chapter 10 coordination chemistry ii: bonding · 2017-11-13 · chapter 10 coordination chemistry...

68
10-4 Angular Overlap 10-5 The Jahn-Teller Effect 10-6 Four- and Six-Coordinate Preferences 10-7 Other Shapes 10-3 Ligand Field Theory 10-2 Theories of Electronic Structure 10-1 Experimental Evidence for Electronic Structures Chapter 10 Coordination Chemistry II: Bonding “Inorganic Chemistry” Third Ed. Gary L. Miessler, Donald A. Tarr, 2004, Pearson Prentice Ha http://en.wikipedia.org/wiki/Expedia

Upload: others

Post on 21-May-2020

34 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Chapter 10 Coordination Chemistry II: Bonding · 2017-11-13 · Chapter 10 Coordination Chemistry II: Bonding “Inorganic Chemistry” Third Ed. Gary L. Miessler, Donald A. Tarr,

10-4 Angular Overlap

10-5 The Jahn-Teller Effect

10-6 Four- and Six-Coordinate Preferences

10-7 Other Shapes

10-3 Ligand Field Theory

10-2 Theories of Electronic Structure

10-1 Experimental Evidence for Electronic Structures

Chapter 10 Coordination Chemistry II: Bonding

“Inorganic Chemistry” Third Ed. Gary L. Miessler, Donald A. Tarr, 2004, Pearson Prentice Hallhttp://en.wikipedia.org/wiki/Expedia

Page 2: Chapter 10 Coordination Chemistry II: Bonding · 2017-11-13 · Chapter 10 Coordination Chemistry II: Bonding “Inorganic Chemistry” Third Ed. Gary L. Miessler, Donald A. Tarr,

Experimental Evidence for Electronic Structures

Coordination Numbers and Molecular Shapes

Electronic SpectraMagnetic SusceptibilityThermodynamic Data

Page 3: Chapter 10 Coordination Chemistry II: Bonding · 2017-11-13 · Chapter 10 Coordination Chemistry II: Bonding “Inorganic Chemistry” Third Ed. Gary L. Miessler, Donald A. Tarr,

Experimental Evidence for Electronic Structures;Thermodynamic Data

One of the primary goal of a bonding theory is to explain the energy of compound.

The energy is openly not determined directly by experiment.

Thermodynamic measurements of enthalpies and free energies of reaction are used to compare.

Bonding strength → Stability constants(formation constants)

Page 4: Chapter 10 Coordination Chemistry II: Bonding · 2017-11-13 · Chapter 10 Coordination Chemistry II: Bonding “Inorganic Chemistry” Third Ed. Gary L. Miessler, Donald A. Tarr,

Experimental Evidence for Electronic Structures;Thermodynamic Data

What is the stability constants?

The equilibrium constants for formation of coordination complex.

Page 5: Chapter 10 Coordination Chemistry II: Bonding · 2017-11-13 · Chapter 10 Coordination Chemistry II: Bonding “Inorganic Chemistry” Third Ed. Gary L. Miessler, Donald A. Tarr,

Experimental Evidence for Electronic Structures;Thermodynamic Data

Stability constants

Thermodynamic values →Prediction of properties, structures

HSAB concepts

Page 6: Chapter 10 Coordination Chemistry II: Bonding · 2017-11-13 · Chapter 10 Coordination Chemistry II: Bonding “Inorganic Chemistry” Third Ed. Gary L. Miessler, Donald A. Tarr,

Experimental Evidence for Electronic Structures;Thermodynamic Data

HSAB concepts

The gist of this theory is that soft acids react faster and form stronger bonds with soft bases, whereas hard acids react faster and form stronger bonds with hard bases, all other factors being equal.

The classification in the original work was mostly based on equilibrium constants for reaction of two Lewis bases competing for a Lewis acid.

Hard acids and hard bases tend to have:small size high oxidation statelow polarizabilityhigh electronegativityenergy low-lying HOMO (bases) or energy high-lying LUMO(acids).

Page 7: Chapter 10 Coordination Chemistry II: Bonding · 2017-11-13 · Chapter 10 Coordination Chemistry II: Bonding “Inorganic Chemistry” Third Ed. Gary L. Miessler, Donald A. Tarr,

Experimental Evidence for Electronic Structures;Thermodynamic Data

HSAB concepts

Page 8: Chapter 10 Coordination Chemistry II: Bonding · 2017-11-13 · Chapter 10 Coordination Chemistry II: Bonding “Inorganic Chemistry” Third Ed. Gary L. Miessler, Donald A. Tarr,

Experimental Evidence for Electronic Structures;Thermodynamic Data

Entropy Effect

Chelating Ligands

en vs methyl amine

Figure in head….

Stability….

Chelate EffectFive or six membered ring

Page 9: Chapter 10 Coordination Chemistry II: Bonding · 2017-11-13 · Chapter 10 Coordination Chemistry II: Bonding “Inorganic Chemistry” Third Ed. Gary L. Miessler, Donald A. Tarr,

Experimental Evidence for Electronic Structures;Magnetic Susceptibility

The magnetic properties of a coordination compound can provide indirect evidence of the orbital energy level.

Hund’s rule → the max. # of unpaired e-.

Diamagnetic: all e- paried→ repelled by a magnetic field

Paramagnetic: all e- paried→ attracted into a magnetic field

Magnetic Susceptibility: Measuring Magnetism

Page 10: Chapter 10 Coordination Chemistry II: Bonding · 2017-11-13 · Chapter 10 Coordination Chemistry II: Bonding “Inorganic Chemistry” Third Ed. Gary L. Miessler, Donald A. Tarr,

Experimental Evidence for Electronic Structures;Magnetic Susceptibility

Gouy methodA sample that is to be tested is suspended from a balance between the poles of a magnet. The balance measures the apparent change in the mass of the sample as it is repelled or attracted by the magnetic field.

Magnetic Susceptibility

Page 11: Chapter 10 Coordination Chemistry II: Bonding · 2017-11-13 · Chapter 10 Coordination Chemistry II: Bonding “Inorganic Chemistry” Third Ed. Gary L. Miessler, Donald A. Tarr,

Experimental Evidence for Electronic Structures;Magnetic Susceptibility

Electron spin → Spin magnetic moment (ms)

Total spin magnetic moment → Spin quantum # S (sum of ms)

Isolated oxygen atom 1s22s2p4

S = +1/2 +1/2 +1/2 -1/2 = 1

Electron spin → Orbital magnetic moment (ml)Total orbital magnetic moment → Orbital quantum # L (sum of ml)

Max. L for the p4

L = +1 +0 -1 +1 = 1

In physics and applied disciplines such as electrical engineering, the magnetic susceptibility is the degree of magnetization of a material in response to an applied magnetic field.

Page 12: Chapter 10 Coordination Chemistry II: Bonding · 2017-11-13 · Chapter 10 Coordination Chemistry II: Bonding “Inorganic Chemistry” Third Ed. Gary L. Miessler, Donald A. Tarr,

Experimental Evidence for Electronic Structures;Magnetic Susceptibility

The equation for the magnetic moment

Contribution from L is small in first transition series

2.00023 ≈ 2

Two sources of magnetic moment – spin (S) and Angular (L) motions of electrons

Spin quantum number

Angular momentum quantum number

Page 13: Chapter 10 Coordination Chemistry II: Bonding · 2017-11-13 · Chapter 10 Coordination Chemistry II: Bonding “Inorganic Chemistry” Third Ed. Gary L. Miessler, Donald A. Tarr,

Experimental Evidence for Electronic Structures;Electronic Spectra

Give a direct evidence of orbital energy level

Give an information for geometry of complexes

Page 14: Chapter 10 Coordination Chemistry II: Bonding · 2017-11-13 · Chapter 10 Coordination Chemistry II: Bonding “Inorganic Chemistry” Third Ed. Gary L. Miessler, Donald A. Tarr,

Theories of Electronic Structure

Valence bond theory

Crystal field theory

Ligand field theory

Angular overlap method

Page 15: Chapter 10 Coordination Chemistry II: Bonding · 2017-11-13 · Chapter 10 Coordination Chemistry II: Bonding “Inorganic Chemistry” Third Ed. Gary L. Miessler, Donald A. Tarr,

Theories of Electronic Structure;Valence bond theory

Hybridization ideasOctahedral: d2sp3

d orbitals could be 3d or 4d for the first-row transition metals. (hyperligated, hypoligated)

Page 16: Chapter 10 Coordination Chemistry II: Bonding · 2017-11-13 · Chapter 10 Coordination Chemistry II: Bonding “Inorganic Chemistry” Third Ed. Gary L. Miessler, Donald A. Tarr,

Theories of Electronic Structure;Valence bond theory

Fe(III)Isolated ion; 5 unpaired e-

In Oh compound; 1 or 5 unpaired e-

Co(II)

High spin

Low spin

High spin

Low spin

Page 17: Chapter 10 Coordination Chemistry II: Bonding · 2017-11-13 · Chapter 10 Coordination Chemistry II: Bonding “Inorganic Chemistry” Third Ed. Gary L. Miessler, Donald A. Tarr,

Theories of Electronic Structure;Crystal field theory

Crystal field theory (CFT) is a model that describes the electronic structure of transition metal compounds, all of which can be considered coordination complexes.

CFT successfully accounts for some magnetic properties, colours, hydration enthalpies, and spinel structures of transition metal complexes, but it does not attempt to describe bonding.

CFT was developed by physicists Hans Bethe and John Hasbrouck van Vleck in the 1930s.

CFT was subsequently combined with molecular orbital theory to form the more realistic and complex ligand field theory (LFT), which delivers insight into the process of chemical bonding in transition metal complexes.

Page 18: Chapter 10 Coordination Chemistry II: Bonding · 2017-11-13 · Chapter 10 Coordination Chemistry II: Bonding “Inorganic Chemistry” Third Ed. Gary L. Miessler, Donald A. Tarr,

Theories of Electronic Structure;Crystal field theory

Repulsion between d-orbital electrons and ligand electrons→ Splitting of energy levels of d-orbitals

Page 19: Chapter 10 Coordination Chemistry II: Bonding · 2017-11-13 · Chapter 10 Coordination Chemistry II: Bonding “Inorganic Chemistry” Third Ed. Gary L. Miessler, Donald A. Tarr,

Theories of Electronic Structure;Crystal field theory

Page 20: Chapter 10 Coordination Chemistry II: Bonding · 2017-11-13 · Chapter 10 Coordination Chemistry II: Bonding “Inorganic Chemistry” Third Ed. Gary L. Miessler, Donald A. Tarr,

Theories of Electronic Structure;Crystal field theory

Page 21: Chapter 10 Coordination Chemistry II: Bonding · 2017-11-13 · Chapter 10 Coordination Chemistry II: Bonding “Inorganic Chemistry” Third Ed. Gary L. Miessler, Donald A. Tarr,

Theories of Electronic Structure;Crystal field theory

Electrostatic approachIn an Octahedral field of ligand e- pairs; any e-

in them are repelled by the field.Crystal field stabilization energy (CFSE);the actual distribution vs the uniform field.Good for the concept of the repulsion of orbitals by the ligands but no explanation for bonding in coordination complexes.

Page 22: Chapter 10 Coordination Chemistry II: Bonding · 2017-11-13 · Chapter 10 Coordination Chemistry II: Bonding “Inorganic Chemistry” Third Ed. Gary L. Miessler, Donald A. Tarr,

Theories of Electronic Structure;Crystal field theory

Page 23: Chapter 10 Coordination Chemistry II: Bonding · 2017-11-13 · Chapter 10 Coordination Chemistry II: Bonding “Inorganic Chemistry” Third Ed. Gary L. Miessler, Donald A. Tarr,

Theories of Electronic Structure;Crystal field theory

Page 24: Chapter 10 Coordination Chemistry II: Bonding · 2017-11-13 · Chapter 10 Coordination Chemistry II: Bonding “Inorganic Chemistry” Third Ed. Gary L. Miessler, Donald A. Tarr,

Theories of Electronic Structure;Crystal field theory

Page 25: Chapter 10 Coordination Chemistry II: Bonding · 2017-11-13 · Chapter 10 Coordination Chemistry II: Bonding “Inorganic Chemistry” Third Ed. Gary L. Miessler, Donald A. Tarr,

Theories of Electronic Structure;Crystal field theory

Page 26: Chapter 10 Coordination Chemistry II: Bonding · 2017-11-13 · Chapter 10 Coordination Chemistry II: Bonding “Inorganic Chemistry” Third Ed. Gary L. Miessler, Donald A. Tarr,

Theories of Electronic Structure;Crystal field theory

Page 27: Chapter 10 Coordination Chemistry II: Bonding · 2017-11-13 · Chapter 10 Coordination Chemistry II: Bonding “Inorganic Chemistry” Third Ed. Gary L. Miessler, Donald A. Tarr,

Theories of Electronic Structure;Crystal field theory

Page 28: Chapter 10 Coordination Chemistry II: Bonding · 2017-11-13 · Chapter 10 Coordination Chemistry II: Bonding “Inorganic Chemistry” Third Ed. Gary L. Miessler, Donald A. Tarr,

Theories of Electronic Structure;Crystal field theory

Why are complexes formed in crystal field theory?Crystal Field Stabilization Energy (CFSE)Or Ligand Field Stabilization Energy (LFSE)→ the stabilization of the d orbitals because of metal-ligand environments

Page 29: Chapter 10 Coordination Chemistry II: Bonding · 2017-11-13 · Chapter 10 Coordination Chemistry II: Bonding “Inorganic Chemistry” Third Ed. Gary L. Miessler, Donald A. Tarr,

Theories of Electronic Structure;Crystal field theory

∆E = strong field – weak field∆E > 0 weak field∆E < 0 strong field

Page 30: Chapter 10 Coordination Chemistry II: Bonding · 2017-11-13 · Chapter 10 Coordination Chemistry II: Bonding “Inorganic Chemistry” Third Ed. Gary L. Miessler, Donald A. Tarr,

Theories of Electronic Structure;Crystal field theory

What determine ?Depends on the relative energies of the metal ions and ligandorbitals and on the degree of overlap.

Page 31: Chapter 10 Coordination Chemistry II: Bonding · 2017-11-13 · Chapter 10 Coordination Chemistry II: Bonding “Inorganic Chemistry” Third Ed. Gary L. Miessler, Donald A. Tarr,

Theories of Electronic Structure;Crystal field theory

Spectrochemical Series for Metal Ions

Oxidation # ↑→ ∆↑Small size & higher charge

Pt4+ > Ir3+ > Pd4+ > Ru3+ > Rh3+ >Mo3+ > Mn4+ > Co3+ > Fe3+ > V2+ > Fe2+

Co2+ > Ni2+ > Mn2+

Only low spin aqua complex

Page 32: Chapter 10 Coordination Chemistry II: Bonding · 2017-11-13 · Chapter 10 Coordination Chemistry II: Bonding “Inorganic Chemistry” Third Ed. Gary L. Miessler, Donald A. Tarr,

Ligand field theory; Molecular orbitals for Octahedral complexes

CFT & MO were combined

The dx2-y2 and dz2 orbitals can form bonding orbitalswith the ligand orbitals, but dxy, dxz, and dyz orbitalscannot form bonding orbitals

Page 33: Chapter 10 Coordination Chemistry II: Bonding · 2017-11-13 · Chapter 10 Coordination Chemistry II: Bonding “Inorganic Chemistry” Third Ed. Gary L. Miessler, Donald A. Tarr,

Ligand field theory; Molecular orbitals for Octahedral complexes

The combination of the ligand and metal orbitals (4s, 4px, 4py, 4pz, 3dz2, and 3dx2-y2) form six bonding and six antibonding with a1g, eg, t1u symmetries.

The metal T2g orbitalsdo not have appropriate symmetry - nonbonding

Electron in bonding orbitals provide the potential energy that holds molecules together

Page 34: Chapter 10 Coordination Chemistry II: Bonding · 2017-11-13 · Chapter 10 Coordination Chemistry II: Bonding “Inorganic Chemistry” Third Ed. Gary L. Miessler, Donald A. Tarr,

Ligand field theory; Orbital Splitting and Electron Spin

Strong-field ligand – Ligands whose orbitalsinteract strongly with the metal orbitals→large ∆o

Weak-field ligand.

d0~d3 and d8 ~d10 – only one electron configuration possible → no difference in the net spin

Strong fields lead to low-spin complexesWeak fields lead to high-spin complexes

Page 35: Chapter 10 Coordination Chemistry II: Bonding · 2017-11-13 · Chapter 10 Coordination Chemistry II: Bonding “Inorganic Chemistry” Third Ed. Gary L. Miessler, Donald A. Tarr,

Ligand field theory; Orbital Splitting and Electron Spin

What determine ?Depends on the relative energies of the metal ions and ligand orbitals and on the degree of overlap.

Page 36: Chapter 10 Coordination Chemistry II: Bonding · 2017-11-13 · Chapter 10 Coordination Chemistry II: Bonding “Inorganic Chemistry” Third Ed. Gary L. Miessler, Donald A. Tarr,

Ligand field theory; Orbital Splitting and Electron Spin

Spectrochemical Series for Metal Ions

Oxidation # ↑→ ∆↑Small size & higher charge

Pt4+ > Ir3+ > Pd4+ > Ru3+ > Rh3+ >Mo3+ > Mn4+ > Co3+ > Fe3+ > V2+ > Fe2+

Co2+ > Ni2+ > Mn2+

Page 37: Chapter 10 Coordination Chemistry II: Bonding · 2017-11-13 · Chapter 10 Coordination Chemistry II: Bonding “Inorganic Chemistry” Third Ed. Gary L. Miessler, Donald A. Tarr,

Ligand field theory; Ligand field Stabilization Energy

Page 38: Chapter 10 Coordination Chemistry II: Bonding · 2017-11-13 · Chapter 10 Coordination Chemistry II: Bonding “Inorganic Chemistry” Third Ed. Gary L. Miessler, Donald A. Tarr,

Ligand field theory; Orbital Splitting and Electron Spin

Orbital configuration of the complex is determined by ∆o, πc, and πe

In general ∆o for 3+ ions is larger than ∆o for 2+ ions with the same # of e-.

∆o > π low-spin∆o < π high-spin

For low-spin configurationRequire a strong field ligand

Page 39: Chapter 10 Coordination Chemistry II: Bonding · 2017-11-13 · Chapter 10 Coordination Chemistry II: Bonding “Inorganic Chemistry” Third Ed. Gary L. Miessler, Donald A. Tarr,

Ligand field theory; Ligand field Stabilization Energy

Page 40: Chapter 10 Coordination Chemistry II: Bonding · 2017-11-13 · Chapter 10 Coordination Chemistry II: Bonding “Inorganic Chemistry” Third Ed. Gary L. Miessler, Donald A. Tarr,

Ligand field theory; Orbital Splitting and Electron Spin

The position of the metal in the periodic table

Second and third transition series form low-spin more easily than metals form the first transition series-The greater overlap between the larger 4d and 5d orbitals and the ligand orbitals-A decreased pairing energy due to the larger volume available for electrons

Page 41: Chapter 10 Coordination Chemistry II: Bonding · 2017-11-13 · Chapter 10 Coordination Chemistry II: Bonding “Inorganic Chemistry” Third Ed. Gary L. Miessler, Donald A. Tarr,

Ligand field theory; Pi-Bonding

The reducible representation is

Page 42: Chapter 10 Coordination Chemistry II: Bonding · 2017-11-13 · Chapter 10 Coordination Chemistry II: Bonding “Inorganic Chemistry” Third Ed. Gary L. Miessler, Donald A. Tarr,

Ligand field theory; Pi-Bonding

LUMO orbitals:can be used for π bonding with metal

HOMO

Page 43: Chapter 10 Coordination Chemistry II: Bonding · 2017-11-13 · Chapter 10 Coordination Chemistry II: Bonding “Inorganic Chemistry” Third Ed. Gary L. Miessler, Donald A. Tarr,

Ligand field theory; Pi-Bonding

metal-to-ligand π bonding or π back-bonding-Increase stability-Low-spin configuration-Result of transfer of negative charge away from the metal ion

Ligand-to metal π bonding-decrease stability-high-spin configuration

Page 44: Chapter 10 Coordination Chemistry II: Bonding · 2017-11-13 · Chapter 10 Coordination Chemistry II: Bonding “Inorganic Chemistry” Third Ed. Gary L. Miessler, Donald A. Tarr,

Ligand field theory; Square planar Complexes; Sigma bonding

Page 45: Chapter 10 Coordination Chemistry II: Bonding · 2017-11-13 · Chapter 10 Coordination Chemistry II: Bonding “Inorganic Chemistry” Third Ed. Gary L. Miessler, Donald A. Tarr,

Ligand field theory; Square planar Complexes; Sigma bonding

ll ⊥

8 e-

16 e-

e- from metal

Page 46: Chapter 10 Coordination Chemistry II: Bonding · 2017-11-13 · Chapter 10 Coordination Chemistry II: Bonding “Inorganic Chemistry” Third Ed. Gary L. Miessler, Donald A. Tarr,

Ligand field theory; Tetrahedral Complexes; Sigma bonding

The reducible representation isA1 and T2

Page 47: Chapter 10 Coordination Chemistry II: Bonding · 2017-11-13 · Chapter 10 Coordination Chemistry II: Bonding “Inorganic Chemistry” Third Ed. Gary L. Miessler, Donald A. Tarr,

Ligand field theory; Tetrahedral Complexes; Pi bonding

The reducible representation isE, T1 and T2

Page 48: Chapter 10 Coordination Chemistry II: Bonding · 2017-11-13 · Chapter 10 Coordination Chemistry II: Bonding “Inorganic Chemistry” Third Ed. Gary L. Miessler, Donald A. Tarr,

Angular Overlap

LFT →

No explicit use of the energy change that resultsDifficult to use other than octahedral, square planar, tetrahedral.

Deal with a variety of possible geometries and with a mixture of ligand. → Angular Overlap Model

The strength of interaction between individual ligandorbitals and metal d orbitals based on the overlap between them.

Page 49: Chapter 10 Coordination Chemistry II: Bonding · 2017-11-13 · Chapter 10 Coordination Chemistry II: Bonding “Inorganic Chemistry” Third Ed. Gary L. Miessler, Donald A. Tarr,

Angular Overlap:Sigma-Donor Interactions

The strongest σ interaction

There are no examples of complexes with e- in the antibonding orbitals from s and p orbitals, and these high-energy antibonding orbitals are not significant in describing the spectra of complexes. → we will not consider them further.

Page 50: Chapter 10 Coordination Chemistry II: Bonding · 2017-11-13 · Chapter 10 Coordination Chemistry II: Bonding “Inorganic Chemistry” Third Ed. Gary L. Miessler, Donald A. Tarr,

Angular Overlap:Sigma-Donor Interactions

Page 51: Chapter 10 Coordination Chemistry II: Bonding · 2017-11-13 · Chapter 10 Coordination Chemistry II: Bonding “Inorganic Chemistry” Third Ed. Gary L. Miessler, Donald A. Tarr,

Angular Overlap:Sigma-Donor Interactions

Stabilization is 12eσ

Page 52: Chapter 10 Coordination Chemistry II: Bonding · 2017-11-13 · Chapter 10 Coordination Chemistry II: Bonding “Inorganic Chemistry” Third Ed. Gary L. Miessler, Donald A. Tarr,

Angular Overlap:Pi-Acceptor Interactions

The strongest π interaction is considered to be between a metal dxy orbitals and a ligand π* orbital.

Because of the overlap for these orbitals is smaller than the σ overlap, eπ < eσ.

Page 53: Chapter 10 Coordination Chemistry II: Bonding · 2017-11-13 · Chapter 10 Coordination Chemistry II: Bonding “Inorganic Chemistry” Third Ed. Gary L. Miessler, Donald A. Tarr,

Angular Overlap:Pi-Acceptor Interactions

Page 54: Chapter 10 Coordination Chemistry II: Bonding · 2017-11-13 · Chapter 10 Coordination Chemistry II: Bonding “Inorganic Chemistry” Third Ed. Gary L. Miessler, Donald A. Tarr,

Angular Overlap:Pi-Acceptor Interactions

Page 55: Chapter 10 Coordination Chemistry II: Bonding · 2017-11-13 · Chapter 10 Coordination Chemistry II: Bonding “Inorganic Chemistry” Third Ed. Gary L. Miessler, Donald A. Tarr,

Angular Overlap:Pi-Donor Interactions

In general, in situations involving ligands that can behave as both π acceptors and π donors (such as CO, CN-), the π acceptor nature predominates.

Page 56: Chapter 10 Coordination Chemistry II: Bonding · 2017-11-13 · Chapter 10 Coordination Chemistry II: Bonding “Inorganic Chemistry” Third Ed. Gary L. Miessler, Donald A. Tarr,

Angular Overlap:Pi-Donor Interactions

Page 57: Chapter 10 Coordination Chemistry II: Bonding · 2017-11-13 · Chapter 10 Coordination Chemistry II: Bonding “Inorganic Chemistry” Third Ed. Gary L. Miessler, Donald A. Tarr,

Angular Overlap:Pi-Acceptor Interactions

Page 58: Chapter 10 Coordination Chemistry II: Bonding · 2017-11-13 · Chapter 10 Coordination Chemistry II: Bonding “Inorganic Chemistry” Third Ed. Gary L. Miessler, Donald A. Tarr,

Angular Overlap:Types of the ligands and the spectrochemical series

Spectrochemical Series for Ligands

CO > CN- > PPh3 > NO2- > phen > bipy > en

NH3 > py > CH3CN > NCS- > H2O > C2O42-

OH- > RCO2- > F- > N3

- > NO3- > Cl- > SCN-

S2- > Br- > I-

π acceptor (strong field ligand) π donor(weak field ligand)

σ donor only

Page 59: Chapter 10 Coordination Chemistry II: Bonding · 2017-11-13 · Chapter 10 Coordination Chemistry II: Bonding “Inorganic Chemistry” Third Ed. Gary L. Miessler, Donald A. Tarr,

Angular Overlap:Magnitudes of eσ eπ and ∆

Metal and ligand

Page 60: Chapter 10 Coordination Chemistry II: Bonding · 2017-11-13 · Chapter 10 Coordination Chemistry II: Bonding “Inorganic Chemistry” Third Ed. Gary L. Miessler, Donald A. Tarr,

Angular Overlap:Magnitudes of eσ eπ and ∆

Angular overlap parameters derived from electronic spectra

eσ is always larger than eπ. overlap

The magnitudes of both the σ and πparameters ↓ with ↑ size and ↓electronegativity of the halide ions. overlap

isoelectronic

Page 61: Chapter 10 Coordination Chemistry II: Bonding · 2017-11-13 · Chapter 10 Coordination Chemistry II: Bonding “Inorganic Chemistry” Third Ed. Gary L. Miessler, Donald A. Tarr,

Angular Overlap:Magnitudes of eσ eπ and ∆

Can describe the electronic energy of complexes with different shapes or with combinations of different liagnds.

The magnitude of ∆o→ Magnetic properties and visible spectrum.

Page 62: Chapter 10 Coordination Chemistry II: Bonding · 2017-11-13 · Chapter 10 Coordination Chemistry II: Bonding “Inorganic Chemistry” Third Ed. Gary L. Miessler, Donald A. Tarr,

Angular Overlap:The Jahn-Teller Effect

There cannot be unequal occupation of orbitals with identical orbitals.To avoid such unequal occupation, the molecule distorts so that these orbitals no longer degenerate.In other words, if the ground electron configuration of a nonlinear complex is orbitally degenerate, the complex will distort to remove the degeneracy and achieve a lower energy.

Page 63: Chapter 10 Coordination Chemistry II: Bonding · 2017-11-13 · Chapter 10 Coordination Chemistry II: Bonding “Inorganic Chemistry” Third Ed. Gary L. Miessler, Donald A. Tarr,

Angular Overlap:The Jahn-Teller Effect

Page 64: Chapter 10 Coordination Chemistry II: Bonding · 2017-11-13 · Chapter 10 Coordination Chemistry II: Bonding “Inorganic Chemistry” Third Ed. Gary L. Miessler, Donald A. Tarr,

Angular Overlap:Four- and Six-Coordinate Preference

Only σ bonding is considered.

Large # of bonds formed in the octahedral complexes.

Angular overlap calculations

Low-spin square planar

Page 65: Chapter 10 Coordination Chemistry II: Bonding · 2017-11-13 · Chapter 10 Coordination Chemistry II: Bonding “Inorganic Chemistry” Third Ed. Gary L. Miessler, Donald A. Tarr,

Angular Overlap:Four- and Six-Coordinate Preference

Page 66: Chapter 10 Coordination Chemistry II: Bonding · 2017-11-13 · Chapter 10 Coordination Chemistry II: Bonding “Inorganic Chemistry” Third Ed. Gary L. Miessler, Donald A. Tarr,

Angular Overlap:Four- and Six-Coordinate Preference

How accurate are these predictions?

Their success is variable, because of there are other differences between metals and between ligands. In addition, bond lengths for the same ligand-metal pair depend on the geometry of the complex.

The interactions of the s and p orbitals.

The formation enthalpy for complexes also becomes more negative with increasing atomic number and increasing ionization energy.

By careful selection of ligands, many of the transition metal ions can form compounds with geometries other than octahedral.

Page 67: Chapter 10 Coordination Chemistry II: Bonding · 2017-11-13 · Chapter 10 Coordination Chemistry II: Bonding “Inorganic Chemistry” Third Ed. Gary L. Miessler, Donald A. Tarr,

Angular Overlap:Other shapes

Strength of σ–interaction

11

1

11

2+3/4 9/8 9/8 0 0

Page 68: Chapter 10 Coordination Chemistry II: Bonding · 2017-11-13 · Chapter 10 Coordination Chemistry II: Bonding “Inorganic Chemistry” Third Ed. Gary L. Miessler, Donald A. Tarr,

Angular Overlap:Other shapes

Trigonal-bipyramidal ML5 (D3h) σ-donor only