chapter 6. manipulator dynamics 11-3-14 quiz on nov. 11 on ...chapter 6. manipulator dynamics...

13
` Chapter 6. Manipulator Dynamics 11-3-14 Quiz on Nov. 11 on Homework #8 Homework #8. Not collected. Solve 6.1 (Answer partially given in the textbook). 6.12 (Answer given). 6.16. Show how (6.32) is derived from (6.15) and (5.45). Trace the steps taken to derive (6.36) from (6.12). Verify the formulation of (6.42). See the Example in Section 6.7 Two link robot arm with simplifying assumptions. Check the vector cross multiplications at several places in the solution. Acceleration of Rigid Body Definition: Acceleration of linear velocity vector VQ in frame {B} t t V t t V V dt d s V Q B Q B t Q B Q B ) ( ) ( lim 0 (6.1) Acceleration of angular velocity vector Q in frame {B} t t t t dt d Q A Q A t Q A Q A ) ( ) ( lim 0 (6.2) Linear Acceleration: From (5.12), Q R V R Q R dt d V B A B B A Q B A B B A B Q A ) ( (6.5) Differentiating (6.5) and a term for linear acceleration of the origin of {B}, ) ( ) ( Q R dt d Q R V R dt d V B A B B A B A B B A Q B A B Q A (6.7) ) ( ) ( Q R V R Q R V R V R B A B B A Q B A B B A B A B B A Q B A B B A Q B A B (6.8) With the linear acceleration of {B}Orig ) ( 2 Q R Q R V R V R V R V V B A B B A B A B A B B A Q B A B Q B A B B A Q B A B B A rg BO A Q A (6.10) When B Q is constant, ) ( Q R Q R V R V V B A B B A B A B A B B A Q B A B rg BO A Q A (6.12)

Upload: others

Post on 14-Mar-2020

32 views

Category:

Documents


0 download

TRANSCRIPT

`

Chapter 6. Manipulator Dynamics

11-3-14

Quiz on Nov. 11 on Homework #8

Homework #8. Not collected.

Solve 6.1 (Answer partially given in the textbook). 6.12 (Answer given). 6.16.

Show how (6.32) is derived from (6.15) and (5.45).

Trace the steps taken to derive (6.36) from (6.12).

Verify the formulation of (6.42).

See the Example in Section 6.7 – Two link robot arm with simplifying assumptions.

Check the vector cross multiplications at several places in the solution.

Acceleration of Rigid Body – Definition:

Acceleration of linear velocity vector VQ in frame {B}

t

tVttVV

dt

dsV

Q

B

Q

B

tQ

B

Q

B

)()(lim

0

(6.1)

Acceleration of angular velocity vector Q in frame {B}

t

ttt

dt

d Q

A

Q

A

tQ

A

Q

A

)()(lim

0

(6.2)

Linear Acceleration:

From (5.12),

QRVRQRdt

dV BA

BB

A

Q

BA

B

BA

BQ

A )( (6.5)

Differentiating (6.5) and a term for linear acceleration of the origin of {B},

)()( QRdt

dQRVR

dt

dV BA

BB

ABA

BB

A

Q

BA

BQ

A (6.7)

)()( QRVRQRVRVR BA

BB

A

Q

BA

BB

ABA

BB

A

Q

BA

BB

A

Q

BA

B (6.8)

With the linear acceleration of {B}Orig

)(2 QRQRVRVRVRVV BA

BB

A

B

ABA

BB

A

Q

BA

BQ

BA

BB

A

Q

BA

BB

A

rgBO

A

Q

A (6.10)

When BQ is constant,

)( QRQRVRVV BA

BB

A

B

ABA

BB

A

Q

BA

BrgBO

A

Q

A (6.12)

`

Angular Acceleration:

To find the angular acceleration of {C} w.r.t. {A}, differentiate

C

BA

BB

A

C

A R (6.13)

C

BA

BB

A

C

BA

BB

A

C

BA

BB

A

C

A RRRdt

d )( (6.15)

Rigid Body Mass Distribution

Inertia tensor – Describes the distribution of the mass around the center of a rigid body.

AP is the location vector of the differential volume dv.

Inertia Tensor of {A}:

zzyzxz

yzyyxy

xzxyxx

A

III

III

III

I

Mass moment of inertia:

V

xx dzyI )( 22

Vyy dzxI )( 22

V

zz dyxI )( 22

V

xy dxyI V

xz dxzI V

yz dyzI

Example 6.1

)(3

)()( 22

0

22

000

22

00hl

mdxdydzzydxdydzxrI

wlhwlh

xx

wlm

dxdydzxyIlh

xy400

L W

H

Y

Z

{A}

AP

dv

`

Parallel Axis Theorem:

The moment of inertia at the center of the mass is at the minimum quantity along the axis of

rotation. The moment of inertia of any axis parallel to the axis of rotation is given by

2

czz

C

zz

A rmII

where rc = the distance from the axis in {A} to the center of the mass in {C} and m = the point

mass at the center.

Inertial tensor of a mass in frame {A} w.r.t. frame {C} with its origin at the center of the mass.

222)( czz

C

cczz

C

zz

A mrIyxmII

ccxy

C

xy

A ymxII

Tcccc

A zyxP

- Location of the center of mass in {A}.

The frame {A} has its origin at Tc

A hlwP2

1

)(12

22 lwm

I zz

C 0xy

C I

zz

C

yy

C

xx

C

C

I

I

I

I

00

00

00

Example 6.2

Newton’s Equation on Force: CmF at the center of mass

Euler’s Equation on Moment: IIN CC at the center of mass

IC= inertia tensor in frame {C} with its origin at the mass center

Newton-Euler Dynamic Equations

Derivation of angular acceleration

Forward angular velocity propagation

CI

CI

c

AI

c r

`

1

1

1

1

1

1 ˆ

i

i

ii

ii

ii

i ZR from (5.45)

C

BA

BB

A

C

BA

BB

A

C

A RR from (6.15)

Equating {B} to {A},

C

AA

AA

A

C

AA

AA

A

C

A RR (6.15’)

Rotating {A} w.r.t. {C}

C

AC

AC

A

A

AC

AA

AC

AC

AC

A RRRR )( (6.15’’)

C

C

C

C

A

AC

AA

AC

AC

C RR

Settting {C}={i+1} and 1

1

11

1 ˆ

i

i

ii

i Z from (5.45)

1

1

11

1

1

11

1

1 ˆˆ

i

i

ii

i

ii

ii

ii

ii

ii

i ZZRR (6.32)

For prismatic joints, 0 ii

i , so

i

ii

ii

i R 1

1

1

Derivation of linear acceleration

From (6.12) and by taking similar steps to derive the angular acceleration,

QRVRQRdt

dV BA

BB

A

Q

BA

B

BA

BQ

A )(

)( QRQRVRVV BA

BB

A

B

ABA

BB

A

Q

BA

BrgBO

A

Q

A

Setting {A}={i+1} and {B}={i} and factoring out Ri

i

1 ,

)]([ 11

111

i

i

i

i

i

i

i

i

i

i

i

ii

i

i PPRi (6.34)

For prismatic joints, add two more terms to (6.34) per (6.10)

)]([ 11

1 1

1

i

i

i

i

i

i

i

i

i

i

i

i

i

i PPRi

i 1

1

11

1

11

1 ˆˆ2

i

i

ii

i

ii

i ZdZd (6.35)

Linear acceleration of the center of mass, from (6.12)

Trace the steps taken in applying (6.12),

by setting {A}={B}={i} in (6.12) and iViOrg=0,

)( QRQRVRVV BA

BB

A

B

ABA

BB

A

Q

BA

BrgBO

A

Q

A

i

i

Ci

i

i

i

i

i

Ci

i

i

i

Ci

i vPP )( (6.36)

The inertial force and torque acting at the center of the mass:

From (6.32) and (6.36)

Follow the derivation of (6.32) from (6.15) and (5.45)

`

i

C

ii

C

i

i

IIN

mF

ii

iC

(6.37)

where 3x3 IiC is the inertia tensor in {C} at the center of the body.

H7Backward Iteration for Joint Forces and Torque

Force and torque balance equations at the center of mass of link i:

1

1

1

i

ii

ii

i

i

i fRfF (6.38)

111 )()( i

i

Ci

i

i

i

i

i

Ci

i

i

i

i

i

i

i

i

i fPPfPPnnN (6.39)

0i

i P

Rearranging the equations and adding rotations;

i

i

i

ii

ii

i FfRf

1

1

1 (6.41)

1

1

111

1

1

i

ii

ii

i

i

i

Ci

i

i

ii

ii

i

i

i fRPFPnRNn (6.42)

Finally, the joint torque is the Z component of the vector representing the inertial torque:

i

iT

i

i

i Zn ˆ (6.43)

For prismatic joints, using τ to denote force:

i

iT

i

i

i Zf ˆ (6.44)

{ i+1}

{ C}

{ i} N

F

𝑑𝑉c

ω

`

Forward and backward iterations: Eq (6.45)-(6.53)

Forward - Link velocities and accelerations via the Newton-Euler (6.31)-(6.37).

1

1

1

1

1

1 ˆ

i

i

ii

ii

ii

i ZR (6.45)

1

1

11

1

1

11

1

1 ˆˆ

i

i

ii

i

ii

ii

ii

ii

ii

i ZZRR (6.46)

)]([ 11

111

i

i

i

i

i

i

i

i

i

i

i

ii

i

i PPRi (6.47)

1

1

1

1

1

1

1

1

1

11 )(1

i

i

i

i

i

i

i

i

i

i

i

i

C

i PPi (6.48)

1

1

1

1

1

1

1

1

11

1

1

1

11

1

1

11

1

1

1

1

i

i

i

i

i

i

i

i

i

C

i

i

i

i

i

C

i

i

C

i

ii

i

IIN

IN

mF

i

i

i

(6.49, 6.50)

Backward - Find joint forces and torques via (6.38)-(6.44).

ii

ii

i

i

i

i FfRIf

1

1

1 (6.51)

1

1

111

1

1

i

ii

ii

i

i

i

i

i

i

ii

ii

i

i

i fRPFPnRNn (6.52)

i

iT

i

i

i Zn ˆ (6.53)

See the Example in Section 6.7 – Simplified two link robot arm.

Check the vector cross multiplications at several places in the solution.

L2

L2

m1

m2

`

For Link 1:

TZ 11

1

101

1 00ˆ

TZ 11

1

11

1 00ˆ

00

0

100

0

0

1

1

11

11

1

0

11 gc

gs

gcs

sc

R i

i

0000

00

00

00)( 111

1

2

11

1

1

1

11

1

1

11

11

1

1

1

11

1

11111 gsl

gsl

gc

gs

l

kji

l

kji

PP CCC

Ti

i

i

CIIN

gsl

gsl

mmF

i 00000

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

11

1

111

1

2

11

1

1

11

1

1

1

---------------------------------------------------------------------

For Link 2:

2121

22

22

2

2

21

12

12

2 0

0

0

0

0

0

100

0

0

ˆ

cs

sc

ZR

21

2

2 0

0

0100

0

0

)]([ 111

1

2

11

22

22

1

22

12

2

1

1

1

1

2

1

1

1

1

12

12

2 gsl

gsl

cs

sc

vRPPRv C

2

2

2

212

2

2

12

2

2

2

2

2

2

2

2

2

1

12

00

00

00

00)(2

l

kji

l

kji

PP CCC

TC

C

IIN

mF

00000 2

2

2

2

2

2

2

2

2

2

2

2

2

2

22

2

2

22

2

2

2

-------------------------------------------------

The backward calculations of 1

1

1

1

2

2

2

2 .,. nfnf for Links 2 and 1 can be carried out similarly.

The joint torques 21 , are the Z components of 2

2

1

1 ,. nn .

`

Dynamic Equations – General Structure

State Space equation:

GVM ,)( (6.59)

where,

)(M = n x n mass matrix for the terms containing nii ..1,

,V = n x 1 vector containing centrifugal ( 2

i ) and Coriolis (

ji ) terms

G = n x 1 vector containing gravity (g) terms.

Configuration Space equation:

GCBM 2)()()( (6.63)

where,

)(xB = a matrix of Coriolis coefficients

)(xC = matrix of centrifugal coefficients

nn 13121 ... , a vector of joint velocity products (6.64)

22

1

2

1

2 ... n , a matrix of centrifugal coefficients (6.65)

The 2 link manipulator example:

G

cc

cc

b

b2

2

2

1

2212

1211

21

2

1

2

1

2221

1211

2

1

`

Internet Downloads:

The Coriolis effect is a deflection of moving objects when they are viewed in a rotating reference

frame. In a reference frame with clockwise rotation, the deflection is to the left of the motion of

the object; in one with counter-clockwise rotation, the deflection is to the right. ----Wikipedia ----

--

`

Lagrangian Dynamic Formulation

Quadratic form of manipulator kinetic energy, analogous to k = ½ mv2

Kinetic energy: ii

CiT

iCi

T

Ciii Imk 2

1

2

1 (6.69)

ikk

)(2

1),( Mk T in vector form (6.71)

Potential energy: irefCi

o

ii uPgTmu 0 (6.73)

iuu

Lagrangian The difference between the kinetic energy and the potential energy of a body:

)(),(),( ukL (6.75)

Lagrangian Equation of Motion (as applied to robot arms) derived from Newton’s Law,

LL

dt

d

(6.77)

ukk

dt

d

Example application of Lagrangian equation – Pendulum

Kinetic energy 2)(2

1lmK

Potential energy )cos1( mglU

Lagrangian )cos1()(2

1 2 mgllmUKL

sinmgl

L

2mlL

2ml

L

dt

d

Lagrangian equation:

sin2 mglml

LL

dt

d = 0

g

L

m

θ

`

Example 6.5 – An RP manipulator

Kinetic energy: 2

11

2

1

2

1112

1

2

1

zzIlmk 2

12

2

2

2

1

2

2222

1)(

2

1

zzIddmk

21),( kkk

Potential energy: glmglmu 111111 sin gdmgdmumax221222 sin

21)( uuu

22

1

2

2221

2

11 )(

dm

dmIIlmk zzzz

22

22121

2

2221

2

11 2)(

dm

ddmdmIIlmk

dt

d zzzz

2

122

0

dm

k

12

12211

sin

cos)(

gm

dmlmgu,

Lagrangian equation:

ukk

dt

d

2

1

From

2

1

, extract

)(M 2 x 2 matrix of 21 , d terms – Angular acceleration

,V = 2 x 1 vector of 212

2

21

2

1 ,,,, ddd terms – Centrifugal and Coriolis

G = 2 x 1 vector of g terms - Gravity

θ1

m1

m2

m1

m2 g

`

Formulation in Cartesian Space

From the Joint space equation : GVM ,)(

The equivalent Cartesian space equation for Force-Torque vector F:

xxx GVXMF ,)( (6.91)

From FJ T )( )( TJF

],)([ GVMJF T (6.94)

Defining a Jacobian relating the Joint space equation to the Cartesian space equation

JX

JJX

)(1 JXJ (6.97)

Substituting (6.97) into (6.94)

],))()([ 1 GVJXJMJF T (6.98)

Then, the relationship between the Cartesian expression and the Joint expression in light of

(6.91) is:

)()()( 1 JMJM T

x

])(),([, 1 JJMVJV T

x (6.99)

)()( GJG T

x

Example 6.6: Derive the Cartesian space dynamics equations for the two link RR robot,

Given

221

21 0)(

lcl

slJ .from (5.55),

find

21221

2

221

101

)(sllcl

l

sllJ ,

0

0)(

221

221

sl

clJ

Then, derive ),(xM ,, xV )(xG from (6.99), (6.60),(6.61), and (6.62)

Cartesian configuration space torque

],)()[( xxx

T GVXMJ (6.104)

or dividing Vx terms into Coriolis and Centrifugal terms,

xxx

T GCBXMJ 2)()()()( (6.105)

`

Friction

Friction force ,F may be added to (6.59) or (6.104) to account for the effect of friction on

Dynamic Simulation

Numerical integration method is used to solve the acceleration problem of the manipulator as

torque is applied to the joints,

From (6.104), solve for

,,)(1 FGVM (6.115)

)()()( tttt , analogous to V(t)=V0 + at and

2)(2

1)()()( ttttttt , analogous to S(t)=S0 + V0(t) + ½ at2 (6.117)