chapter_3_1_cond 1 dim, steady-state

Upload: irfan-maulana

Post on 06-Jul-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/17/2019 Chapter_3_1_Cond 1 Dim, Steady-State

    1/37

    Chapter 3 Perpindahan Panas 1

    Chapter 3

    One-Dimensional Steady-State Conduction

  • 8/17/2019 Chapter_3_1_Cond 1 Dim, Steady-State

    2/37

    Chapter 3 Perpindahan Panas 2

    One-Dimensional Steady-State Conduction

    • Conduction problems may involve multiple directions and time-

    dependent conditions

    • Inherently complex – Difficult to determine temperature distributions

    • One-dimensional  steady-state models can represent accurately

    numerous engineering systems

    • In this chapter e ill

    !earn ho to obtain temperature profiles for common geometries

    ith and ithout heat generation"

    Introduce the concept of thermal resistance and thermal circuits

  • 8/17/2019 Chapter_3_1_Cond 1 Dim, Steady-State

    3/37

    Chapter 3 Perpindahan Panas 3

    The Plane Wall

    Consider a simple case of one-

    dimensional conduction in a plane

    all# separating to fluids of different

    temperature# without  energy

    generation

    •$emperature is a function of x

    • %eat is transferred in the x-direction

    &ust consider 

     – Convection from hot fluid to all

     – Conduction through all

     – Convection from all to cold fluid

    'egin by determining temperature

    distribution ithin the all

    (x

    1,∞T 

    1, sT 

    2, sT 

    2,∞T 

    x

    x)* x)!

    11,   ,hT ∞

    22,   ,hT ∞

    Hot fluid

    Cold fluid

  • 8/17/2019 Chapter_3_1_Cond 1 Dim, Steady-State

    4/37

    Chapter 3 Perpindahan Panas 4

    Temperature Distribution

    • %eat diffusion e(uation +e(" ,". in the x-direction for steady-state

    conditions# ith no energy generation/

     0=   

      

    dx

    dT k 

    dx

    • 'oundary Conditions/

    • Solution of the differential e(uation

    2,1, )(,)0(  s s   T  LT T T    ==

    • $emperature profile# assuming constant 0/

    1,1,2, )()(  s s s   T  L

     xT T  xT    +−=

    $emperature varies linearly ith x

    (x is constant

    (3.1)

  • 8/17/2019 Chapter_3_1_Cond 1 Dim, Steady-State

    5/37

    Chapter 3 Perpindahan Panas 5

    Thermal Resistance

    'ased on the previous solution# the conduction hear transfer rate can

    be calculated/

    ( )  ( )

    kA L

    T T T T 

     L

    kA

    dx

    dT kAq

      s s s s x

    /

    2,1,2,1,

    −=−=−=

    1ecall electric circuit theory - Ohm2s la for electrical resistance/

    Similarly for heat convection# 3eton2s la of cooling applies/

    Resistance

    eDifferencotentialcurrent!lectric   =

    hAT T T T hAq   S S  x

    /1)()(   ∞

    −=−=

     4nd for radiation heat transfer/

     Ah

    T T 

    T T  Ahq r 

     sur  s

     sur  sr rad  /1

    )(

    )(

      −

    =−=

  • 8/17/2019 Chapter_3_1_Cond 1 Dim, Steady-State

    6/37

    Chapter 3 Perpindahan Panas "

    Thermal Resistance

    Compare ith e(uations 5",a-5",c

    $he temperature difference is the 6potential7 or driving force for the

    heat flo and the combinations of thermal conductivity# convection

    coefficient# thic0ness and area of material act as a resistance to thisflo/

    • 8e can use this electrical analogy to represent heat transfer problems

    using the concept of a thermal circuit  +e(uivalent to an electrical circuit."

     Ah R

    hA R

    kA

     L R

    r rad t convt cond t 

    1,

    1, ,,,   ===

    ∑∆

    == R

    T q   overall 

    Resistance

     #orceDri$in%&$erall

  • 8/17/2019 Chapter_3_1_Cond 1 Dim, Steady-State

    7/37

    Chapter 3 Perpindahan Panas '

    Thermal Resistance for Plane Wall

    In terms of overalltemperature difference/(x

    1,∞T 

    1, sT 

    2, sT 

    2,∞T 

    xx)* x)!

    11, ,hT ∞

    22,

    ,hT ∞

    Hot fluid

    Cold fluid

     AhkA

     L

     Ah R

     R

    T T q

    tot 

    tot 

     x

    21

    2,1,

    11++=

    −=   ∞∞

     Ah

    T T 

    kA L

    T T 

     Ah

    T T q

      s s s s x

    2

    2,2,2,1,

    1

    1,1,

    /1//1

    ∞∞   −=−

    =−

    =

  • 8/17/2019 Chapter_3_1_Cond 1 Dim, Steady-State

    8/37

    Chapter 3 Perpindahan Panas

    Composite Walls

    ? Express the following

    geometry in terms ofa an equivalentthermal circuit.

  • 8/17/2019 Chapter_3_1_Cond 1 Dim, Steady-State

    9/37

    Chapter 3 Perpindahan Panas

    Composite Walls? What is the heat transfer rate for this system?

     4lternatively

    UAq

    T  R R

    T UAq

    t tot 

     x

    1=

    ∆==

    ∆=

    here 9 is the overall heat transfer coefficient  and∆

    $ the overalltemperature difference"

    )*/1()/()/()/()/1+(

    11

    41   hk  Lk  Lk  Lh A RU 

    C C  B B A Atot    ++++==

  • 8/17/2019 Chapter_3_1_Cond 1 Dim, Steady-State

    10/37

    Chapter 3 Perpindahan Panas 10

    Composite Walls

    +a. Surfaces normal to the x-

    direction are isothermal

    +b. Surfaces parallel to x-

    direction are adiabatic

  • 8/17/2019 Chapter_3_1_Cond 1 Dim, Steady-State

    11/37

    Chapter 3 Perpindahan Panas 11

    Example

    Consider a composite all that includes an :-mm thic0 hardood

    siding +4.# *-mm by ;5*-mm hardood studs +'. on *"m5. and a ;,-mm

    layer of gypsum +vermiculite. all board +C."

    8hat is the thermal resistance associated ith a all that is ,"= m

    high by

  • 8/17/2019 Chapter_3_1_Cond 1 Dim, Steady-State

    12/37

    Chapter 3 Perpindahan Panas 12

    Contact Resistance

    $he temperature drop

    across the interfacebeteen materials may be

    appreciable# due to surface

    roughness effects# leading

    to air poc0ets" 8e can

    define thermal contactresistance/

    ,

     x

     B Act 

    q

    T T  R

      −=

    #ee ta!les $.%" $.& fortypical values of ' t"c 

  • 8/17/2019 Chapter_3_1_Cond 1 Dim, Steady-State

    13/37

    Chapter 3 Perpindahan Panas 13

  • 8/17/2019 Chapter_3_1_Cond 1 Dim, Steady-State

    14/37

    Chapter 3 Perpindahan Panas 14

  • 8/17/2019 Chapter_3_1_Cond 1 Dim, Steady-State

    15/37

    Chapter 3 Perpindahan Panas 15

  • 8/17/2019 Chapter_3_1_Cond 1 Dim, Steady-State

    16/37

    Chapter 3 Perpindahan Panas 1"

  • 8/17/2019 Chapter_3_1_Cond 1 Dim, Steady-State

    17/37

    Chapter 3 Perpindahan Panas 1'

    lternati!e Conduction nalysis

    • @or steady-state conditions# no heat generation# one-dimensional heat

    transfer# (x is constant"

    dx

    dT  x AT k q x )()(−=

    8hen area varies in the x direction and 0 is a function of temperature#

    @ourier2s la can be ritten in its most general form/

    ∫ ∫    −=∴  T 

     x

     x

     x

    oo

    dT T k 

     x A

    dxq )(

    )(

     

  • 8/17/2019 Chapter_3_1_Cond 1 Dim, Steady-State

    18/37

    Chapter 3 Perpindahan Panas 1

    Example 3"#

    Consider a conical section fabricated from pyroceram" It is of circular

    cross section# ith the diameter D)αx# here α)*",=" $he small endis at x;)=* mm and the large end at x,),=* mm" $he endtemperatures are $;)** A and $,)

  • 8/17/2019 Chapter_3_1_Cond 1 Dim, Steady-State

    19/37

    Chapter 3 Perpindahan Panas 1

  • 8/17/2019 Chapter_3_1_Cond 1 Dim, Steady-State

    20/37

    Chapter 3 Perpindahan Panas 20

  • 8/17/2019 Chapter_3_1_Cond 1 Dim, Steady-State

    21/37

    Chapter 3 Perpindahan Panas 21

  • 8/17/2019 Chapter_3_1_Cond 1 Dim, Steady-State

    22/37

    Chapter 3 Perpindahan Panas 22

    Radial Systems-Cylindrical Coordinates

    Consider a hollo cylinder# hose inner and outer surfaces are

    exposed to fluids at different temperatures

    (emperature distri!ution

  • 8/17/2019 Chapter_3_1_Cond 1 Dim, Steady-State

    23/37

    Chapter 3 Perpindahan Panas 23

    Temperature Distribution

    • %eat diffusion e(uation +e(" ,"=. in the r-direction for steady-state

    conditions# ith no energy generation/

     01

    =   

      

    dr 

    dT kr 

    dr 

    • 'oundary Conditions/ 2,21,1 )(,)(  s s   T r T T r T    ==

    • $emperature profile# assuming constant 0/

    2,221

    2,1,ln

    )/ln(

    )()(  s

     s sT 

    r r 

    T T r T    +  

     

      

     −=   !ogarithmic temperature distribution

    +see previous slide.

    • @ourier2s la/   const dr 

    dT rLk dr 

    dT kAqr    =π−=−= )2(

  • 8/17/2019 Chapter_3_1_Cond 1 Dim, Steady-State

    24/37

    Chapter 3 Perpindahan Panas 24

    Thermal Resistance

    'ased on the previous solution# the conduction hear transfer rate can

    be calculated/

    ( ) ( ) ( )

    cond t 

     s s s s s s

     x  R

    T T 

     Lk r r 

    T T 

    r r 

    T T  Lk 

    q ,

    2,1,

    12

    2,1,

    12

    2,1,

    )2/()/ln()/ln(

    2   −

    =

    −π

    =

    In terms of e(uivalent thermal circuit/

    )2(

    1

    2

    )/ln(

    )2(

    1

    22

    12

    11

    2,1,

     Lr hkL

    r r 

     Lr h R

     R

    T T 

    q

    tot 

    tot  x

    π+

    π+

    π=

    −=

      ∞∞

    • @ourier2s la/ const dr 

    dT rLk 

    dr 

    dT kAqr    =π−=−= )2(

  • 8/17/2019 Chapter_3_1_Cond 1 Dim, Steady-State

    25/37

    Chapter 3 Perpindahan Panas 25

    Composite Walls

    ? Express the followinggeometry in terms ofa an equivalent

    thermal circuit.

  • 8/17/2019 Chapter_3_1_Cond 1 Dim, Steady-State

    26/37

    Chapter 3 Perpindahan Panas 2"

    Composite Walls? What is the heat transfer rate?

    here 9 is the overall heat transfer coefficient" If 4)4;),πr ;!/

    44

    1

    3

    41

    2

    31

    1

    21

    1

    1lnlnln

    1

    1

    hr 

    h

    C  B A

    ++++=

    alternatively e can use 4,),πr ,!# 45),πr 5! etc" In all cases/

    ∑====

    t  R AU  AU  AU  AU 

    144332211

  • 8/17/2019 Chapter_3_1_Cond 1 Dim, Steady-State

    27/37

    Chapter 3 Perpindahan Panas 2'

  • 8/17/2019 Chapter_3_1_Cond 1 Dim, Steady-State

    28/37

    Chapter 3 Perpindahan Panas 2

    Spherical Coordinates

    • Starting from @ourier2s la# ac0noledging that (r  is constant#independent of r# and assuming that 0 is constant# derive the e(uation

    describing the conduction heat transfer rate" 8hat is the thermalresistance?

    • @ourier2s la/

    dr dT r k 

    dr 

    dT kAqr 

    )4( 2π−=

    −=

  • 8/17/2019 Chapter_3_1_Cond 1 Dim, Steady-State

    29/37

    Chapter 3 Perpindahan Panas 2

    Summary

  • 8/17/2019 Chapter_3_1_Cond 1 Dim, Steady-State

    30/37

    Chapter 3 Perpindahan Panas

    Extended Surfaces $%ins&

     4n extended surface +also 0no as a combined conduction-

    convection system or a fin. is a solid ithin hich heat transfer by

    conduction is assumed to be one dimensional# hile heat is also

    transferred by convection +and>or radiation. from the surface in a

    direction transverse to that of conduction

    30

  • 8/17/2019 Chapter_3_1_Cond 1 Dim, Steady-State

    31/37

    Chapter 3 Perpindahan Panas

    Extended Surfaces $%ins&Bxtended surfaces may exist in many situations but are

    commonly used as fins to enhance heat transfer by increasing

    the surface area available for convection +and>or radiation."

    $hey are particularly beneficial hen h is small # as for a 'as 

    and natural con!ection"

    Solutions for various fin geometries can be found in the literature

    31

  • 8/17/2019 Chapter_3_1_Cond 1 Dim, Steady-State

    32/37

    Chapter 3 Perpindahan Panas 32

  • 8/17/2019 Chapter_3_1_Cond 1 Dim, Steady-State

    33/37

    Chapter 3 Perpindahan Panas 33

  • 8/17/2019 Chapter_3_1_Cond 1 Dim, Steady-State

    34/37

    Chapter 3 Perpindahan Panas 34

  • 8/17/2019 Chapter_3_1_Cond 1 Dim, Steady-State

    35/37

    Chapter 3 Perpindahan Panas 35

  • 8/17/2019 Chapter_3_1_Cond 1 Dim, Steady-State

    36/37

    Chapter 3 Perpindahan Panas 3"

    -nifor Crossectional rea Ac = C(dAc /dx) = 0

    urface rea   A s = P x  (dA s /dx) = P 

  • 8/17/2019 Chapter_3_1_Cond 1 Dim, Steady-State

    37/37

    Ch t 3 Perpindahan Panas 3'