chemical biology of cellular carbohydrates · metabolic glycoengineering with carbamates ac...

40
Universität Konstanz Chemical Biology of Cellular Carbohydrates Valentin Wittmann Universität Konstanz XVII th Ischia Advanced School of Organic Chemistry (IASOC Conference), Ischia, 28.09.2016

Upload: others

Post on 03-Aug-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Chemical Biology of Cellular Carbohydrates · Metabolic Glycoengineering with Carbamates Ac 4ManNAloc AcAc 4ManNBeoc Ac 4ManNPeoc 4ManNHeoc Control (no sugar) Fluorescence images

Universität Konstanz

Chemical Biology of Cellular Carbohydrates

Valentin WittmannUniversität Konstanz

XVIIth Ischia Advanced School of Organic Chemistry (IASOC Conference), Ischia, 28.09.2016

Page 2: Chemical Biology of Cellular Carbohydrates · Metabolic Glycoengineering with Carbamates Ac 4ManNAloc AcAc 4ManNBeoc Ac 4ManNPeoc 4ManNHeoc Control (no sugar) Fluorescence images

PosttranslationalModification

(Glycosylation,Phosphorylation,Ubiquitination,Acetylation,Methylation, ...)

Glycoprotein

Central Dogma of Molecular Biology

DNA RNA ProteinTranscription Translation

Retroviruses

Splicing/Processing

Replication

It has been estimated that more than 50% of all proteins are glycosylated.R. Apweiler, H. Hermjakob, N. Sharon, Biochim. Biophys. Acta 1999, 1473, 4-8.

Page 3: Chemical Biology of Cellular Carbohydrates · Metabolic Glycoengineering with Carbamates Ac 4ManNAloc AcAc 4ManNBeoc Ac 4ManNPeoc 4ManNHeoc Control (no sugar) Fluorescence images

Common Classes of Glycoconjugates

S. S. Pinho, C. A. Reis, Nat. Rev. Cancer 2015, 15, 540

1. Mechanistic investigation of carbohydrate-lectin interactions

2. Tracing carbohydrates in living cells

Page 4: Chemical Biology of Cellular Carbohydrates · Metabolic Glycoengineering with Carbamates Ac 4ManNAloc AcAc 4ManNBeoc Ac 4ManNPeoc 4ManNHeoc Control (no sugar) Fluorescence images

Carbohydrate-Lectin Interactions

E-selectin • sLex

KD 700 Mgalectin-1 • LacNAc

KD 91 M

Con A • Man(1-2)ManKD 24 M

1I3H

Lec B (PA-IIL) • FucKD 2.9 M

1G1T 1W6P

1GZT

Increased binding affinity through

Multivalency

Page 5: Chemical Biology of Cellular Carbohydrates · Metabolic Glycoengineering with Carbamates Ac 4ManNAloc AcAc 4ManNBeoc Ac 4ManNPeoc 4ManNHeoc Control (no sugar) Fluorescence images

Multivalent Carbohydrate-Lectin Interactions

V. Wittmann, R. J. Pieters, Chem. Soc. Rev. 2013, 42, 4492

• Increased affinity even if spacer is too short

• Binding modes?

Strong interest in understanding the molecular mechanisms of multivalency

Page 6: Chemical Biology of Cellular Carbohydrates · Metabolic Glycoengineering with Carbamates Ac 4ManNAloc AcAc 4ManNBeoc Ac 4ManNPeoc 4ManNHeoc Control (no sugar) Fluorescence images

Model Lectin: Wheat Germ Agglutinin (WGA)

• Chitin-binding lectin from Triticum vulgaris

• Stable homo dimer: 2 x 171 amino acids

• 8 Binding sites per dimer(4 ‘primary’ and 4 ‘secondary’)

• Carbohydrate ligand:

OOH

NHAcHO

HOOH

OOH

NHAcHOO

OH

AcHNHOO O

OHH

n

and

GlcNAcKd: 1–5 mM

Chitobiose (n = 1)Kd: 50–200 M

WGA • GlcNAc (PDB ID: 2UVO)

Page 7: Chemical Biology of Cellular Carbohydrates · Metabolic Glycoengineering with Carbamates Ac 4ManNAloc AcAc 4ManNBeoc Ac 4ManNPeoc 4ManNHeoc Control (no sugar) Fluorescence images

Angew. Chem., Int. Ed. 2000, 39, 4348Angew. Chem., Int. Ed. 2004, 43, 900

Spatial Screening of Wheat Germ Agglutinin (WGA) Ligands

Rn = amino acid side chainor

J. Am. Chem. Soc. 2010, 132, 8704

1.83 mM (1)

NH

O

HNNH

NH2

O OO

HN

HNO

ONHO

NH

OHN

HN O

HN

O

Boc

NH

OHO

AcHN

OHHO

O

O

HN

OHO

AcHN

OHHO

O

O

OHO

AcHN

OHHO

OO

NH

HN

O

OHOH

O

O

AcHNOH

8.4 nM (218 000)

Absolute (and relative) KD values from ITC

Page 8: Chemical Biology of Cellular Carbohydrates · Metabolic Glycoengineering with Carbamates Ac 4ManNAloc AcAc 4ManNBeoc Ac 4ManNPeoc 4ManNHeoc Control (no sugar) Fluorescence images

1.7 Å Structure of WGA 3 in Complex with Divalent Ligand

• 4 molecules of divalent ligand span pairs of binding sites.

• For the first time, all 8 binding sites are simultaneously occupied.

• Increased binding affinity of the divalent ligand allows identification of secondary binding sites.

J. Am. Chem. Soc. 2010, 132, 8704

(PDB ID: 2X52)

Page 9: Chemical Biology of Cellular Carbohydrates · Metabolic Glycoengineering with Carbamates Ac 4ManNAloc AcAc 4ManNBeoc Ac 4ManNPeoc 4ManNHeoc Control (no sugar) Fluorescence images

2.75 Å Structure of Complex with Tetravalent Cyclic Peptide

1.44 M (1 270)

8.4 nM (218 000)

• two WGA dimers in asymmetric unit

• 11 out of 16 binding sites occupied

• remaining sites obstructed by crystal contacts

J. Am. Chem. Soc. 2010, 132, 8704

(PDB ID: 2X3T)

Page 10: Chemical Biology of Cellular Carbohydrates · Metabolic Glycoengineering with Carbamates Ac 4ManNAloc AcAc 4ManNBeoc Ac 4ManNPeoc 4ManNHeoc Control (no sugar) Fluorescence images

90°

Joha

nnes

Bec

k, H

eiko

Möl

ler

Ensemble of the dominant family of conformers of the tetravalent neoglycopeptide determined by NMR spectroscopy

Page 11: Chemical Biology of Cellular Carbohydrates · Metabolic Glycoengineering with Carbamates Ac 4ManNAloc AcAc 4ManNBeoc Ac 4ManNPeoc 4ManNHeoc Control (no sugar) Fluorescence images

Superposition of NMR and X-ray Structure

Backbone structure resolved in the crystal fits very well to the dominant conformational family determined by solution NMR.

J. Am. Chem. Soc. 2010, 132, 8704

Page 12: Chemical Biology of Cellular Carbohydrates · Metabolic Glycoengineering with Carbamates Ac 4ManNAloc AcAc 4ManNBeoc Ac 4ManNPeoc 4ManNHeoc Control (no sugar) Fluorescence images

Absolute (and Relative) KD Values from ITC

NH

O

HNNH

NH2

O OO

HN

HNO

ONHO

NH

OHN

HN O

HN

O

Boc

NH

OHO

AcHN

OHHO

O

O

HN

OHO

AcHN

OHHO

O

O

OHO

AcHN

OHHO

OO

NH

HN

O

OHOH

O

O

AcHNOH

HN

ONH

O HN

ONH

O HN

ONH

ONH2

O

NH NH

NHNH

O

O

O

AcHN

OHHO

HOO

O

O

AcHN

OHHO

HO

O

AcHN O

HOHO

HO

O

O

AcHN O

HOHO

HO

O

8.4 nM (218 000)n = 0.84

7.0 nM (261 000)n = 0.95

6.2 nM (295 000)n = 0.86

Cross-linking(precipitate formation)

P. Rohse, V. Wittmann, Chem. Eur. J. 2016, 22, 9724-9733

Page 13: Chemical Biology of Cellular Carbohydrates · Metabolic Glycoengineering with Carbamates Ac 4ManNAloc AcAc 4ManNBeoc Ac 4ManNPeoc 4ManNHeoc Control (no sugar) Fluorescence images

Absolute (and Relative) KD Values from ITC

NH

O

HNNH

NH2

O OO

HN

HNO

ONHO

NH

OHN

HN O

HN

O

Boc

NH

OHO

AcHN

OHHO

O

O

HN

OHO

AcHN

OHHO

O

O

OHO

OHHOHO

OO

NH

HN

O

OHOH

O

O

OH

OH

O NH

O HN

ONH

O HN

ONH

O HN

ONH

O HN

ONH

O

NH2

O

NH NH

NHNH

O

O

OOHHO

HOHO

O

O

O

AcHN

OHHO

HO

O

AcHN O

HOHO

HO

O

OOH

O

HOHO

HO

O

HN

ONH

O HN

ONH

O HN

ONH

ONH2

O

NH NH

NHNH

O

O

OOHHO

HOHO

O

O

O

AcHN

OHHO

HO

O

AcHN O

HOHO

HO

O

OOH

O

HOHO

HO

O

1.43 M (1 280)n = 1.81

1.25 M (1 460)n = 1.82

0.85 M (2 150)n = 2.01

P. Rohse, V. Wittmann, Chem. Eur. J. 2016, 22, 9724-9733

Page 14: Chemical Biology of Cellular Carbohydrates · Metabolic Glycoengineering with Carbamates Ac 4ManNAloc AcAc 4ManNBeoc Ac 4ManNPeoc 4ManNHeoc Control (no sugar) Fluorescence images

DLS Measurements

• Measurement of scattered light• Influenced by speed of Brownian motion

of particles in solution Size of particles can be determined

Hydrodynamic radius

P. Rohse, V. Wittmann, Chem. Eur. J. 2016, 22, 9724-9733

Molecular weight (calculated)

Page 15: Chemical Biology of Cellular Carbohydrates · Metabolic Glycoengineering with Carbamates Ac 4ManNAloc AcAc 4ManNBeoc Ac 4ManNPeoc 4ManNHeoc Control (no sugar) Fluorescence images

Plausible Binding Modes

P. Rohse, V. Wittmann, Chem. Eur. J. 2016, 22, 9724-9733

Divalent Ligands Tetravalent Ligands

L : P2 : 1

L : P1 : 1

Page 16: Chemical Biology of Cellular Carbohydrates · Metabolic Glycoengineering with Carbamates Ac 4ManNAloc AcAc 4ManNBeoc Ac 4ManNPeoc 4ManNHeoc Control (no sugar) Fluorescence images

Multivalent Carbohydrate-Lectin Interactions

K: microscopic intermolecular association constantEM: microscopic effective molarity

C. A. Hunter, H. L. Anderson, Angew. Chem., Int. Ed. 2009, 48, 7488V. Wittmann, Curr. Opin. Chem. Biol. 2013, 17, 982

Concentration dependence

Page 17: Chemical Biology of Cellular Carbohydrates · Metabolic Glycoengineering with Carbamates Ac 4ManNAloc AcAc 4ManNBeoc Ac 4ManNPeoc 4ManNHeoc Control (no sugar) Fluorescence images

S1

rAB

B0

2

203

13cos 14

A B edd

AB

g gr

S2Dipolar interaction contains information about the distance rAB between two coupled spins S1 and S2

EPR-Spectroscopy: Distance Measurements in (Frozen Glassy) Solution

Angew. Chem., Int. Ed. 2011, 50, 8428

Page 18: Chemical Biology of Cellular Carbohydrates · Metabolic Glycoengineering with Carbamates Ac 4ManNAloc AcAc 4ManNBeoc Ac 4ManNPeoc 4ManNHeoc Control (no sugar) Fluorescence images

EPR-Derived Distance Distributions

1 2 3 4 5 6r [nm]

2.2 nm

4.2 nm

2.3 nm

1.8 nm

Ligand + WGA 4:1

Ligand + WGA 1:8

Ligand in solution

Ang

ew. C

hem

., In

t. E

d. 2

011,

50,

842

8

Page 19: Chemical Biology of Cellular Carbohydrates · Metabolic Glycoengineering with Carbamates Ac 4ManNAloc AcAc 4ManNBeoc Ac 4ManNPeoc 4ManNHeoc Control (no sugar) Fluorescence images

EPR-Derived Distance Distributions

1.8 nm

Ligand in solution

1 2 3 4 5 6r [nm]

Ligand + WGA 1:8

3.1 nm

Ang

ew. C

hem

., In

t. E

d. 2

011,

50,

842

8

Page 20: Chemical Biology of Cellular Carbohydrates · Metabolic Glycoengineering with Carbamates Ac 4ManNAloc AcAc 4ManNBeoc Ac 4ManNPeoc 4ManNHeoc Control (no sugar) Fluorescence images

EPR-Derived Distance Distributions

1 2 3 4 5 6

2.3 nm

r [nm]

Ligand + WGA 1:1

Ligand + WGA 7:1

Angew. Chem., Int. Ed. 2011, 50, 8428

HN

O

OHOHO

AcHNO

NO

NHO

Page 21: Chemical Biology of Cellular Carbohydrates · Metabolic Glycoengineering with Carbamates Ac 4ManNAloc AcAc 4ManNBeoc Ac 4ManNPeoc 4ManNHeoc Control (no sugar) Fluorescence images

Protein Labeling: GFP Fusion Proteins

Green Fluorescent Protein (GFP)

NH

HO HN

O

O

NH OH

OHO

O

NH OH

OHNN

OH

cyclization

HO

O

NH OH

ONN

aerialoxidation

HO

O

NH OH

ONN

– H2OSer65

Tyr66Gly67

2008 Nobel Prize in ChemistryMartin ChalfieOsamu ShimomuraRoger Y. Tsien

Page 22: Chemical Biology of Cellular Carbohydrates · Metabolic Glycoengineering with Carbamates Ac 4ManNAloc AcAc 4ManNBeoc Ac 4ManNPeoc 4ManNHeoc Control (no sugar) Fluorescence images

Metabolic Glycoengineering (MGE)

OAcO

HNAcOAcO

OAc

OX

O

COOH

OHO

HO

OH OH

NH

OX

glycanbiosynthesis

OCOOH

OHO

HOOH

OHNH

O

YXY

Probe Probe

ManNAc derivatives sialic acids bound to O- and N-glycans

GlcNAc derivatives O-GlcNAc

GalNAc derivatives mucin-type O-glycans

Interconversion can occur (catalyzed by epimerases).

Page 23: Chemical Biology of Cellular Carbohydrates · Metabolic Glycoengineering with Carbamates Ac 4ManNAloc AcAc 4ManNBeoc Ac 4ManNPeoc 4ManNHeoc Control (no sugar) Fluorescence images

Metabolic Glycoengineering (MGE)

OAcO

HNAcOAcO

OAc

OX

O

COOH

OHO

HO

OH OH

NH

OX

glycanbiosynthesis

OCOOH

OHO

HOOH

OHNH

O

YXY

Probe Probe

Challenges

• Simultaneous detection of two (or more) different sugars

• Detection of glycans inside living cells

• Protein-specific detection of glycosylation

Page 24: Chemical Biology of Cellular Carbohydrates · Metabolic Glycoengineering with Carbamates Ac 4ManNAloc AcAc 4ManNBeoc Ac 4ManNPeoc 4ManNHeoc Control (no sugar) Fluorescence images

Bioorthogonal Ligation Reactions for MGE

10–5 10–4 10–3 10–2 10–1 1 101 102 103 104 105

Staudinger ligation

CuAAC

+

NNN

OO

R RN3SPAAC

Rate constant / M–1s–1

Staudinger SPAAC CuAAC

Page 25: Chemical Biology of Cellular Carbohydrates · Metabolic Glycoengineering with Carbamates Ac 4ManNAloc AcAc 4ManNBeoc Ac 4ManNPeoc 4ManNHeoc Control (no sugar) Fluorescence images

Inverse-Electron-Demand Diels-Alder (DAinv) Reaction

Carboni & Lindsey 1959, Sauer 1962

LUMO

HOMO

LUMO

HOMO

E

diene dienophile

2008: First application to bioconjugation

Braun/Wiessler: Drug Des. Dev. Ther. 2008, 2, 289Fox: J. Am. Chem. Soc. 2008, 130, 13518Weissleder/Hilderbrand: Bioconjugate Chem. 2008, 19, 2297

very fast irreversible metal-free bioorthogonal

Page 26: Chemical Biology of Cellular Carbohydrates · Metabolic Glycoengineering with Carbamates Ac 4ManNAloc AcAc 4ManNBeoc Ac 4ManNPeoc 4ManNHeoc Control (no sugar) Fluorescence images

Spac

er

Spa c

e rChem. Eur. J. 2012, 18, 6548

Application of the DAinv Reaction for Bioconjugation

Chem. Commun. 2014, 50, 10827

Page 27: Chemical Biology of Cellular Carbohydrates · Metabolic Glycoengineering with Carbamates Ac 4ManNAloc AcAc 4ManNBeoc Ac 4ManNPeoc 4ManNHeoc Control (no sugar) Fluorescence images

Dienophiles for the DAinv Reaction

10–5 10–4 10–3 10–2 10–1 1 101 102 103 104 105

Rate constant / M–1s–1

inverse-electron-demand Diels-Alder reaction

Staudinger SPAAC CuAAC

R

Page 28: Chemical Biology of Cellular Carbohydrates · Metabolic Glycoengineering with Carbamates Ac 4ManNAloc AcAc 4ManNBeoc Ac 4ManNPeoc 4ManNHeoc Control (no sugar) Fluorescence images

Metabolic Glycoengineering with the DAinv Reaction

Angew. Chem., Int. Ed. 2013, 52, 4265

OAcO

HNAcOAcO

OAc

O

O

COOH

OHO

HO

OH OH

NH

O

glycanbiosynthesis

OCOOH

OHO

HOOH

OHNH

O

n

nNN

NN

R

NN

R n

Probe Probe

–N2

Page 29: Chemical Biology of Cellular Carbohydrates · Metabolic Glycoengineering with Carbamates Ac 4ManNAloc AcAc 4ManNBeoc Ac 4ManNPeoc 4ManNHeoc Control (no sugar) Fluorescence images

Metabolic Glycoengineering with the DAinv Reaction

Control (no sugar)

Fluorescence images of living HEK 293T cells

Cells grown with 100 µM sugar for 2 days, incubated with Tz-biotin, and then AlexaFluor®647-streptavidin

Ac4ManNPtl

Ac4ManNHxl Sca

le b

ar: 3

0 m

Angew. Chem., Int. Ed. 2013, 52, 4265Tz-biotin

k = 0.021 M–1s–1

k = 0.041 M–1s–1

Page 30: Chemical Biology of Cellular Carbohydrates · Metabolic Glycoengineering with Carbamates Ac 4ManNAloc AcAc 4ManNBeoc Ac 4ManNPeoc 4ManNHeoc Control (no sugar) Fluorescence images

Metabolic Glycoengineering with Carbamates

Ac4ManNPeocAc4ManNAloc Ac4ManNHeocAc4ManNBeoc

Control(no sugar)

Fluorescence images of living HEK 293T cells

Sca

le b

ar: 3

0 m

Chem. Eur. J. 2014, 20, 16502

0.0015 M–1s–1 0.014 M–1s–1 0.017 M–1s–1 0.074 M–1s–1

metabolic incorporation DAinv reactivity

Cells were grown with 100 µM sugar for 2 days, then incubated with Tz-biotin (1 mM, 6 h, 37 °C) and Alexa-Fluor®647-streptavidin (20 min, 37 °C).

k2:

50 % 13 % 6 % n/d

... and Jeremias Dold

Page 31: Chemical Biology of Cellular Carbohydrates · Metabolic Glycoengineering with Carbamates Ac 4ManNAloc AcAc 4ManNBeoc Ac 4ManNPeoc 4ManNHeoc Control (no sugar) Fluorescence images

DMB Labeling of Released Sialic Acids

Ac4ManNAloc

Ac4ManNBeoc

50 %

13 %

Jeremias Dold

Page 32: Chemical Biology of Cellular Carbohydrates · Metabolic Glycoengineering with Carbamates Ac 4ManNAloc AcAc 4ManNBeoc Ac 4ManNPeoc 4ManNHeoc Control (no sugar) Fluorescence images

Accelerating the DAinv Reaction

k = 0.137 M–1s–1 k = 13 M–1s–1

Devaraj group, Angew. Chem., Int. Ed. 2012, 51, 7476

Devaraj groupChemBioChem 2013, 14, 205

Wittmann groupBioconjugate Chem. 2014, 25, 147

See also: J. A. Prescher, Mol. BioSyst. 2014, 10, 1693

Page 33: Chemical Biology of Cellular Carbohydrates · Metabolic Glycoengineering with Carbamates Ac 4ManNAloc AcAc 4ManNBeoc Ac 4ManNPeoc 4ManNHeoc Control (no sugar) Fluorescence images

Dual-Labeling Strategy (HEK 293T Cells)

Bioconjugate Chem. 2014, 25, 147

Page 34: Chemical Biology of Cellular Carbohydrates · Metabolic Glycoengineering with Carbamates Ac 4ManNAloc AcAc 4ManNBeoc Ac 4ManNPeoc 4ManNHeoc Control (no sugar) Fluorescence images

Dual-Labeling Strategy (HEK 293T Cells)

Bioconjugate Chem. 2014, 25, 147

OAcO

HNAcOAcO

OAc

O

O

Control (no sugar)

Page 35: Chemical Biology of Cellular Carbohydrates · Metabolic Glycoengineering with Carbamates Ac 4ManNAloc AcAc 4ManNBeoc Ac 4ManNPeoc 4ManNHeoc Control (no sugar) Fluorescence images

Visualization of Protein-Specific Glycosylation in Living Cells

Cy3-Tz (reacts more specific)

ON N

ONHN

N

NN

COO

TAMRA-Tz (cell-permeable)

Detection of FRET with high contrast even in presence of a large excess ofacceptor fluorophores by fluorescence lifetime imaging microscopy (FLIM)

Proteins of interest (POI): O-GlcNAc transferase (OGT), forkhead transcription factor Foxo1, tumor suppressor p53, serine/threonine kinase Akt1

Page 36: Chemical Biology of Cellular Carbohydrates · Metabolic Glycoengineering with Carbamates Ac 4ManNAloc AcAc 4ManNBeoc Ac 4ManNPeoc 4ManNHeoc Control (no sugar) Fluorescence images

Fluorescence Lifetime Imaging Microscopy (FLIM)

The fluorescence lifetime is the average time that a molecule spends in the excited state.

J. R. Lakowicz et al., Biophys. J. 1984, 46, 463-477

Page 37: Chemical Biology of Cellular Carbohydrates · Metabolic Glycoengineering with Carbamates Ac 4ManNAloc AcAc 4ManNBeoc Ac 4ManNPeoc 4ManNHeoc Control (no sugar) Fluorescence images

Visualization of O-GlcNAcylation of OGT inside Living Cells

F. Doll, A. Buntz, A.-K. Späte, V. F. Schart, A. Timper, W. Schrimpf, C. R. Hauck, A. Zumbusch, V. Wittmann, Angew. Chem. Int. Ed. 2016, 55, 2262-2266

HEK293T cells were transfected with OGT-EGFP or EGFP constructs and treated with Ac4GlcNAc (–) or Ac4GlcNCyoc (+) for 20 h.

Western blot analysis after immuno-precipitation using an anti-GFP antibodyand labeling with Cy3-tetrazine.

Representative fluorescence modulationlifetime images of individual cells afterlabeling with TAMRA-tetrazine.

10 µm

Page 38: Chemical Biology of Cellular Carbohydrates · Metabolic Glycoengineering with Carbamates Ac 4ManNAloc AcAc 4ManNBeoc Ac 4ManNPeoc 4ManNHeoc Control (no sugar) Fluorescence images

Visualization of Protein-Specific Glycosylation in Living Cells

O-GlcNAcylation of Foxo1, p53, and Akt1 visualized by FLIM-FRET microscopy of individual cells

10 µm

F. Doll, A. Buntz, A.-K. Späte, V. F. Schart, A. Timper, W. Schrimpf, C. R. Hauck, A. Zumbusch, V. Wittmann, Angew. Chem. Int. Ed. 2016, 55, 2262-2266

Page 39: Chemical Biology of Cellular Carbohydrates · Metabolic Glycoengineering with Carbamates Ac 4ManNAloc AcAc 4ManNBeoc Ac 4ManNPeoc 4ManNHeoc Control (no sugar) Fluorescence images

AcknowledgementThe groupOliver BaudendistelMonica BoldtJeremias DoldRaphael FahrnerRebecca FaißtJessica PfotzerPhilipp RohseOliver RudolphiVerena SchartMarkus SchöweDavid StängleMichael VoggelDaniel WielandIvan Zemskov

Former group membersDr. Ellen BatroffDr. Henning BeckmannDr. Carline MaierhoferDr. Andrea NiederwieserDr. Anne-Katrin-Späte

CooperationProf. Dr. Malte Drescher, Patrick Braun (U Konstanz, Chemistry)Prof. Dr. Wolfram Welte, David Schwefel (U Konstanz, Biology)Prof. Dr. Andreas Zumbusch, Franziska Doll (U Konstanz, Chemistry)Prof. Dr. Andreas Marx (U Konstanz, Chemistry)Prof. Dr. Thomas U. Mayer (U Konstanz, Biology)Prof. Dr. Christof Hauck (U Konstanz, Biology)Prof. Dr. W. Reutter (FU Berlin)Prof. Dr. H. Scherer (FU Berlin)Prof. Dr. G. Mayer (U Bonn)

Proto Chemicals AG

SFB 969

Page 40: Chemical Biology of Cellular Carbohydrates · Metabolic Glycoengineering with Carbamates Ac 4ManNAloc AcAc 4ManNBeoc Ac 4ManNPeoc 4ManNHeoc Control (no sugar) Fluorescence images

Acknowledgement