chapter chapter 7 : antenna synthesis : antenna...

37
Chapter Chapter 7 7 : Antenna Synthesis : Antenna Synthesis Continuous sources vs. Discrete sources Schelkunoff polynomial method Fourier transform method Woodward-Lawson method 1 Triangular, cosine and cosine-squared amplitude distributions

Upload: dangdat

Post on 09-May-2018

268 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Chapter Chapter 7 : Antenna Synthesis : Antenna Synthesispongsak.ee.engr.tu.ac.th/le428/chap7.pdf · Chapter Chapter 7 : Antenna Synthesis : Antenna Synthesis • Continuous sources

Chapter Chapter 7 7 : Antenna Synthesis: Antenna Synthesis

• Continuous sources vs. Discrete sources

• Schelkunoff polynomial method

• Fourier transform method

• Woodward-Lawson method

1

• Woodward-Lawson method

• Triangular, cosine and cosine-squared

amplitude distributions

Page 2: Chapter Chapter 7 : Antenna Synthesis : Antenna Synthesispongsak.ee.engr.tu.ac.th/le428/chap7.pdf · Chapter Chapter 7 : Antenna Synthesis : Antenna Synthesis • Continuous sources

Continuous sourcesContinuous sourcesRecall the array factor

If the number of elements increases in a fixed-length array,

the source approaches a continuous distribution.

∑=

− +==N

n

nj

n kdea1

)1( cos; βθψψAF

2

the source approaches a continuous distribution.

In the limit, the array factor becomes the space factor, i.e.,

)'()1( )'(zj

n

nj

nnezIea

φβ =−

The radiation characteristics of continuous sources can

be approximated by discrete-element arrays, i.e.,

∫−+=

2/

2/

)]'(cos'[')'(

l

l

zkzj

n dzezI nφθSF

Page 3: Chapter Chapter 7 : Antenna Synthesis : Antenna Synthesispongsak.ee.engr.tu.ac.th/le428/chap7.pdf · Chapter Chapter 7 : Antenna Synthesis : Antenna Synthesis • Continuous sources

Schelkunoff polynomial Schelkunoff polynomial

methodmethod

)cos( βθψ +==+= kdjjeejyxz

The array factor for an N-element, equally spaced, non-

uniform amplitude, and progressive phase excitation is given

by

∑=

− +==N

n

nj

n kdea1

)1( cos; βθψψAF

3

)cos( βθψ +==+= kdjjeejyxzLet

∑=

−− +++==N

n

N

N

n

n zazaaza1

1

21

1LAF

which is a polynomial of degree (N-1).

Page 4: Chapter Chapter 7 : Antenna Synthesis : Antenna Synthesispongsak.ee.engr.tu.ac.th/le428/chap7.pdf · Chapter Chapter 7 : Antenna Synthesis : Antenna Synthesis • Continuous sources

Schelkunoff polynomial Schelkunoff polynomial

method (method (22))Thus

)())(( 121 −−−−= NN zzzzzza LAF

where z1,z2,…,zN-1 are the roots. The magnitude then

becomes

|||||||||| −−−= zzzzzza LAF

4

ψψψ ∠=∠== 1|||| zezzj

Note that

βθλπ

βθψ +=+= cos2

cos dkd

z is on a unit circle.

|||||||||| 121 −−−−= NN zzzzzza LAF

Page 5: Chapter Chapter 7 : Antenna Synthesis : Antenna Synthesispongsak.ee.engr.tu.ac.th/le428/chap7.pdf · Chapter Chapter 7 : Antenna Synthesis : Antenna Synthesis • Continuous sources

Schelkunoff polynomial Schelkunoff polynomial

method (method (33))

VR=Visible Region

IR=Invisible Region

β = 0

5

β = 0

Page 6: Chapter Chapter 7 : Antenna Synthesis : Antenna Synthesispongsak.ee.engr.tu.ac.th/le428/chap7.pdf · Chapter Chapter 7 : Antenna Synthesis : Antenna Synthesis • Continuous sources

Schelkunoff polynomial Schelkunoff polynomial

method (method (44))

VR=Visible Region

IR=Invisible Region

β = π/4

6

β = π/4

Page 7: Chapter Chapter 7 : Antenna Synthesis : Antenna Synthesispongsak.ee.engr.tu.ac.th/le428/chap7.pdf · Chapter Chapter 7 : Antenna Synthesis : Antenna Synthesis • Continuous sources

Schelkunoff polynomial Schelkunoff polynomial

method (method (55))

7

Page 8: Chapter Chapter 7 : Antenna Synthesis : Antenna Synthesispongsak.ee.engr.tu.ac.th/le428/chap7.pdf · Chapter Chapter 7 : Antenna Synthesis : Antenna Synthesis • Continuous sources

Schelkunoff polynomial Schelkunoff polynomial

method : Examplemethod : ExampleDesign a linear array with a spacing between the elements

of d=λ/4 such that it has zeros at θ=0,π/2,π. Determine the

number of elements, their excitation, and plot the derived

pattern.

8

Page 9: Chapter Chapter 7 : Antenna Synthesis : Antenna Synthesispongsak.ee.engr.tu.ac.th/le428/chap7.pdf · Chapter Chapter 7 : Antenna Synthesis : Antenna Synthesis • Continuous sources

Schelkunoff polynomial Schelkunoff polynomial

method : Example patternmethod : Example pattern

−15

−10

−5

04−element array factor

9

0 20 40 60 80 100 120 140 160 180−50

−45

−40

−35

−30

−25

−20

θ [Degree]

|(A

F) n

| [d

B]

Page 10: Chapter Chapter 7 : Antenna Synthesis : Antenna Synthesispongsak.ee.engr.tu.ac.th/le428/chap7.pdf · Chapter Chapter 7 : Antenna Synthesis : Antenna Synthesis • Continuous sources

Fourier Transform MethodFourier Transform Method

The normalized space factor for a continuous line-source

distribution of length l can be given by

+

=→−=

==

−−

− ∫∫k

kk

dzezIdzezI

z

l

l

zjl

l

zkkj z

ξθθξ

θ ξθ

1

2/

2/

'2/

2/

)')cos(

coscos

')'(')'()(SF

10

+=→−= −

k

kkk z

z

ξθθξ 1coscos

where kz is the excitation phase constant of the source. If

I(z’)=I0/l,

−=

k

kkl

k

kkl

Iz

z

θ

θθ

cos2

cos2

sin

)( 0SF

Page 11: Chapter Chapter 7 : Antenna Synthesis : Antenna Synthesispongsak.ee.engr.tu.ac.th/le428/chap7.pdf · Chapter Chapter 7 : Antenna Synthesis : Antenna Synthesis • Continuous sources

Fourier Transform Method (Fourier Transform Method (22))

Since the current distribution extends only over -l/2≤z’≤ l/2,

∫∞

∞−== ')'()()( '

dzezIzjξξθ SFSF

∫∫∞

∞−

−∞

∞−

− == ξθπ

ξξπ

ξξdedezI

zjzj '' )(2

1)(

2

1)'( SFSF

The current distribution can then be given by

11

The approximate source distribution Ia (z’) is given by

∫∫ ∞−∞−== ξθ

πξξ

πdedezI )(

2)(

2)'( SFSF

≤≤−== ∫

∞−

elsewhere0

2/'2/)(2

1)'(

)'(

'lzldezI

zI

zj

a

ξξπ

ξSF

∫−==2/

2/

' ')'()()(l

l

zj

aaa dzezIξξθ SFSFThus

Page 12: Chapter Chapter 7 : Antenna Synthesis : Antenna Synthesispongsak.ee.engr.tu.ac.th/le428/chap7.pdf · Chapter Chapter 7 : Antenna Synthesis : Antenna Synthesis • Continuous sources

Fourier Transform Method : Fourier Transform Method : ExampleExample 77..22

Determine the current distribution and the approximate radiation

pattern of a line source placed along the z-axis whose desired

radiation pattern is symmetrical about θ=π/2, and it is given by

≤≤

=elsewhere0

4/34/1)(

πθπθSF

12

elsewhere0

Page 13: Chapter Chapter 7 : Antenna Synthesis : Antenna Synthesispongsak.ee.engr.tu.ac.th/le428/chap7.pdf · Chapter Chapter 7 : Antenna Synthesis : Antenna Synthesis • Continuous sources

Fourier Transform Method : Fourier Transform Method :

ExampleExample

Page 14: Chapter Chapter 7 : Antenna Synthesis : Antenna Synthesispongsak.ee.engr.tu.ac.th/le428/chap7.pdf · Chapter Chapter 7 : Antenna Synthesis : Antenna Synthesis • Continuous sources

Fourier Transform Method : Fourier Transform Method :

Linear ArrayLinear ArrayFor an odd number of elements, the array factor is given by

∑−=

==M

Mm

jm

meaψψθ )()( AFAF

For an even number of elements,

∑∑ −−

+ +==M

mj

m

mj

m eaea]2/)12[(

1]2/)12[()()( ψψψθ AFAF

14

where

−≤≤−+

≤≤−

=1

2

12

12

12

'

mMdm

Mmdm

zm

Mmmdzm ±±±== ,,2,1,0,'K

Elements’ locations

∑∑=−= m

m

Mm

m

1

βθψ += coskd

Even-number

Odd-number

Page 15: Chapter Chapter 7 : Antenna Synthesis : Antenna Synthesispongsak.ee.engr.tu.ac.th/le428/chap7.pdf · Chapter Chapter 7 : Antenna Synthesis : Antenna Synthesis • Continuous sources

Fourier Transform Method : Fourier Transform Method :

Linear Array (Linear Array (22))For an odd number of elements, the excitation coefficients can

be obtained by

MmM

dedeT

ajmjm

T

Tm

≤≤−

== −

− ∫∫ ψψπ

ψψ ψπ

π

ψ )(2

1)(

1 2/

2/AFAF

15

MmM ≤≤−

where

For an even number of elements,

βθψ += coskd

≤≤

−≤≤−=

−−

+−

∫Mmde

mMde

amj

mj

m

1)(2

1

1)(2

1

]2/)12[(

]2/)12[(

ψψπ

ψψπ

ψπ

π

ψπ

π

AF

AF

Page 16: Chapter Chapter 7 : Antenna Synthesis : Antenna Synthesispongsak.ee.engr.tu.ac.th/le428/chap7.pdf · Chapter Chapter 7 : Antenna Synthesis : Antenna Synthesis • Continuous sources

Fourier Transform Method : Fourier Transform Method :

ExampleExampleSame as Example 7.2; non-zero only

2/cos2/ πβθψπ ≤+=≤− kd

4/34/ πθπ ≤≤

thus

thereforesin

πm

16

2

2sin

2

1

2

1 2/

2/ πψ

π

π

π

ψ

mdea

jm

m

== ∫−

0101.00588.0

010.00518.02170.0

0455.00895.03582.0

0496.00578.00.1

73

1062

951

840

==

−==−=

=−==

−===

±±

±±±

±±±

±±

aa

aaa

aaa

aaa

Result

Page 17: Chapter Chapter 7 : Antenna Synthesis : Antenna Synthesispongsak.ee.engr.tu.ac.th/le428/chap7.pdf · Chapter Chapter 7 : Antenna Synthesis : Antenna Synthesis • Continuous sources

Fourier Transform Method : Fourier Transform Method :

ExampleExample

Page 18: Chapter Chapter 7 : Antenna Synthesis : Antenna Synthesispongsak.ee.engr.tu.ac.th/le428/chap7.pdf · Chapter Chapter 7 : Antenna Synthesis : Antenna Synthesis • Continuous sources

Quiz

A 5-element uniform linear array with a

spacing of λλλλ between elements is designed

to scan at θθθθ=ππππ/3. Assume that the array is

aligned along the z-axis.

a) Find the array factora) Find the array factor

b) Find the angle of the grating lobe.

c) Find the condition such that there exists no

grating lobe.

Page 19: Chapter Chapter 7 : Antenna Synthesis : Antenna Synthesispongsak.ee.engr.tu.ac.th/le428/chap7.pdf · Chapter Chapter 7 : Antenna Synthesis : Antenna Synthesis • Continuous sources

Quiz solution

0.6

0.7

0.8

0.9

1

| [d

B]

5−element array factor

d=λ

d=5λ/8

d=λ/2

0 20 40 60 80 100 120 140 160 1800

0.1

0.2

0.3

0.4

0.5

θ [Degree]

|(A

F) n

| [d

B]

Page 20: Chapter Chapter 7 : Antenna Synthesis : Antenna Synthesispongsak.ee.engr.tu.ac.th/le428/chap7.pdf · Chapter Chapter 7 : Antenna Synthesis : Antenna Synthesis • Continuous sources

Woodward-Lawson Method• Sampling the desired pattern at various discrete

locations.

• Use composing function of the forms:

mmmmmm NNbb φφψψ sin/)sin(or /)sin(

as the field of each pattern sample

• The synthesized pattern is represented by a finite

sum of composing functions.

• The total excitation is a sum of space harmonics.

Page 21: Chapter Chapter 7 : Antenna Synthesis : Antenna Synthesispongsak.ee.engr.tu.ac.th/le428/chap7.pdf · Chapter Chapter 7 : Antenna Synthesis : Antenna Synthesis • Continuous sources

Woodward-Lawson Method:

Line-source

2/'2/)'(cos'

lzlel

bzi mjkzm

m ≤≤−= − θ

M1

Let the source be represented by a sum of the following constant current source of length l.

Then the current source can be given by

∑−=

−=M

Mm

jkz

mmeb

lzI

θcos'1)'(

number) odd 12(for ,,2,1,0

number)even 2(for ,,2,1 where

+±±±=

±±±=

MMm

MMm

K

K

( )

( )m

m

mm kl

kl

bs

θθ

θθθ

coscos2

coscos2

sin

)(

−=

The field pattern of each current source is given by

Composing function

Page 22: Chapter Chapter 7 : Antenna Synthesis : Antenna Synthesispongsak.ee.engr.tu.ac.th/le428/chap7.pdf · Chapter Chapter 7 : Antenna Synthesis : Antenna Synthesis • Continuous sources

Woodward-Lawson Method:

Line-source (2)For an odd number samples, the total pattern becomes

b can be obtained from the value at the sample points θ , i.e.,

( )

( )∑−= −

−=

M

Mmm

m

m kl

kl

b

θθ

θθθ

coscos2

coscos2

sin

)(SF

dmmb )(SF θθ ==

lkz lz

λπ =∆⇒=∆ = 2' '||

bm can be obtained from the value at the sample points θm, i.e.,

In order to satisfy the periodicity of 2π and faithfully reconstruct the desired pattern,

Page 23: Chapter Chapter 7 : Antenna Synthesis : Antenna Synthesispongsak.ee.engr.tu.ac.th/le428/chap7.pdf · Chapter Chapter 7 : Antenna Synthesis : Antenna Synthesis • Continuous sources

Woodward-Lawson Method:

Line-source (3)

samples oddfor ,2,1,0,cos K±±=

=∆= ml

mmm

λθ

Thus the location of each sample is given by

,2,1,1212

=

=∆−

Kmmm λ

Therefore, M should be the closest integer to M=l/λ.

sampleseven for

,2,1,2

12

2

12

,2,1,22

cos

−−=

+=∆

+

=

=∆=

K

K

ml

mm

ml

m λθ

Page 24: Chapter Chapter 7 : Antenna Synthesis : Antenna Synthesispongsak.ee.engr.tu.ac.th/le428/chap7.pdf · Chapter Chapter 7 : Antenna Synthesis : Antenna Synthesis • Continuous sources

Woodward-Lawson Method:

Example

5,,2,1,0),2.0(cos)(cos 11 ±±±==∆= −−Kmmmmθ

Same as Example 7.2; for l = 5λ.Since l = 5λ, M = 5 and ∆ = 0.2.

m θθθθm bmm θθθθm bm

0 90 10 90 1

1 78.46 1 -1 101.54 1

2 66.42 1 -2 113.58 1

3 53.13 1 -3 126.87 1

4 36.87 0 -4 143.13 0

5 0 0 -5 180 0

Page 25: Chapter Chapter 7 : Antenna Synthesis : Antenna Synthesispongsak.ee.engr.tu.ac.th/le428/chap7.pdf · Chapter Chapter 7 : Antenna Synthesis : Antenna Synthesis • Continuous sources

Woodward-Lawson Method: Example (2)

Composing functions for line-source (l = 5λ)

Page 26: Chapter Chapter 7 : Antenna Synthesis : Antenna Synthesispongsak.ee.engr.tu.ac.th/le428/chap7.pdf · Chapter Chapter 7 : Antenna Synthesis : Antenna Synthesis • Continuous sources

Woodward-Lawson Method:

Linear array

( )

( )m

m

mm kdN

kdN

bf

θθ

θθθ

coscos2

sin

coscos2

sin

)(

−=

The pattern of each sample (uniform array) can be written as (assuming l = Nd)

Composing function

2

( )

( )∑−= −

=M

Mmm

m

m kdN

kdN

b

θθ

θθθ

coscos2

sin

coscos2

sin

)(AF

dmmb )(AF θθ ==

For an odd number elements, the array factor becomes

bm can be obtained from the value at the sample points θm, i.e.,

Page 27: Chapter Chapter 7 : Antenna Synthesis : Antenna Synthesispongsak.ee.engr.tu.ac.th/le428/chap7.pdf · Chapter Chapter 7 : Antenna Synthesis : Antenna Synthesis • Continuous sources

Woodward-Lawson Method:

Linear array (2)

,2,1,2

12

2

12

=

−=∆

−Km

Nd

mm λ

samples oddfor ,2,1,0,cos K±±=

=∆= mNd

mmm

λθ

The location of each sample is given by

sampleseven for

,2,1,2

12

2

12

22cos

−−=

+=∆

+=

KmNd

mm

Ndm λ

θ

The normalized excitation coefficient of each element is given by

∑−=

′−=M

Mm

zjk

mnmneb

Nza

θcos1)'(

Page 28: Chapter Chapter 7 : Antenna Synthesis : Antenna Synthesispongsak.ee.engr.tu.ac.th/le428/chap7.pdf · Chapter Chapter 7 : Antenna Synthesis : Antenna Synthesis • Continuous sources

Woodward-Lawson Method:

Example

Element number

n

Position

z’n

Coefficient

an

±1 ±0.25λλλλ 0.5696

Same as Example 7.2; for N=10 and d = λ/2.

The coefficients can be found to be

±1 ±0.25λλλλ 0.5696

±2 ± 0.75λλλλ -0.0345

±3 ± 1.25λλλλ -0.1001

±4 ± 1.75λλλλ 0.1108

±5 ± 2.25λλλλ -0.0460

To obtain the normalized amplitude pattern of unity at θ=π/2,

the array factor has be divided by ∑ = 4998.0na

Page 29: Chapter Chapter 7 : Antenna Synthesis : Antenna Synthesispongsak.ee.engr.tu.ac.th/le428/chap7.pdf · Chapter Chapter 7 : Antenna Synthesis : Antenna Synthesis • Continuous sources

Woodward-Lawson Method:

Example

0.8

1

1.2

1.4

No

rma

lize

d m

ag

nitu

de

Line−source

Linear Array (N=10,d=λ/2)

0 20 40 60 80 100 120 140 160 1800

0.2

0.4

0.6

0.8

θ [Degree]

No

rma

lize

d m

ag

nitu

de

Page 30: Chapter Chapter 7 : Antenna Synthesis : Antenna Synthesispongsak.ee.engr.tu.ac.th/le428/chap7.pdf · Chapter Chapter 7 : Antenna Synthesis : Antenna Synthesis • Continuous sources

Triangular, cosine, cosine

squared distributions

Page 31: Chapter Chapter 7 : Antenna Synthesis : Antenna Synthesispongsak.ee.engr.tu.ac.th/le428/chap7.pdf · Chapter Chapter 7 : Antenna Synthesis : Antenna Synthesis • Continuous sources
Page 32: Chapter Chapter 7 : Antenna Synthesis : Antenna Synthesispongsak.ee.engr.tu.ac.th/le428/chap7.pdf · Chapter Chapter 7 : Antenna Synthesis : Antenna Synthesis • Continuous sources

Mutual CouplingMutual Coupling

• Consider two antennas

2221212

2121111

IZIZV

IZIZV

+=

+=

=

2

1

2221

1211

2

1

I

I

ZZ

ZZ

V

V

2112 ZZ =If reciprocal,

32

Equivalent Circuit

Two-port NetworkT-Network Equivalent Circuit

Page 33: Chapter Chapter 7 : Antenna Synthesis : Antenna Synthesispongsak.ee.engr.tu.ac.th/le428/chap7.pdf · Chapter Chapter 7 : Antenna Synthesis : Antenna Synthesis • Continuous sources

Mutual Coupling: 2 antennas

01

111

2 =

=I

I

VZ

02

112

1=

=I

I

VZ

01

221

2=

=I

I

VZ

02

222

1=

=I

I

VZ

2112 ZZ =

for reciprocal networks

:, 2211 ZZ

Input impedance02=I

021=I

I

impedancepoint driving

active

21

=ddZ

1

21211

1

11

I

IZZ

I

VZ d +==

Input impedance

2

12122

2

22

I

IZZ

I

VZ d +==

2

12

1

21 on depends ;on depends :Note

I

IZ

I

IZ dd

Page 34: Chapter Chapter 7 : Antenna Synthesis : Antenna Synthesispongsak.ee.engr.tu.ac.th/le428/chap7.pdf · Chapter Chapter 7 : Antenna Synthesis : Antenna Synthesis • Continuous sources

Mutual Coupling: 2 antennas (2)

• As I1 and I2 change, the driving point impedance changes.

• In a uniform array, the phase of I1 and I2

is changed to scan the beam.

• As the beam is scanned, the driving port • As the beam is scanned, the driving port impedance in each antenna changes.

• In general, Z11,Z12=Z21,Z22 can be calculated using numerical techniques.

• For some special cases, they can be calculated analytically.

Page 35: Chapter Chapter 7 : Antenna Synthesis : Antenna Synthesispongsak.ee.engr.tu.ac.th/le428/chap7.pdf · Chapter Chapter 7 : Antenna Synthesis : Antenna Synthesis • Continuous sources

Mutual Coupling: N antennas

=

NNNNN

N

N

N I

I

I

ZZZ

ZZZ

ZZZ

V

V

V

M

L

MOMM

L

L

M

2

1

21

22221

11211

2

1 IZV =

jkIj

iij

k

I

VZ

≠=

=,0

In an N-element uniform array β)1( −= njeIIIn an N-element uniform array β)1(

0

−= nj

n eII

∑=

=

+++==

N

n

nj

n

Nj

N

j

d

eZ

eZeZZI

VZ

1

)1(

1

)1(

11211

1

11

β

ββL

changes. as changes :Note 1 βdZ

Page 36: Chapter Chapter 7 : Antenna Synthesis : Antenna Synthesispongsak.ee.engr.tu.ac.th/le428/chap7.pdf · Chapter Chapter 7 : Antenna Synthesis : Antenna Synthesis • Continuous sources

Mutual Coupling: 2 dipoles

Page 37: Chapter Chapter 7 : Antenna Synthesis : Antenna Synthesispongsak.ee.engr.tu.ac.th/le428/chap7.pdf · Chapter Chapter 7 : Antenna Synthesis : Antenna Synthesis • Continuous sources

Mutual Coupling: 2 dipoles (2)