chapter 9 - future development

Upload: jack-jill

Post on 10-Apr-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/8/2019 Chapter 9 - Future Development

    1/49

    Development of High Density

    Optical Storage Media

    2002. 04. 26

  • 8/8/2019 Chapter 9 - Future Development

    2/49

    Outline

    Development History of Optical Storage

    Media

    Classification for Optical Storage Media

    Principles of Optical Storage Technology

    High Density Optical Storage Media

    Conclusions

  • 8/8/2019 Chapter 9 - Future Development

    3/49

    Development History of Optical Storage Disc

    1981 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003

    CD-DA

    CD-RO M

    CD-RW

    Photo CD

    Video CD

    CD-R

    CD-MO

    CD-I

    DVD-RAM 2..6GB

    DVD ROM & Video

    DVDRAM/R/RW 4.7GB

    DVD Audio

    DVR 22.5GB

    DVD+R /RW 4.7GB

  • 8/8/2019 Chapter 9 - Future Development

    4/49

    Classification for Optical Storage Disc

    Read-Only

    CD-DA

    CD-ROM

    VCD

    DVD-VideoDVD-ROMDVD-Audio

    RecordableCD-RDVD-R RewritableCD-RWDVD-RAMDVD-

    RWDVD+RWDVR

  • 8/8/2019 Chapter 9 - Future Development

    5/49

    Read-Only Disc Structure

    Mastering Replication metallizationLacquering ( bonding ) Printing

  • 8/8/2019 Chapter 9 - Future Development

    6/49

    Recordable Disc Structure

    Mastering Replication Dye coating

    metallization Lacquering Printing

  • 8/8/2019 Chapter 9 - Future Development

    7/49

    Recordable Disc Structure

    Mastering Replication Dye coating

    metallization Bonding Printing

  • 8/8/2019 Chapter 9 - Future Development

    8/49

    Mastering Replication ZnS-SiO2/AgInTeSb

    /ZnS-SiO2/Al-Ti Sputtering Lacquering Printing

    Rewritable Disc Structure

  • 8/8/2019 Chapter 9 - Future Development

    9/49

    Rewritable Disc Structure

  • 8/8/2019 Chapter 9 - Future Development

    10/49

    Pick-up Head

  • 8/8/2019 Chapter 9 - Future Development

    11/49

    Optical Path of Pick-up Head

  • 8/8/2019 Chapter 9 - Future Development

    12/49

    Read for Read-Only Disc

  • 8/8/2019 Chapter 9 - Future Development

    13/49

    00000100010000000100000000010000

    Land Pit Land Pit Land

    Read for Read-Only Disc

  • 8/8/2019 Chapter 9 - Future Development

    14/49

  • 8/8/2019 Chapter 9 - Future Development

    15/49

    WriteErase and Read for Rewritable DiscInitialized

    Active Layer Written Bit

    Temp.

    Tm

    Tg

    Write Read Erase

    Time

  • 8/8/2019 Chapter 9 - Future Development

    16/49

    Multi-Media Applications

    1997 2000 2005 2010 2015

    4.7 GB 15GB 36GB 100GB 1TB

    VideoROM2 hrs

    VideoRAM2 hrs

    HDTV

    4 hrs

    3-D

    Video

    Interactive

    3-D Video

    Capacity

    Transfer Rate

    eek Time

    20 MB/s 50-100 MB/s 100-250 MB/s 1 GB/s

    30 ms 10-20 ms 5-10 ms 1-2 ms

  • 8/8/2019 Chapter 9 - Future Development

    17/49

    How to Increase Recording Density

    Spot Size Reduction

    Volumetric

    StorageDataFormat

    Disc Fabrication

    High DensityOptical

    Storage Media

    Multi-layer

    Photo-induced

    HolographicECC

    Multi-level

    Modulation

    Short High NA Near-Field Super Resolution

    High-tech mastering L/G and Deep Groove

  • 8/8/2019 Chapter 9 - Future Development

    18/49

    How to Increase Recording Density Reduce Laser Spot Size

    Short Wavelength=400nmHigh Numerical ApertureNA=0.8

    Solid Immersion Lens (SLI) : To Increase Numerical

    Aperture

    Super-RENS

    Increase Coding EfficiencyMulti-level Coding Multiple-layer StructureMulti-layer Recording Volumetric Recording Holographic Optical Recording

  • 8/8/2019 Chapter 9 - Future Development

    19/49

    DVR ( = 400 nm NA = 0.85 )

    Blue Laser

    High NA double-Lens

    Assemble

    0.1mm Hard Cover Layer

    Single layer capacity 22.5GB

  • 8/8/2019 Chapter 9 - Future Development

    20/49

    DVR ( = 400 nm NA = 0.85 )

  • 8/8/2019 Chapter 9 - Future Development

    21/49

    Solid Immersion Lens

    Excess theoretical NA limit

    1

    Air Gap10 100 nm

    Near Field Recording

    Laser spot size 100 nm

    Single layer capacity 100Gdisc

    f

    NA=0.55~0.8

    n1=1.45~1.9 h <

    SIL

  • 8/8/2019 Chapter 9 - Future Development

    22/49

    SUPER-RENS

    Optical Super-Resolution

    Near Field Structure

    Can read pit length < 60 nm

    Single layer capacity 200GB

  • 8/8/2019 Chapter 9 - Future Development

    23/49

    SUPER-RENS

  • 8/8/2019 Chapter 9 - Future Development

    24/49

    Diffraction-Limit

    Spot size 0.6 /NA

  • 8/8/2019 Chapter 9 - Future Development

    25/49

    SUPER RENS

  • 8/8/2019 Chapter 9 - Future Development

    26/49

    SUPER-RENS

    Requirements for mask layer

    Fast Response

    High sensitivity

    Large transmittance change

    High stability

    SUPER RENS

  • 8/8/2019 Chapter 9 - Future Development

    27/49

    SUPER-RENS

    Transmitted Type Scattering Type

    M lti l l

  • 8/8/2019 Chapter 9 - Future Development

    28/49

    Multi-level

    Multi-level is to improve the coding efficiency of

    recording bits to increase recording density

    PPMPit Position ModulationPWMPit Width Modulati

  • 8/8/2019 Chapter 9 - Future Development

    29/49

    Multi Level Rewritable

  • 8/8/2019 Chapter 9 - Future Development

    30/49

    Multi-Level Rewritable

    Matsushita - Mark Radial Width Mod

    Multiple level Reflection Modulation

  • 8/8/2019 Chapter 9 - Future Development

    31/49

    Multiple-level Reflection Modulation

    Terabyte Optical Storage

  • 8/8/2019 Chapter 9 - Future Development

    32/49

    Terabyte Optical Storage

    3D Storage3D3D StorageStorage

    Multi-function Volumeric optical disks Holographic Memory

    Fluorescent Multilayer Disc FMD

  • 8/8/2019 Chapter 9 - Future Development

    33/49

    Fluorescent Multilayer DiscFMD

    US Constellation 3D

    (C3D) Company

    06/200040GBAnalogue Video Disc

    10/2000 50GB DigitalVideo Disc

    Future > 100GB

    Fluorescent Multilayer Disc FMD

  • 8/8/2019 Chapter 9 - Future Development

    34/49

    Fluorescent Multilayer DiscFMD

    Fluorescent Multilayer Disc FMD

  • 8/8/2019 Chapter 9 - Future Development

    35/49

    Fluorescent Multilayer DiscFMD Advantages

    Every layer is transparent. There is no reflectiveinterface between layers.

    The exciting radiation energy can be achieved byabsorption of 1% incident light.

    The exciting fluorescent signals wont be absorbed byother fluorescent materials.

    Fluorescent Multilayer Disc FMD

  • 8/8/2019 Chapter 9 - Future Development

    36/49

    Fluorescent Multilayer DiscFMD With larger tolerance for the imperfection of storage

    media as well as disc drive. Compatible with the existing CD and DVD systems.

    Read and write can be performed simultaneously. Data

    transfer rate is much higher than that of single layer

    disc.

  • 8/8/2019 Chapter 9 - Future Development

    37/49

    Fluorescent Multilayer Disc FMD

  • 8/8/2019 Chapter 9 - Future Development

    38/49

    Fluorescent Multilayer DiscFMD

    650nm

    50nm

  • 8/8/2019 Chapter 9 - Future Development

    39/49

    Holographic Optical Recording

  • 8/8/2019 Chapter 9 - Future Development

    40/49

    Holographic Optical Recording

    Holographic Optical Recording

  • 8/8/2019 Chapter 9 - Future Development

    41/49

    Holographic Optical Recording

    Holographic Optical Recording

  • 8/8/2019 Chapter 9 - Future Development

    42/49

    Holographic Optical Recording

    Holographic Optical Recording

  • 8/8/2019 Chapter 9 - Future Development

    43/49

    g p p g

    High data transfer rate Rewritable Disc

  • 8/8/2019 Chapter 9 - Future Development

    44/49

    g

    Requirements for phase change materials

    High Photo-sensitivity

    Large optical contrast between crystalline and

    amorphous phases High thermal stability

    High structural stability

    Fast re-crystallization rate

    How to increase re-crystallization rate ?

  • 8/8/2019 Chapter 9 - Future Development

    45/49

    y

    Optimum recording layer

    thickness

    thickness ~ 30 nm t (nucleation) ~ 17 ns

    CET ~ 38 ns

    Crystallization acceleration lay

    SiC or GeN

    t (nucleation) ~ 14 ns

    CET ~ 27 ns

    GeSbTe + O2

    How to increase re-crystallization rate ?

  • 8/8/2019 Chapter 9 - Future Development

    46/49

    y

    How to increase re-crystallization rate ?

  • 8/8/2019 Chapter 9 - Future Development

    47/49

    y

    780

    0.50

    658

    0.60

    658

    0.85

    400

    0.85

    AgInSbTe

    Ge2Sb2Te5

    0.0 0.4 0.8 1.2 1.6 2.0

    Reciprocal Spot Diameter ( m-1 )

    MaximumUser

    DataRate(Mbit/s)

    0

    10

    20

    30

    40

    50

    60

    70

    80

    Fast Growth Materials

  • 8/8/2019 Chapter 9 - Future Development

    48/49

    0 10 20 30 40 50 60 70 80 90 100

    100

    90

    80

    70

    60

    50

    40

    30

    0

    10

    20

    90

    100

    80

    70

    60

    50

    40

    30

    20

    10

    0

    (at%) Sb (at%)

    Ge (at%)

    Conclusions

  • 8/8/2019 Chapter 9 - Future Development

    49/49

    Higher recording density Larger

    capacity and Faster data transfer rate

    is the trend in the development of optical

    storage medium !!

    Thank you !!