chapter 14: solutions and their properties if you’re not part of the solution,

46

Upload: paloma-whitfield

Post on 15-Mar-2016

61 views

Category:

Documents


2 download

DESCRIPTION

Chapter 14: Solutions and Their Properties If you’re not part of the solution, you’re part of the precipitate!. Properties of Solutions. Physical Properties of Solutions. Have you ever wondered... Why antifreeze keeps water from freezing? Why salt causes ice to melt? - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Chapter 14: Solutions and Their Properties If you’re not part of the solution,
Page 2: Chapter 14: Solutions and Their Properties If you’re not part of the solution,

Chapter 14:Solutions and Their

Properties

If you’re not part of the solution,

you’re part of the precipitate!

Page 3: Chapter 14: Solutions and Their Properties If you’re not part of the solution,

Solvation

Structure/Interm olecular Forces

Henry's Law

B. pt. E levation Fr. pt. Depression Osom otic Pressure

Colligative Properties

Vapor Pressures Raoult's Law

T em perature Pressure

Heats of Solution

Com positions Solubility Rules

Term inology

Properties of Solutions

oAAA PP

Sfbfb mKT ,, TRM S

AS

AA nn

n

Akgnm S

S

VnM S

S

Page 4: Chapter 14: Solutions and Their Properties If you’re not part of the solution,

Physical Properties of Solutions

Have you ever wondered...•Why antifreeze keeps water from freezing?•Why salt causes ice to melt?•Why cooks add salt to boiling water?•Why root beer foams only when poured?•What force opposes gravity to allow water to climb up a tree?

Page 5: Chapter 14: Solutions and Their Properties If you’re not part of the solution,

Solutions

• Solutions are homogeneous mixtures of two or more pure substances.

• In a solution, the solute is dispersed uniformly throughout the solvent.

Page 6: Chapter 14: Solutions and Their Properties If you’re not part of the solution,

An electrolyte is a substance that, when dissolved in water, results in a solution that can conduct electricity.

A nonelectrolyte is a substance that, when dissolved, results in a solution that does not conduct electricity.

nonelectrolyte weak electrolyte strong electrolyte

Page 7: Chapter 14: Solutions and Their Properties If you’re not part of the solution,

“like dissolves like”

Two substances with similar intermolecular forces are likely to be soluble in each other.

• non-polar molecules are soluble in non-polar solvents

CCl4 in C6H6

• polar molecules are soluble in polar solvents

C2H5OH in H2O

• ionic compounds are more soluble in polar solvents

NaCl in H2O or NH3 (l)

Page 8: Chapter 14: Solutions and Their Properties If you’re not part of the solution,

Energy Changes in SolutionTo determine the enthalpy

change, we divide the process into 3 steps. 1. Separation of solute

particles.2. Separation of solvent

particles to make ‘holes’.

3. Formation of new interactions between solute and solvent.

Page 9: Chapter 14: Solutions and Their Properties If you’re not part of the solution,

Three types of interactions in the solution process:• solvent-solvent interaction• solute-solute interaction• solvent-solute interaction

Hsoln = H1 + H2 + H3

Page 10: Chapter 14: Solutions and Their Properties If you’re not part of the solution,

Enthalpy Changes in Solution

The enthalpy change of the overall process depends on H for each of these steps.

Start

End

EndStart

Page 11: Chapter 14: Solutions and Their Properties If you’re not part of the solution,

Calculating⁄Hsolution

(enthalpy of solution)

KF(s) -> K+(g) + F-(g) ⁄ E = +821 kJK+

(g) + F-(g) + H2O -> K+

(aq) + F-(aq)

⁄ E=-819 kJ

So Net -KF(s) -> K+

(aq) + F-(aq)

⁄ Hsolution = +2kJ

Page 12: Chapter 14: Solutions and Their Properties If you’re not part of the solution,

Degree of saturation• Saturated solution

Solvent holds as much solute as is possible at that temperature.

Undissolved solid remains in flask.

Dissolved solute is in dynamic equilibrium with solid solute particles.

Page 13: Chapter 14: Solutions and Their Properties If you’re not part of the solution,

Degree of saturation

• SupersaturatedSolvent holds more solute than is normally

possible at that temperature.These solutions are unstable; crystallization can

often be stimulated by adding a “seed crystal” or scratching the side of the flask.

Page 14: Chapter 14: Solutions and Their Properties If you’re not part of the solution,

Gases in Solution

• In general, the solubility of gases in water increases with increasing mass.

Why?• Larger molecules

have stronger dispersion forces.

Page 15: Chapter 14: Solutions and Their Properties If you’re not part of the solution,

Gases in Solution

• The solubility of liquids and solids does not change appreciably with pressure.

• But, the solubility of a gas in a liquid is directly proportional to its pressure.

Increasing pressure above solution forces more gas to dissolve.

Page 16: Chapter 14: Solutions and Their Properties If you’re not part of the solution,

Henry’s Law

What happens to the solubility of carbon dioxide in a bottle of soda when the pressure is reduced?

Page 17: Chapter 14: Solutions and Their Properties If you’re not part of the solution,

Pressure and Solubility of Gases

The solubility of a gas in a liquid is proportional to the pressure of the gas over the solution (Henry’s law).

c = kPc is the concentration (M) of the dissolved gas

P is the pressure of the gas over the solution

k is a constant (mol/L•atm) that depends onlyon temperature

low P

low c

high P

high c

Page 18: Chapter 14: Solutions and Their Properties If you’re not part of the solution,

Chemistry In Action: The Killer Lake

Lake Nyos, West Africa

8/21/86CO2 Cloud Released

1700 Casualties

Trigger?

• earthquake

• landslide

• strong Winds

Page 19: Chapter 14: Solutions and Their Properties If you’re not part of the solution,

TemperatureGenerally, the solubility of solid solutes in liquid solvents increases with increasing temperature.

Solubility is measured as the mass of solute dissolved in 100 g of solvent at a given temperature

Page 20: Chapter 14: Solutions and Their Properties If you’re not part of the solution,

Temperature• The opposite is true of

gases. Higher temperature drives gases out of solution.

Carbonated soft drinks are more “bubbly” if stored in the refrigerator.

Warm lakes have less O2 dissolved in them than cool lakes.

Page 21: Chapter 14: Solutions and Their Properties If you’re not part of the solution,

Mass Percentage

Mass % of A =mass of A in solutiontotal mass of solution 100

Page 22: Chapter 14: Solutions and Their Properties If you’re not part of the solution,

moles of Atotal moles in solutionXA =

Mole Fraction (X)

• In some applications, one needs the mole fraction of solvent, not solute—make sure you find the quantity you need!

Page 23: Chapter 14: Solutions and Their Properties If you’re not part of the solution,

mol of soluteL of solutionM =

Molarity (M)

• Because volume is temperature dependent, molarity can change with temperature.

Page 24: Chapter 14: Solutions and Their Properties If you’re not part of the solution,

mol of solutekg of solventm =

Molality (m)

Because neither moles nor mass change with temperature, molality (unlike molarity) is not temperature dependent.

Page 25: Chapter 14: Solutions and Their Properties If you’re not part of the solution,

Mass/M

ass

Mole

s/Mole

s

Moles/MassMoles/L

Page 26: Chapter 14: Solutions and Their Properties If you’re not part of the solution,

Changing Molarity to Molality

If we know the density of the solution, we can calculate the molality from the molarity, and vice versa.

Page 27: Chapter 14: Solutions and Their Properties If you’re not part of the solution,

Colligative Properties• Colligative properties depend only on

the number of solute particles present, not on the identity of the solute particles.

• Among colligative properties areVapor pressure lowering Boiling point elevationMelting point depressionOsmotic pressure

Page 28: Chapter 14: Solutions and Their Properties If you’re not part of the solution,

Vapor Pressures of Pure Water and a Water Solution

The vapor pressure of water over pure water is greater than the vapor pressure of water over an aqueous solution containing a nonvolatile solute.

Solute particles take up surface area and lower the vapor pressure

Page 29: Chapter 14: Solutions and Their Properties If you’re not part of the solution,

Vapor Pressure

As solute molecules are added to a solution, the solvent becomes less volatile (has decreased vapor pressure).

Solute-solvent interactions contribute to this effect.

Page 30: Chapter 14: Solutions and Their Properties If you’re not part of the solution,

Vapor Pressure

Therefore, the vapor pressure of a solution is lower than that of the pure solvent.

Page 31: Chapter 14: Solutions and Their Properties If you’re not part of the solution,

Lowering Vapor Pressure• Raoult’s Law:

• Where: PA = vapor pressure with solute,

• PA = vapor pressure without solute (pure solvent), and

A = mole fraction of A (the pure solvent).

Colligative PropertiesColligative Properties

AAA PP

Page 32: Chapter 14: Solutions and Their Properties If you’re not part of the solution,

Boiling Point Elevation and Freezing Point Depression

Solute-solvent interactions also cause solutions to have higher boiling points and lower freezing points than the pure solvent.

Page 33: Chapter 14: Solutions and Their Properties If you’re not part of the solution,

Boiling Point ElevationThe change in boiling point is proportional to the molality of the solution:

Tb = Kb m

where Kb is the molal boiling point elevation constant, a property of the solvent.Tb is added to the normal

boiling point of the solvent.

Page 34: Chapter 14: Solutions and Their Properties If you’re not part of the solution,

Freezing Point Depression• The change in freezing

point can be found similarly:

Tf = Kf m

• Here Kf is the molal freezing point depression constant of the solvent.

Tf is subtracted from the normal freezing point of the solvent.

Page 35: Chapter 14: Solutions and Their Properties If you’re not part of the solution,

Boiling-Point Elevation• Molal boiling-point-elevation constant, Kb, expresses

how much Tb changes with molality, mS :

• Decrease in freezing point (Tf) is directly proportional to molality (Kf is the molal freezing-point-depression constant):

Colligative PropertiesColligative Properties

Sbb mKT

Sff mKT

In both equations, T does not depend on what the solute is, but only on how many particles are dissolved.

Page 36: Chapter 14: Solutions and Their Properties If you’re not part of the solution,

Colligative Properties of Electrolytes

Because these properties depend on the number of particles dissolved, solutions of electrolytes (which dissociate in solution) show greater changes than those of nonelectrolytes.

e.g. NaCl dissociates to form 2 ion particles; its limiting van’t Hoff factor is 2.

Page 37: Chapter 14: Solutions and Their Properties If you’re not part of the solution,

Colligative Properties of Electrolytes

However, a 1 M solution of NaCl does not show twice the change in freezing point that a 1 M solution of methanol does.

It doesn’t act like there are really 2 particles.

Page 38: Chapter 14: Solutions and Their Properties If you’re not part of the solution,

van’t Hoff Factor

One mole of NaCl in water does not really give rise to two moles of ions.

Page 39: Chapter 14: Solutions and Their Properties If you’re not part of the solution,

van’t Hoff FactorSome Na+ and Cl− reassociate as hydrated ion pairs, so the true concentration of particles is somewhat less than two times the concentration of NaCl.

Page 40: Chapter 14: Solutions and Their Properties If you’re not part of the solution,

The van’t Hoff Factor

• Reassociation is more likely at higher concentration.

• Therefore, the number of particles present is concentration dependent.

Page 41: Chapter 14: Solutions and Their Properties If you’re not part of the solution,

The van’t Hoff Factor

We modify the previous equations by multiplying by the van’t Hoff factor, i

Tf = Kf m i

i = 1 for non-elecrtolytes

Page 42: Chapter 14: Solutions and Their Properties If you’re not part of the solution,

Osmosis

• Semipermeable membranes allow some particles to pass through while blocking others.

• In biological systems, most semipermeable membranes (such as cell walls) allow water to pass through, but block solutes.

Page 43: Chapter 14: Solutions and Their Properties If you’re not part of the solution,

OsmosisIn osmosis, there is net movement of solvent from the area of higher solvent concentration (lower solute concentration) to the are of lower solvent concentration (higher solute concentration).

Water tries to equalize the concentration on both sides until pressure is too high.

Page 44: Chapter 14: Solutions and Their Properties If you’re not part of the solution,

Osmosis• Osmotic pressure, , is the pressure required to stop

osmosis:

Colligative PropertiesColligative Properties

TRVn

TRnV

TRM S

Page 45: Chapter 14: Solutions and Their Properties If you’re not part of the solution,

Molar Mass from Colligative Properties

We can use the effects of a colligative property such as osmotic pressure to determine the molar mass of a compound.

Page 46: Chapter 14: Solutions and Their Properties If you’re not part of the solution,

Solvation

Structure/Interm olecular Forces

Henry's Law

B. pt. E levation Fr. pt. Depression Osom otic Pressure

Colligative Properties

Vapor Pressures Raoult's Law

T em perature Pressure

Heats of Solution

Com positions Solubility Rules

Term inology

Properties of Solutions

oAAA PP

Sfbfb mKT ,, TRM S

AS

AA nn

n

Akgnm S

S

VnM S

S