặt đất thông thường chỉ phục vụ hiệu quả ở khu vực mật độ cao như thà

Hệ thống vệ tinh di động phục vụ hiệu qung hải , vùng sâu

MSAT có thể liên kết với hệ thống thông tin di động tế bào ở mặt đất ng thông tin liên lạc toàn thế giới

Trong MSAT , anten có độ lợi nhỏ 3 6 dB ( Đẳng hướng) hay 10 14 dB được hướng ) thu cả tí

ing MSAT ở băng L có băng thông hẹp ( 14MHz) sử dụng an ten vệ tinh nhiều búp

Trong đó cho phg

Hai kỹ thuật đa truy cập trên băng L/Ku phù hợp mạng MSAT là FDMA và M , vì TDMA cần nhiều công suất nguồn cho đầu cuối.

Phương thức SCPC – DAMA (Single Channel Per Carrier) : Khi có cuộc gọi yêu vệ tinh sẽ cấp 1 cặp tần số sóng mang để phục vụ cho kênh đó ịch vụ trên MSAT MRTS ( Mobile Radio Trunking Service) dịch ơn rất nhiều so với dịch vụ thông tin di động tế bào IMRS( Interconnected Mobile Radio Service ) dịch vụ thông tin di động liên kết

với các mạng điện thoại công cộng PSTN MDS ( Mobile Data Service) cung c

162

Page 39: Chuong 3 he thong viba va ve tinh

Chương 6: Hệ thống thông tin viba và vệ tinh

Ữ VIẾT TẮT

Yêu cầu lặp lại tự động BER

Bộ lọc thông thấp BPSK

Base Transceiver System Hệ thống thu phát gốc CBC

Management System khách hàng CSC

yển đổi số - tương tự DPSK

đương Trạm mặt đất

FAMA phân chia tần số

FDMA

FM rbit Quỹ đạo địa tĩnh

GMR Geo Mobile Radio Vô tuyến di động địa tĩnh GOCC Glopal Operational Control Center Trung tâmđiều khiển mặt đất GPRS General Packet Radio System Hệ thống vô tuyến gói chung GPS Global Positioning System Hệ thống định vị toàn cầu GSC Gateway Station Controller Bộđiềukhiểntrạm cổng chính GSM Global System For Mobile Hệ thống thông tin di động

Communication toàn cầu GTS Ground Transceiver Subsystem Hệ thốngconthu phát mặt đất GWS Gateway Subsystem Hệ thống con cổng chính HDTV High Definition Televition Truyền hình độ phân giải cao HEO Highly Elliptical Orbit Quỹ đạo elip tầm cao HPA High Power Amplifier Khuyếch đại công suất cao IF Inter-Requency Trung tần IOL Inter Orbit Link Tuyến kết nối giữa các

hệ thống với nhau

THUẬT NG

ACI Adjacent Channel Interence Nhiễu kênh lân cận ARQ Automatic Repeat Request

bit error rate Tỷ lệ lỗi bit BPF Band Pass Filter

Binary Phase Shift Keying Khoá dịch pha nhị phân BSC Base Station Controller Bộ điều khiển trạm gốc BTS

Cipher Block Chaining Chuỗi khối ký số CDMA Code Division Multiple Access Đa truy nhập phân chia theo mã CIMS Customer Information Hệ thống quản lý thông tin

Common Signaling Channel Kênh báo hiệu chung DAC Digital To Analog Converter Bộ chu

Differential Phase Sift Keying Khoá dịch pha vi phân EIRP Equivalent Isotropic Radiated Công suất bức xạ đẳng

Power hướng tươngES Earth Station

Fixed Assigned Multiple Access Đa truy nhập gán cố định FDM Frequency Division Multiplexing Ghép kênh

Frequency Division Multiple Đa truy nhập phân chia Access theo tần số

FH Frequency Hopping Nhảy tần Frequency Modulation Điều tần

GEO Geostationary O

163

Page 40: Chuong 3 he thong viba va ve tinh

Chương 6: Hệ thống thông tin viba và vệ tinh

ISDN Intergated Services Digital Mạng số liên kết đa dịch vụ Network

ác

g quốc tế

ầm thấp ấp

in

MSC ạchdiđộng ạng

ảo ph

PC ôngtin vệ tinhcá nhân

PN pha

ại chuyển mạch

n vệ tinh

SDMA

SOTF Start Of Transmit Frame át

ISL Inter System Link Tuyến kết nối giữa c

hệ thống với nhau ITU International Telecommunication Liên minh viễn thôn

Union LEO Low Earth Orbit Quỹ đạo mặt đất tLNA Low Noise Amolifier Bộ khuyếch đại tạp âm thLO Local Oscillator Bộ dao động nội MCT Mobile Communication Terminal Thiết bị đầu cuối truyền t

di động MEO Medium Earth Orbit Quỹ đạo mặt đất tầm trung

Mobile Switching Center TrungtâmchuyểnmNCC Network Control Center Trung tâm điều khiển mNGEO Non-Geo Vệ tinh không địa tĩnh PAL Phase Alternation By Line Đ a theo dòng PAM Pulse Amplitude Modulation Điều chế biên độ xung

Pseudorandom Code Mã giả ngẫu nhiên PSCN Personal Satellite Communications Mạngth

Network PLMN Public Land Mobile Network Mạng di động mặt đất

công cộng Pseudo Noise Code Mã giả tạp âm

PSK Phase Shift Keying Khoá dịchPSTN Public Switched Telephone Mạngđiệntho Network công cộng QoS Quality Of Service Chất lượng dịch vụ QPSK Quadrature Phase Shift Keying Khoá dịch pha cầu phương RF Radio Frequency Tần số vô tuyến SCC Satellite control center Trung tâm điều khiểSCPC Single Channel Per Carrier Một kênh truyền đơn trên

một sóng mang Space Division Multiple Access Đa truy nhập phân chia

theo không gian SL Satellite Vệ tinh SNMC Service Provider Network Trung tâm quản lý mạng cung Management Center cấp dịch vụ SOCC Satellite Operational Control Trung tâm điều khiển

Center hoạt động vệ tinh SORF Start Of Received Frame Khởi đầu của khung thu

Khởi đầu khung ph

164

Page 41: Chuong 3 he thong viba va ve tinh

Chương 6: Hệ thống thông tin viba và vệ tinh

SSMA Spread rải phổ -Tch Satellite Traffic Channel Kênh lưu lượng vệ tinh

heo

TWTA Travelling Wave Tube Amplifier Khuyếch đại đèn sóng chạy

SSB Single Sideband Đơn biên Spectrum Multiple Access Đa truy nhập t

STDMA Time Division Multiple Access Đa truy nhập phân chia t

thời gian TVRO Televition Receiver Only Trạm mặt đất thu

UHF Ultra-High Frequency Tần số cực cao UW Unique Word Từ duy nhất VHF Very High Frequency Tần số rất cao VSAT Very Small Aperture Terminal Đầu cuối có độ mở rất nhỏ

165