charge separation part 2: diode under...

44
Charge Separation Part 2: Diode Under Illumination (a.k.a. IV Curve Lecture) Lecture 6 – 9/27/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 – Fall 2011 Prof. Tonio Buonassisi 1

Upload: others

Post on 26-Jul-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Charge Separation Part 2: Diode Under Illuminationdspace.mit.edu/bitstream/handle/1721.1/92922/2-627...Buonassisi (MIT) 2011 . Key Concept: “Conversion efficiency” of a solar cell

Charge Separation Part 2: Diode Under Illumination (a.k.a. IV Curve Lecture)

Lecture 6 – 9/27/2011 MIT Fundamentals of Photovoltaics

2.626/2.627 – Fall 2011 Prof. Tonio Buonassisi

1

Page 2: Charge Separation Part 2: Diode Under Illuminationdspace.mit.edu/bitstream/handle/1721.1/92922/2-627...Buonassisi (MIT) 2011 . Key Concept: “Conversion efficiency” of a solar cell

Buonassisi (MIT) 2011

Kind Reminder

• 2.626 is the graduate version of the class.

• 2.627 is the undergrad version of the class.

Please ensure you’re signed up for the right version!

2

Page 3: Charge Separation Part 2: Diode Under Illuminationdspace.mit.edu/bitstream/handle/1721.1/92922/2-627...Buonassisi (MIT) 2011 . Key Concept: “Conversion efficiency” of a solar cell

Buonassisi (MIT) 2011

2.626/2.627: Roadmap

You Are Here

3

Page 4: Charge Separation Part 2: Diode Under Illuminationdspace.mit.edu/bitstream/handle/1721.1/92922/2-627...Buonassisi (MIT) 2011 . Key Concept: “Conversion efficiency” of a solar cell

Buonassisi (MIT) 2011

2.626/2.627: Fundamentals

Charge Excitation

Charge Drift/Diff

usion

Charge Separation

Light Absorption

Charge Collection

Outputs

Solar Spectrum

Inputs

Conversion Efficiency Output Energy

Input Energy

Every photovoltaic device must obey:

For most solar cells, this breaks down into:

total absorptionexcitation drift/diffusion separation collection

4

Page 5: Charge Separation Part 2: Diode Under Illuminationdspace.mit.edu/bitstream/handle/1721.1/92922/2-627...Buonassisi (MIT) 2011 . Key Concept: “Conversion efficiency” of a solar cell

Buonassisi (MIT) 2011

Liebig’s Law of the Minimum

total absorptionexcitation drift/diffusion separation collection

S. Glunz, Advances in Optoelectronics 97370 (2007)

Image by S. W. Glunz. License: CC-BY. Source: "High-Efficiency Crystalline Silicon Solar Cells." Advances in OptoElectronics (2007).

5

Page 6: Charge Separation Part 2: Diode Under Illuminationdspace.mit.edu/bitstream/handle/1721.1/92922/2-627...Buonassisi (MIT) 2011 . Key Concept: “Conversion efficiency” of a solar cell

Buonassisi (MIT) 2011

Another system in which all parts must be optimized

http://en.wikipedia.org/wiki/Photosynthetic_efficiency

http://hyperphysics.phy-astr.gsu.edu/hbase/Biology/ligabs.html

Image by Bensaccount on Wikipedia. License: CC-BY-SA. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

6

Page 7: Charge Separation Part 2: Diode Under Illuminationdspace.mit.edu/bitstream/handle/1721.1/92922/2-627...Buonassisi (MIT) 2011 . Key Concept: “Conversion efficiency” of a solar cell

Buonassisi (MIT) 2011

1. Diode in the Dark: Construct energy band diagram of pn-junction.

2. Diode under illumination: Construct energy band diagram. Denote drift, diffusion, and illumination currents.

3. In class exercise: Measure illuminated IV curves.

4. Define parameters that determine solar cell efficiency:

• Built-in voltage (Vbi)

• Bias voltage (Vbias)

• Open-circuit voltage (Voc)

• Short-circuit current (Jsc)

• Saturation (leakage) current (Jo)

• Maximum power point (MPP)

• Fill factor (FF)

Learning Objectives: Illuminated Solar Cell

7

Page 8: Charge Separation Part 2: Diode Under Illuminationdspace.mit.edu/bitstream/handle/1721.1/92922/2-627...Buonassisi (MIT) 2011 . Key Concept: “Conversion efficiency” of a solar cell

Buonassisi (MIT) 2011

Key Concept:

The current-voltage response of an ideal pn-junction can be described by the “Ideal diode equation”. We plot the ideal diode

equation for dark and illuminated cases. Forward, reverse, and zero bias conditions are represented on the same curves.

8

Page 9: Charge Separation Part 2: Diode Under Illuminationdspace.mit.edu/bitstream/handle/1721.1/92922/2-627...Buonassisi (MIT) 2011 . Key Concept: “Conversion efficiency” of a solar cell

Buonassisi (MIT) 2011

Exercise: pn-junctions under bias

• For a pn-junction under different bias conditions, • Draw I-V curves for the solar cell. • With a dot, denote the “operating point” for each bias

condition. • With arrows, denote the magnitude of the the saturation

current (Io).

9

Page 10: Charge Separation Part 2: Diode Under Illuminationdspace.mit.edu/bitstream/handle/1721.1/92922/2-627...Buonassisi (MIT) 2011 . Key Concept: “Conversion efficiency” of a solar cell

Buonassisi (MIT) 2011

Exercise: pn-junctions under bias

• For a pn-junction under different bias conditions, • Draw equivalent circuit diagrams for each bias condition.

• Draw the external bias (VA). • Draw the relative width of the space-charge region. • Draw an arrow for the electric field (x). Relative

magnitudes of the arrows correspond to relative magnitudes of the electric fields.

• Draw the direction of current flow (I). • Draw the direction of electron flow.

10

Page 11: Charge Separation Part 2: Diode Under Illuminationdspace.mit.edu/bitstream/handle/1721.1/92922/2-627...Buonassisi (MIT) 2011 . Key Concept: “Conversion efficiency” of a solar cell

Buonassisi (MIT) 2011

No Bias Forward Bias Reverse Bias

Band Diagram

I-V Curve

Model Circuit

pn-junction, in the dark

E

e- diffusion: e- drift:

x

p-type n-type E

e- diffusion: e- drift:

x

p-type n-type E

e- diffusion: e- drift:

x

p-type n-type

N P +

+

+

-

-

- N P N P

2.626/2.627 Lecture 5 (9/22/2011)

+ - + -

+

+

-

- +

+

+

-

-

- -

-

+

+

I

V

I

V

I

V X X X

11

Page 12: Charge Separation Part 2: Diode Under Illuminationdspace.mit.edu/bitstream/handle/1721.1/92922/2-627...Buonassisi (MIT) 2011 . Key Concept: “Conversion efficiency” of a solar cell

Buonassisi (MIT) 2011

No Bias Forward Bias Reverse Bias

Band Diagram

I-V Curve

Model Circuit

pn-junction, under illumination

E

e- diffusion: e- drift:

ill. current:

x

p-type n-type E

e- diffusion: e- drift:

ill. current:

x

p-type n-type E

e- diffusion: e- drift:

ill. current:

x

p-type n-type

I

V

I

V

I

V

N P +

+

+

-

-

- N P N P

2.626/2.627 Lecture 5 (9/22/2011)

+ - + -

+

+

-

- +

+

+

-

-

- -

-

+

+

X X

X 12

Page 13: Charge Separation Part 2: Diode Under Illuminationdspace.mit.edu/bitstream/handle/1721.1/92922/2-627...Buonassisi (MIT) 2011 . Key Concept: “Conversion efficiency” of a solar cell

Buonassisi (MIT) 2011

Ideal Diode Equation

I Io eqV / kT 1

I Io eqV /kT 1 IL

Curves designed using ideal diode equation, with Io = 0.1 (a.u.), and IL = 0.6 (a.u.).

Dark

Illuminated

Following the derivation in Green (Ch. 4, Eq. 4.43):

13

Page 14: Charge Separation Part 2: Diode Under Illuminationdspace.mit.edu/bitstream/handle/1721.1/92922/2-627...Buonassisi (MIT) 2011 . Key Concept: “Conversion efficiency” of a solar cell

Buonassisi (MIT) 2011

Graphical Representation of Variables

Curves designed using ideal diode equation, with Io = 0.1 (a.u.), and IL = 0.6 (a.u.).

IL

Io

I Io eqV /kT 1 IL

I Io eqV / kT 1 Dark

Illuminated

V

I

Io

14

Page 15: Charge Separation Part 2: Diode Under Illuminationdspace.mit.edu/bitstream/handle/1721.1/92922/2-627...Buonassisi (MIT) 2011 . Key Concept: “Conversion efficiency” of a solar cell

Buonassisi (MIT) 2011

Graphical Representation of Bias Conditions

I Io eqV / kT 1

I Io eqV /kT 1 IL

Curves designed using ideal diode equation, with Io = 0.1 (a.u.), and IL = 0.6 (a.u.).

Dark

Illuminated

Forward Bias: Vapplied > 0

Reverse Bias: Vapplied < 0

Unbiased: Vapplied = 0

Vapplied

15

Page 16: Charge Separation Part 2: Diode Under Illuminationdspace.mit.edu/bitstream/handle/1721.1/92922/2-627...Buonassisi (MIT) 2011 . Key Concept: “Conversion efficiency” of a solar cell

Buonassisi (MIT) 2011

Readings are strongly encouraged

• Green, Chapter 4

• http://www.pveducation.org/pvcdrom/, Chapters 3 & 4.

16

Page 17: Charge Separation Part 2: Diode Under Illuminationdspace.mit.edu/bitstream/handle/1721.1/92922/2-627...Buonassisi (MIT) 2011 . Key Concept: “Conversion efficiency” of a solar cell

Buonassisi (MIT) 2011

1. Diode in the Dark: Construct energy band diagram of pn-junction.

2. Diode under illumination: Construct energy band diagram. Denote drift, diffusion, and illumination currents.

3. In class exercise: Measure illuminated IV curves.

4. Define parameters that determine solar cell efficiency:

• Built-in voltage (Vbi)

• Bias voltage (Vbias)

• Open-circuit voltage (Voc)

• Short-circuit current (Jsc)

• Saturation (leakage) current (Jo)

• Maximum power point (MPP)

• Fill factor (FF)

Learning Objectives: Illuminated Solar Cell

17

Page 18: Charge Separation Part 2: Diode Under Illuminationdspace.mit.edu/bitstream/handle/1721.1/92922/2-627...Buonassisi (MIT) 2011 . Key Concept: “Conversion efficiency” of a solar cell

Buonassisi (MIT) 2011

Hands-On: Measure Solar Cell IV Curves

18

Page 19: Charge Separation Part 2: Diode Under Illuminationdspace.mit.edu/bitstream/handle/1721.1/92922/2-627...Buonassisi (MIT) 2011 . Key Concept: “Conversion efficiency” of a solar cell

Buonassisi (MIT) 2011

Overall Circuit Layout

Solar Cell

Light Switch

OFF Yellow

IR

Printed Circuit Board

19

Page 20: Charge Separation Part 2: Diode Under Illuminationdspace.mit.edu/bitstream/handle/1721.1/92922/2-627...Buonassisi (MIT) 2011 . Key Concept: “Conversion efficiency” of a solar cell

Buonassisi (MIT) 2011

Printed Circuit Board Layout

Microcontroller USB I/O

DAC

Op Amps

Resistors

20

Page 21: Charge Separation Part 2: Diode Under Illuminationdspace.mit.edu/bitstream/handle/1721.1/92922/2-627...Buonassisi (MIT) 2011 . Key Concept: “Conversion efficiency” of a solar cell

Buonassisi (MIT) 2011

PCB Section 1a: Sweep Voltage – Program

21

Page 22: Charge Separation Part 2: Diode Under Illuminationdspace.mit.edu/bitstream/handle/1721.1/92922/2-627...Buonassisi (MIT) 2011 . Key Concept: “Conversion efficiency” of a solar cell

Buonassisi (MIT) 2011

PCB Section 1b: Sweep Voltage – Sweep

22

Page 23: Charge Separation Part 2: Diode Under Illuminationdspace.mit.edu/bitstream/handle/1721.1/92922/2-627...Buonassisi (MIT) 2011 . Key Concept: “Conversion efficiency” of a solar cell

Buonassisi (MIT) 2011

PCB Section 1c: Sweep Voltage – Read

23

Page 24: Charge Separation Part 2: Diode Under Illuminationdspace.mit.edu/bitstream/handle/1721.1/92922/2-627...Buonassisi (MIT) 2011 . Key Concept: “Conversion efficiency” of a solar cell

Buonassisi (MIT) 2011

PCB Section 2a: Measure Current – Change to Voltage

24

Page 25: Charge Separation Part 2: Diode Under Illuminationdspace.mit.edu/bitstream/handle/1721.1/92922/2-627...Buonassisi (MIT) 2011 . Key Concept: “Conversion efficiency” of a solar cell

Buonassisi (MIT) 2011

PCB Section 2a: Measure Current – Rescale 0 - 5V - Summing Amplifier

25

Page 26: Charge Separation Part 2: Diode Under Illuminationdspace.mit.edu/bitstream/handle/1721.1/92922/2-627...Buonassisi (MIT) 2011 . Key Concept: “Conversion efficiency” of a solar cell

Buonassisi (MIT) 2011

PCB Section 2a: Measure Current – Read Current

26

Page 27: Charge Separation Part 2: Diode Under Illuminationdspace.mit.edu/bitstream/handle/1721.1/92922/2-627...Buonassisi (MIT) 2011 . Key Concept: “Conversion efficiency” of a solar cell

Buonassisi (MIT) 2011

1. Diode in the Dark: Construct energy band diagram of pn-junction.

2. Diode under illumination: Construct energy band diagram. Denote drift, diffusion, and illumination currents.

3. In class exercise: Measure illuminated IV curves.

4. Define parameters that determine solar cell efficiency:

• Built-in voltage (Vbi)

• Bias voltage (Vbias)

• Open-circuit voltage (Voc)

• Short-circuit current (Jsc)

• Saturation (leakage) current (Jo)

• Maximum power point (MPP)

• Fill factor (FF)

Learning Objectives: Illuminated Solar Cell

27

Page 28: Charge Separation Part 2: Diode Under Illuminationdspace.mit.edu/bitstream/handle/1721.1/92922/2-627...Buonassisi (MIT) 2011 . Key Concept: “Conversion efficiency” of a solar cell

Buonassisi (MIT) 2011

How Solar Conversion Efficiency is Determined from an IV Curve

28

Page 29: Charge Separation Part 2: Diode Under Illuminationdspace.mit.edu/bitstream/handle/1721.1/92922/2-627...Buonassisi (MIT) 2011 . Key Concept: “Conversion efficiency” of a solar cell

Buonassisi (MIT) 2011

Terminology

• Often, PV researchers will report a “current density” (current per unit area, e.g., mA/cm2) in lieu of “total current”. Normalizing for geometry makes it easier to compare the performance of two or more devices of similar semiconductor materials but different sizes.

• The variable “I” is typically used to represent “current”, while the variable “J” represents “current density”. Thus, you may well see “JV curves” reported in the literature.

29

Page 30: Charge Separation Part 2: Diode Under Illuminationdspace.mit.edu/bitstream/handle/1721.1/92922/2-627...Buonassisi (MIT) 2011 . Key Concept: “Conversion efficiency” of a solar cell

Buonassisi (MIT) 2011

Key Concept:

“Conversion efficiency” of a solar cell device can be determined

by measuring the IV curve. Just three IV-curve parameters are needed to calculate conversion efficiency: Short-circuit current density (Jsc, the maximum current density of the device in short-circuit conditions), open-circuit voltage (Voc, the maximum voltage produced by the device, when the two terminals are not connected), and fill factor (ratio of “maximum power” to the

Jsc*Voc product).

30

Page 31: Charge Separation Part 2: Diode Under Illuminationdspace.mit.edu/bitstream/handle/1721.1/92922/2-627...Buonassisi (MIT) 2011 . Key Concept: “Conversion efficiency” of a solar cell

Buonassisi (MIT) 2011

J Jo eqV /kT 1 JL

Efficiency Calculations C

urr

ent

Den

sity

(J)

Illuminated JV Curve

31

Page 32: Charge Separation Part 2: Diode Under Illuminationdspace.mit.edu/bitstream/handle/1721.1/92922/2-627...Buonassisi (MIT) 2011 . Key Concept: “Conversion efficiency” of a solar cell

Buonassisi (MIT) 2011

Efficiency Calculations

Voc

Jsc MPP

Illuminated JV Curve

Cu

rren

t D

ensi

ty (

J)

J Jo eqV /kT 1 JL

32

Page 33: Charge Separation Part 2: Diode Under Illuminationdspace.mit.edu/bitstream/handle/1721.1/92922/2-627...Buonassisi (MIT) 2011 . Key Concept: “Conversion efficiency” of a solar cell

Buonassisi (MIT) 2011

Efficiency Calculations

Voc

Jsc MPP

Open-circuit voltage (maximum

voltage, zero current, zero

power)

Maximum Power Point (maximum

power, i.e., current-voltage product)

J Jo eqV /kT 1 JL

Illuminated JV Curve

Cu

rren

t D

ensi

ty (

J)

Short-circuit current (maximum

current, zero voltage, zero

power)

33

Page 34: Charge Separation Part 2: Diode Under Illuminationdspace.mit.edu/bitstream/handle/1721.1/92922/2-627...Buonassisi (MIT) 2011 . Key Concept: “Conversion efficiency” of a solar cell

Buonassisi (MIT) 2011

Voc

Jsc

MPP

Current Density

Industry Convention: Quadrant flipped!

Efficiency Calculations

Illuminated JV Curve C

urr

en

t D

en

sity

(m

A/c

m2)

Po

we

r D

en

sity

(m

W/c

m2)

34

Page 35: Charge Separation Part 2: Diode Under Illuminationdspace.mit.edu/bitstream/handle/1721.1/92922/2-627...Buonassisi (MIT) 2011 . Key Concept: “Conversion efficiency” of a solar cell

Buonassisi (MIT) 2011

Efficiency Calculations

Voc

Jsc

MPP

Current Density

Efficiency Power Out

Power InVmp Jmp

Cu

rre

nt

De

nsi

ty (

mA

/cm

2)

Po

we

r D

en

sity

(m

W/c

m2)

Illuminated JV Curve

35

Page 36: Charge Separation Part 2: Diode Under Illuminationdspace.mit.edu/bitstream/handle/1721.1/92922/2-627...Buonassisi (MIT) 2011 . Key Concept: “Conversion efficiency” of a solar cell

Buonassisi (MIT) 2011

Efficiency Calculations

Voc

Jsc

MPP

Current Density

Efficiency Power Out

Power InVmp Jmp A

Sunlight (Input)

Solar Cell Output Power

at MPP

Cu

rre

nt

De

nsi

ty (

mA

/cm

2)

Po

we

r D

en

sity

(m

W/c

m2)

Illuminated JV Curve

36

Page 37: Charge Separation Part 2: Diode Under Illuminationdspace.mit.edu/bitstream/handle/1721.1/92922/2-627...Buonassisi (MIT) 2011 . Key Concept: “Conversion efficiency” of a solar cell

Buonassisi (MIT) 2011

Efficiency Calculations

MPP

Fill Factor FF Vmp Jmp

Voc Jsc

Jmp*Vmp

Jsc*Voc

Illuminated JV Curve

Cu

rre

nt

De

nsi

ty (

mA

/cm

2)

Po

we

r D

en

sity

(m

W/c

m2)

37

Page 38: Charge Separation Part 2: Diode Under Illuminationdspace.mit.edu/bitstream/handle/1721.1/92922/2-627...Buonassisi (MIT) 2011 . Key Concept: “Conversion efficiency” of a solar cell

Buonassisi (MIT) 2011

Efficiency Calculations

MPP

Fill Factor FF Vmp Jmp

Voc Jsc

Jmp*Vmp

Jsc*Voc

Ratio of areas of two boxes,

defined by JscxVoc, and

JmpxVmp.

Illuminated JV Curve

Cu

rre

nt

De

nsi

ty (

mA

/cm

2)

Po

we

r D

en

sity

(m

W/c

m2)

38

Page 39: Charge Separation Part 2: Diode Under Illuminationdspace.mit.edu/bitstream/handle/1721.1/92922/2-627...Buonassisi (MIT) 2011 . Key Concept: “Conversion efficiency” of a solar cell

Buonassisi (MIT) 2011

Efficiency Power Out

Power InVmp Imp

Fill Factor FF Vmp Imp

Voc Isc

Vmp Jmp

Voc Jsc

Efficiency Calculations

By combining equations 1 and 2…

We obtain:

Efficiency Power Out

Power InVmp Imp

FF Voc Isc

39

Page 40: Charge Separation Part 2: Diode Under Illuminationdspace.mit.edu/bitstream/handle/1721.1/92922/2-627...Buonassisi (MIT) 2011 . Key Concept: “Conversion efficiency” of a solar cell

Buonassisi (MIT) 2011

Why does Efficiency matter?

40

Page 41: Charge Separation Part 2: Diode Under Illuminationdspace.mit.edu/bitstream/handle/1721.1/92922/2-627...Buonassisi (MIT) 2011 . Key Concept: “Conversion efficiency” of a solar cell

Buonassisi (MIT) 2011

Key Concept:

“Conversion efficiency” effectively determines the area of solar

collectors needed to produce a given amount of power. Since many costs scale with area (e.g., glass, encapsulants, labor, mounting, framing… pretty much everything but the

inverter), increasing conversion efficiency is a highly leveraged way to reduce the cost of solar.

41

Page 42: Charge Separation Part 2: Diode Under Illuminationdspace.mit.edu/bitstream/handle/1721.1/92922/2-627...Buonassisi (MIT) 2011 . Key Concept: “Conversion efficiency” of a solar cell

Buonassisi (MIT) 2011

The Area Needed to Produce A Certain Amount of Power Scales with Efficiency

100% efficiency (impossible to achieve)

33% efficiency (space-grade solar cells)

20% efficiency (monocrystalline silicon solar cells) 10% efficiency

(thin film material)

Very Expensive material

Expensive material

Relatively Inexpensive material 42

Page 43: Charge Separation Part 2: Diode Under Illuminationdspace.mit.edu/bitstream/handle/1721.1/92922/2-627...Buonassisi (MIT) 2011 . Key Concept: “Conversion efficiency” of a solar cell

Buonassisi (MIT) 2011

The Cost of Materials (Glass, Encapsulants…) Scales with the Area, i.e., Inversely with Efficiency

See: T. Surek, Proc. 3rd World Conference on Photovoltaic Energy Conversion (WCPEC), Osaka, Japan (2003)

43

Page 44: Charge Separation Part 2: Diode Under Illuminationdspace.mit.edu/bitstream/handle/1721.1/92922/2-627...Buonassisi (MIT) 2011 . Key Concept: “Conversion efficiency” of a solar cell

MIT OpenCourseWarehttp://ocw.mit.edu

2.626 / 2.627 Fundamentals of PhotovoltaicsFall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.