chapter 1 quantum kinetic equations: an...

306
(Summary) (Conclusion) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 1 Chapter 1 Quantum kinetic equations: an introduction P. Degond MIP, CNRS and Universit´ e Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex, France [email protected] (see http://mip.ups-tlse.fr)

Upload: others

Post on 23-Jul-2020

15 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

1

Chapter 1

Quantum kinetic equations: an introduction

P. Degond

MIP, CNRS and Universite Paul Sabatier,

118 route de Narbonne, 31062 Toulouse cedex, France

[email protected] (see http://mip.ups-tlse.fr)

Page 2: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

2Summary

1. Quantum statistical mechanics of nonequilibrium

2. Mean-Field limit

3. Quantum methods: a brief and incomplete summary

4. Hydrodynamic limits

5. Conclusion

Page 3: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

3

1. Quantum statistical mechanics ofnonequilibrium

Page 4: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

4Wave-function

➠ State of a particle → wave-function ψ(x, t) ∈ C

➟ dPt(x) = |ψ(x, t)|2 dx = Probability of findingthe particle in dx at time t.

➟∫|ψ(x, t)|2 dx =

∫dPt(x) = 1

=⇒ ψ(·, t) ∈ L2(Rd)d dimension of base space

➠ Evolution of ψ: Schrodinger equation

i~∂tψ = Hψ

➟ ~ = Planck constant

➟ H Hamiltonian operator

Page 5: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

5Hamiltonian & observables

➠ Hψ = −~2

2∆ψ + V (x, t)ψ

V (x, t) potential energy

➠ Observation of the system:

(ψ, Aψ)L2 =

∫ψ Aψ dx

A Hermitian operator (observable) on L2

Page 6: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

6Example of observables

➠ Ex1. Position operator: X : ψ → xψ(x).Observation = Mean particle position:

(ψ, Xψ) =

∫x |ψ|2 dx

➠ Ex2. Momentum operator P : ψ → −i~∇ψ

(ψ, Pψ) = −∫

ψ i~∇ψ dx =

∫~k |ψ(k)|2 dk

ψ(k) = Fourier transf.

= (2π)−d/2∫

e−ik·xψ(x) dx

Page 7: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

7Most general observable

➠ Any classical observable a(x, p) gives rise to aquantum observable A = Op(a) according to theWeyl quantization rule:

Op(a)ψ =1

(2π)d

∫a(

x + y

2, ~k) ψ(y)eik(x−y) dk dy

a= Weyl symbol of Op(a).

➠ Ex. 3: Classical Hamiltonian Hc = |p|2/2 + V →quantum HamiltonianOp(Hc) = H = −(~2/2)∆ + V

Page 8: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

8N-particle systems

➠ ψ(x1, . . . , xN): xi coordinate of the i-th particle

➟ Classical Hamiltonian:

Hc =N∑

i=1

1

2|pi|2+

1

2

∑i6=j

φint(xi−xj)+∑

i

φext(xi)

➟ Quantum Hamiltonian:

H = −N∑

i=1

~2

2∆xi

+1

2

∑i6=j

φint(xi−xj)+∑

i

φext(xi)

Page 9: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

9Incompletely known states

➠ Uncertainty about the state of the system:

➟ (φs)s∈S a complete orthonormal basis of thesystem

➟ ρs lists the probability of state s:

0 ≤ ρs ≤ 1 ,∑s∈S

ρs = 1

➠ Probability of presence of the particle in theincompletely known state described by (ρs)s∈S:

P (x, t)dx =∑s∈S

ρs |φs|2 dx

Page 10: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

10Density operator

➠ Incompletely known (or mixed) state (φs, ρs)s∈S

➟ Density operator ρ

ρψ =∑s∈S

ρs(ψ, φs) φs

➠ ρ is a Hermitian, positive, trace-class operator:

Trρ =∑s∈S

ρs = 1

➟ Pure state: all ρs = 0 but one ρs0= 1;

ρ = (·, φs0) φs0

= projector

Page 11: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

11Evolution of ρ

➠ φs(t) solution of Shrodinger eq.

➠ uncertainty does not evolve with time:

ρs = Constant

➠ Eq. for ρ

i~∂tρ = Hρ − ρH = [H, ρ]

Quantum Liouville equation

Page 12: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

12Integral kernel of ρ

➠ ρ(x, x′) integral kernel of ρ:

ρψ =

∫ρ(x, x′)ψ(x′) dx′

ρ(x, x′) =∑

s

ρsφs(x)φs(x′)

➠ Liouville eq. expressed on ρ(x, x′)

i~∂tρ = (Hx −Hx′)ρ

ρ(x′, x) = ρ(x, x′) , Trρ =

∫ρ(x, x) dx

Page 13: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

13Observables and density operator

➠ Observable A. Observation of the mixed state:

〈A〉ρ =∑

s

ρs(Aφs, φs) = Tr{ρA}

➠ Example: probability of presence at x0:

P (x0) =∑s∈S

ρs |φs(x0)|2

= ρ(x0, x0) = Tr{ρ Op(δx−x0)}

Observation of the state at x = x0.

Page 14: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

14Wigner transform

➠ A = Op(a):

〈Op(a)〉ρ = Tr{ρOp(a)}

=1

(2π~)d

∫W [ρ](x, p)a(x, p) dx dp

W [ρ] Wigner transform of ρ

➠ W [ρ](x0, p0) = (2π~)d〈Op(δx−x0δp−p0

)〉ρObservation of the system at (x0, p0).

Page 15: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

15Wigner transform (cont)

W [ρ](x, p) =

∫ρ(x − η

2, x +

η

2) e

iη·p

~ dη

=∑

s

ρs

∫φs(x − η

2)φs(x +

η

2) e

iη·p

~ dη

➠ Note: W [ρ] real-valued but not ≥ 0W [ρ] dx dp is not a probability distributionfunction

WH [ρ] = W [ρ] ∗ G ≥ 0 , G =1

(~π)3e−(|x|2+|p|2)/~

Hussimi distribution function

Page 16: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

16Wigner equation

➠ Eq. for W [ρ]:

∂tW + p · ∇xW + Θ~[V ]W = 0

Θ~[V ]W = − i

(2π)3~

∫(V (x +

~

2η) − V (x − ~

2η))

×W (x, q) eiη·(p−q) dq dη

➠ Like the classical kinetic eq. but for the fieldterm Θ~[V ]

➠ Θ~[V ]W~→0−→ −∇xV · ∇pW

➠ Note p = v (m = 1)

Page 17: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

17A few useful identities

∫W [ρ] W [σ]

dx dp

(2π~)d= Tr{ρ σ†}

∫a b

dx dp

(2π~)d= Tr{Op(a) Op(b)†}

W = Op−1 , Op = W−1

Weyl quantization and Wigner transformation are in-

verse operations

Page 18: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

18

2. Mean-Field limit

Page 19: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

19N-particle quantum system

➠ Density operator ρN on L2(R3N)

➟ Kernel ρN(x1, x′1, . . . , xN , x′

N)

➟ undistinguishability

ρN(xσ(1), x′σ(1), . . . , xσ(N), x

′σ(N)) =

ρN(x1, x′1, . . . , xN , x′

N), ∀permutation σ

➠ Liouville eq.

i~∂tρN = [HN , ρN ]

HN =N∑

i=1

1

2|pi|2 +

1

2

∑i6=j

φ(xi − xj)

Page 20: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

20Partial density operators

➠ Partial trace w.r.t. the N − j last variables

ρj = TrNj+1{ρN}ρj(x1, x

′1, . . . , xj, x

′j) =∫

ρN(. . . , xj+1, xj+1, . . . , xN , xN) dxj+1 . . . dxN

➠ Eq. for ρj: quantum BBGKY hierarchy

i~∂tρj = [Hj, ρj] + Qj(ρj+1)

Hj =

j∑i=1

1

2|pi|2 +

1

2

j∑i,k=1,i6=k

φ(xi − xk)

Page 21: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

21Quantum BBGKY hierarchy

Qj(ρj+1) = (N − j)

j∑i=1

Trj+1{[φ(xi − xj+1), ρj+1]}

➠ Eq. for ρ1

i~∂tρ1 = [H1, ρ1] + Q1(ρ2)

H1 =1

2|p1|2

Q1(ρ2) = (N − 1)Tr2{[φ(x1 − x2), ρ2]}

Q1(ρ2) = (N − 1)

∫[φ(x1 − x2) − φ(x′

1 − x2)]

×ρ2(x1, x′1, x2, x2) dx2

Page 22: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

22Mean-field limit

➠ (i) Rescale φ → 1N φ and take N → ∞

➠ (ii) Propagation of chaos:

ρ2(x1, x′1, x2, x

′2) = ρ1(x1, x

′1) ρ1(x2, x

′2)

Q1(ρ2) = (1 − (1/N))

∫[φ(x1 − x2) − φ(x′

1 − x2)]

×ρ2(x1, x′1, x2, x2) dx2

≈∫

[φ(x1 − x2) − φ(x′1 − x2)]ρ

1(x2, x2) dx2

×ρ1(x1, x′1)

Page 23: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

23Mean-field limit (cont)

➠ i.e.

Q1(ρ2) ≈ (Vρ(x1) − Vρ(x′1))ρ

1(x1, x′1)

orQ1(ρ2) ≈ [Vρ, ρ

1]

with

Vρ(x) =

∫φ(x − y)ρ1(y, y) dy

Page 24: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

24Quantum mean-field eq.

i~∂tρ = [Hmf , ρ]

Hmf =1

2|p|2 + Vρ

Vρ(x) =

∫φ(x − y)n(y) dy

n(y) = ρ(y, y)

Density operator formulation of Schrodinger mean-

field equations

Page 25: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

25Schrodinger mean-field eq.

➠ Pure-state: ρ = (·, ψ)ψ is a projector where ψsatisfies Schrodinger mean-field eq.

i~∂tψ = Hmfψ

Hmf =1

2|p|2 + Vψ

Vψ(x) =

∫φ(x − y)n(y) dy

n(y) = |ψ(y)|2

Page 26: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

26Mean-field limit for Fermions

➠ Fermions (such as electrons) have antisymmetricwave functions:

ψ(xσ(1), . . . , xσ(N)) = (−1)ε(σ)ψ(x1, . . . , xN)

ε(σ) = signature of the permutation σ

➠ Density matrix satisfies

ρ(x1, x′σ(1), . . . , xN , x′

σ(N)) = (−1)ε(σ)ρ(x1, x′1, . . . , xN , x′

N)

Page 27: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

27Mean-field closure for Fermions

➠ Hartree Mean field closure

ρ2(x1, x′1, x2, x

′2) = ρ1(x1, x

′1) ρ1(x2, x

′2)

Does not satisfy antisymmetry

➠ Instead, use

ρ2(x1, x′1, x2, x

′2) = ρ1(x1, x

′1) ρ1(x2, x

′2)−ρ1(x1, x

′2) ρ1(x2, x

′1)

’Slater determinant’ closure

Page 28: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

28Exchange-correlation potential

➠ Gives

Q1(ρ2) ≈ (Vρ(x1) − Vρ(x′1))ρ

1(x1, x′1) − Q

ex(ρ1)

with

Qex

(ρ1) =

∫[φ(x1 − x2) − φ(x′

1 − x2)]ρ1(x1, x2)ρ

1(x2, x′1) dx2

Vρ(x) =

∫φ(x − y)ρ1(y, y) dy

Qex

= exchange-correlation potential

Page 29: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

29Exchange-correlation potential (cont)

➠ In short:

Qex = Tr{[φ, (ρ ⊗ ρ)ex]}2

with

(ρ ⊗ ρ)ex = ρ1(x1, x′2) ρ1(x2, x

′1)

and Tr{}2 is the trace w.r.t. the second variable

Page 30: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

30Hartree-Fock mean-field model

i~∂tρ = [Hmf , ρ] − Qex(ρ)

Hmf =1

2|p|2 + Vρ

Qex = Tr{[φ, (ρ ⊗ ρ)ex]}2

Vρ(x) =

∫φ(x − y)n(y) dy

n(y) = ρ(y, y)

Page 31: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

31Rigorous results and comments

➠ Mean-field limit:

➟ φ smooth: [Spohn]

➟ φ = Coulomb: [Bardos, Golse, Mauser]

➟ Hartree-Fock: [Bardos, Golse, Gottlieb, Mauser]

➠ Semiclassical limit ~ → 0 of Schrodingermean-field eq.

➟ Wigner-Poisson → Vlasov-Poisson [Lions, Paul],[Markowich, Mauser]

➠ No such analogy as the BBGKY hierarchy forHard-Spheres in quantum mechanics

➟ No quantum Boltzmann eq.

Page 32: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

32

3. Quantum methods: a brief and incompletesummary

Page 33: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

33’Small’ systems

➠ Ex: atoms, molecules ∼ few tens of e−

➠ Eigengvalue problem:

➟ Minimal energy (first eigenvalue)

➟ Excited states (lower spectrum)

➠ Techniques

➟ Hartree-Fock (ψ = Slater determinant)

➟ Multiconfiguration (ψ =∑

Slater det.)

➟ Born-Oppenheimer (nuclei classical)

➟ Car-Parinello (concurrent optimization)

Page 34: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

34Small systems: dynamics

➠ Examples

➟ Chemical reactions

➟ Surface crossings

➟ Chemical reaction control by lasers

➟ Determination of reaction intermediates

➠ Techniques

➟ Direct computation of Time-dependentSchrodinger

➟ Time-dependent Hartree-Fock

➟ . . .

Page 35: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

35’Large’ systems

➠ Examples:

➟ Large molecules

➟ Crystals

➟ Molecular dynamics (change of phases)

➟ Nano-objects

➠ Density Functional Theory (DFT)

➟ Finding the minimal energy

➟ Reduces the problem to a one-particle problemin a nonlinear potential (exact)

➟ [Hohenberg], [Hohenberg-Kohn]

Page 36: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

36DFT: discussion

➠ Problem: nonlinear potential not known:approximations

➟ Thomas-Fermi

➟ Kohn-Sham

➟ . . .

➠ Validity of these approximations ?

Page 37: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

37Open systems

➠ Examples

➟ Electrons in a semiconductor

➟ Molecule in a solvant

➟ Protein in a cell

➟ . . .

➠ How to account for the environment ?

Page 38: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

38Model for Open systems

➠ Density matrix:

ρ(x1, x′1, . . . , xN , x′

N , y1, y′1, . . . , yP , y′P )

➟ x1, . . . , xN : system under consideration

➟ y1, . . . , yP : environment variables

➠ Programme:

➟ Evolution eq. for ρ

➟ Partial trace over the y variables

➟ Closure (e.g. y at thermo equilibrium)

Page 39: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

39Model for Open systems (cont)

➠ Example:

➟ electron-phonon in semiconductors

➟ partial trace over phonon variables

➟ [Argyres]

➠ Problem:

➟ Leads to very complex ’collision operators’

➟ Nonlocality in space and time

➟ Very difficult to deal with numerically

➟ Validity of the closure

Page 40: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

40Other route: hydrodynamic models

➠ Meso-scale:

➟ Large enough system so that a notion ofthermodynamic limit is valid

➟ Not too large s.t. quantum decoherence doesnot occur

➠ Scale separation

➟ Small scale phenomena clearly separated fromlarge scale ones

➟ small scale → local equilibrium

➟ large scale → macroscopic evolution

Page 41: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

41

4. Hydrodynamic limits

Page 42: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

42Difficulty w. quantum hydrodynamics

➠ 6 ∃ Boltzmann eq.

➠ What can be done:

➟ 1-particle hydrodynamics➞ Classical → pressureless gas dynamics➞ Quantum → quantum trajectories (Bohmian

mechanics)

➟ Extension of Bohmian mechanics tomany-particle: closure problem

➟ Entropy minimization principle (a la’Levermore’)

Page 43: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

431-particle hydrodynamics: classical case

➠ Consider the Free Transport Eq.

∂f

∂t+ v · ∇xf −∇xV · ∇vf = 0

Look for solutions of the form

f = n(x, t) δ(v − u(x, t))

➠ Then, n and u satisfy exactly Pressureless gasdynamics

∂tn + ∇x · nu = 0

∂tu + u · ∇xu = −∇xV

Non strictly hyperbolic. [Brenier], [Bouchut], [E]

Page 44: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

441-particle hydrodynamics: quantum case

➠ Single state ψ

i~∂tψ = −~2

2∆ψ + V (x, t)ψ

Decompose

ψ =√

neiS/~

and define u = ∇xS. Then take real and imaginaryparts

∂tn + ∇x · nu = 0

∂tS +1

2|∇S|2 + V − ~

2

2

1√n

∆√

n = 0

Page 45: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

451-particle QHD

➠ Take ∇ of the phase eq.

∂tn + ∇x · nu = 0

∂tu + u · ∇xu = −∇x(V + VB)

VB = −~2

2

1√n

∆√

n

VB = Bohm potential

➠ Pressureless Gas dynamics w. additional Bohmpotential term.

➟ If O(~2) term neglected → ClassicalHamilton-Jacobi eq.

Page 46: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

46Temperature eq.

➠ Bohm potential → dispersive term: adds highfrequency oscillations

➟ Numerics delicate

➠ Question: temperature eq. ?

➟ Starting point: mixed-state (i.e. densityoperator or Wigner distribution)

➟ Average over the statistics of mixed-state

➠ Closure problem

Page 47: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

47Quantum Hydrodynamic closure

➠ Classical Fourier law for the heat flux [Gardner]

➠ Small temperature asymptotics [Gasser,Markowich, Ringhofer]

➠ Chapman-Enskog expansion of phenomenologicalBGK-type collision term [Gardner, Ringhofer]

➠ Entropy minimization principle ’a la Levermore’[D. ,Ringhofer]

Page 48: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

48

5. Summary and conclusion

Page 49: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

49Summary

➠ Reviewed: basics of quantum statisticalmechanics of nonequilibrium systems

➟ Density operator

➟ Quantum Liouville eq.

➟ Wigner transform and Wigner eq.

➟ Mean-field limits: Hartree and Hartree-Focksystems

➠ Discussed the modeling of open systems

➠ Reviewed (briefly) previous approaches onquantum hydrodynamics

Page 50: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

50Next step

➠ Derivation of quantum hydrodynamic modelsbased on the entrtopy minimization approach

Page 51: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

1

Chapter 2

Derivation of moment models via the entropyminimization approach (classical case)

P. Degond

MIP, CNRS and Universite Paul Sabatier,

118 route de Narbonne, 31062 Toulouse cedex, France

[email protected] (see http://mip.ups-tlse.fr)

Page 52: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

2Summary

1. Classical description of particle systems

2. The moment method and the Euler eq.

3. Higher order moment systems: Levermore’s approach

4. Summary, conclusion and perspectives

Page 53: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

3

1. Classical description of particle systems

Page 54: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

4Distribution function

➠ f(x, v, t) = density in phase space (x, v)f dx dv = number of particles in dx dv

v

x

f(x, v, t)

Velocity

Position

➠ Equation satisfied by f ?

Page 55: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

5Collisionless particles

➠ All particles issued from the same point (x, v) ofphase-space follow the same trajectory

X = V , V = −∇V (X , t)

v′

v

x′x

Page 56: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

6Free transport equation

➠ =⇒d

dtf(X (t),V(t), t) = 0

➠ Chain rule =⇒

∂f

∂t+ v · ∇xf −∇V (x, t) · ∇vf = 0

Free transport equation

Page 57: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

7Collision operator

➠ In the presence of collisions, particles would obeythe free motion equations:

➟ Rate of change of f while following theparticle motion is due to collisions

d

dt[f(X (t),V(t), t)] =

=

(

∂f

∂t+ v · ∇xf −∇V (x, t) · ∇vf

)

|(X (t),V(t),t)

= Q(f)|(X (t),V(t),t) collision operator

Page 58: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

8Form of the collision operator

➠ Collision operator is

➟ local in time (collision dynamics isinstantaneous)

➟ local in space

➟ operates on v only

Q(f) = Q+(f) − Q−(f)

= Gain − Loss

OutIn

dfdt

= Q(f)v

x

v′

Page 59: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

9The Boltzmann operator

➠ Models binary interactions between particles

➠ Complex form. Unnecessary for our purpose

➟ Only algebraic properties matter

➠ Boltzmann equation

∂f

∂t+ v · ∇xf −∇V (x, t) · ∇vf = Q(f)

Page 60: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

10Fluid variables

➠ Fluid quantities = averaged over a ’small’ volumein physical space

➠ Ex. Density n(x, t) dx = number of particles in asmall volume dx.

Mean momentum q dx =∑

i∈dx

vi

Mean energy W dx =∑

i∈dx

|vi|2/2

Page 61: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

11Link w. the kinetic distribution function

n

q

2W

=

f

1

v

|v|2

dv

➠ n, q, W , . . . are moments of f

➟ Eqs for n, q, W , . . . are called fluid (ormacroscopic) equations

➟ To determine these equations, we need someproperties of Q

Page 62: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

12Properties of Q (I): Conservations

Q(f)

1

v

|v|2

dv = 0

➠ Conservation of

mass

momentum

energy

➠ 1, v, |v|2 = collisional invariant. Any collisionalinvariant is a combination of these 5 ones

Page 63: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

13Conservations (cont)

➠ Homogeneous case (∇x = 0, V = 0):

∂f

∂t= Q(f) =⇒

∂t

f

1

v

|v|2

dv = 0

=⇒∂

∂t

n

q

2W

dv = 0

➠ Homogeneous case =⇒ Total mass, momentumand energy are conserved

Page 64: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

14Properties of Q (II):H-theorem

➠ H-theorem∫

Q(f) ln fdv ≤ 0

➠ Define the Entropy of f :

H(f) =

f(ln f − 1)dv

Note h(h) = f(ln f − 1) =⇒ h′(f) = ln f

Page 65: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

15Entropy

➠ Homogeneous situation (∇x = 0, V = 0):

∂f

∂t= Q(f) =⇒

∂H(f)

∂t=

Q(f)(ln f−1)dv ≤ 0

➠ Entropy decays

➟ Rate of entropy decay = entropy dissipation

➟ Signature of irreversibility

Page 66: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

16Properties of Q (III): Equilibria

➠ Q(f) = 0 ⇐⇒ ln f is a collisional invariant

⇐⇒ ∃A, C ∈ R+, B ∈ R3s.t.

f = exp(A + B · v + C|v|2)

➠ Maxwellian: other expression

Mn,u,T =n

(2πT )3/2exp

(

−|v − u|2

2T

)

(n, u, T ) straightforwardly related w. (A, B, C)

Page 67: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

17Local vs global thermodynamic equilibrium

➠ n, u, T related w. moments n, q,W :

Mn,u,T

1

v

|v|2

dv =

n

nu

n|u|2 + 3nT

➠ (n, u, T ) independent of (x, t) → Globalthermodynamic equilibrium

➠ (n, u, T ) dependent on (x, t) → Localthermodynamic equilibrium (LTE)

➟ The dynamics of (n, u, T ) → Hydrodynamicequations

Page 68: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

18Entropy decay ⇔ relaxation to Maxwellians

➠ (i) Entropy dissipation∫

Q(f) ln fdv ≤ 0 and≡ 0 iff f = Maxwellian

➠ Dynamics of the Boltzmann equation

➟ Relaxation to LTE (through entropydissipation)

➟ Slow evolution on the manifold of LTE’s

➠ Time scale separation

➟ Fast kinetic scale

➟ Slow hydrodynamic scale

Page 69: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

19Entropy minimization principle

➠ Entropy minimization subject to momentconstraints: let n, T ∈ R+, u ∈ R3 fixed.

min{H(f) =

f(ln f − 1)dv s.t.

f

1

v

|v|2

dv =

n

nu

n|u|2 + 3nT

}

is realized by f = Mn,u,T .

Page 70: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

20Entropy minimization principle (cont)

➠ Entropy minimization:

➟ Most effective characterization of Maxwelliansfor further extensions

➠ Examples

➟ More moment constraints → Levermoremodels

➟ Quantum entropy → quantum hydro models

Page 71: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

21BGK operator

➠ Expression of the Boltzmann operator is verycomplicated

➠ Is there a simpler operator which possesses thesame algebraic properties as the Boltzmannoperator ?

➟ Conservation of mass, momentum and energy

➟ Entropy decay

➟ Relaxation towards Maxwellian (LocalThermodynamical equilibrium)

➠ Yes: BGK operator [Bhatnagar-Gross-Krook]

➟ Plain relaxation to Maxwellians

Page 72: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

22BGK operator (cont)

Q(f) = −ν(f − Mf)

where Mf = Mn,u,T is the Maxwellian with the samemoments as f i.e. (n, u, T ) are such that

(Mf − f)

1

v

|v|2

dv = 0

i.e.

n

nu

n|u|2 + 3nT

=

f

1

v

|v|2

dv

Page 73: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

23Properties of BGK operator

➠ Shows the same ’algebraic’ properties as theBoltzmann operator

➠ (i) Collisional invariants:∫

Q(f)ψdv = 0,∀f ⇐⇒ ψ(v) = A+B·v+C|v|2

➠ (ii) Equilibria:

Q(f) = 0 ⇐⇒ f = Mn,u,T

Page 74: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

24Properties of BGK operator (cont)

➠ H-theorem∫

Q(f) ln fdv ≤ 0 (= 0 ⇐⇒ f = Mn,u,T )

➠ Simpler operator

➟ Theory is simpler

➟ Numerical simulations are easier

➟ Some unphysical features (Prandtl number)

Page 75: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

25Some references for BGK

➠ Existence of weak solutions [Perthame, Pulvirenti]

➠ Numerical solutions [Dubroca, Mieussens]

➠ Generalized BGK models [Bouchut, Berthelin]

Page 76: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

26Ref for Boltzmann: Homogeneous equation

➠ Existence and uniqueness of classical solutions[Carleman], [Arkeryd], ...

➠ Convergence to a Maxwellian as t → ∞[Desvillettes], [Wennberg], ...

Page 77: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

27Boltzmann: Non-homogeneous equation

➠ Difficulty: Q(f) quadratic in f

➠ ref. [DiPerna, Lions]: renormalized solutions i.e.satisfying:

(∂

∂t+ v · ∇x)β(f) = β′(f)Q(f) in D′

∀β Lipschitz, s.t. |β′(f)| ≤ C/(1 + f)

➠ Note: β′(f)Q(f) grows linearly with f

Page 78: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

28Perturbation of equilibria

➠ ref: [Ukai], [Nishida, Imai], ...

➠ M global Maxwellian (parameters (n, u, T ) areconstant indep. of x, t

➠ f = M + g, with ”g ≪ M”

➠ Decompose

Q(f) = LMg + Γ(g, g)

➠ Prove operator v · ∇xg − LMg dissipative

➠ Compensates blow-up of Γ(g, g) if g small

Page 79: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

29

2. The moment method and the Eulerequations

Page 80: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

30Moment method

➠ Natural idea: (i) multiply Boltzmann eq. by1, v, |v|2 and integrate wrt v:

((∂t + v · ∇x)f − Q(f))

1

v

|v|2

dv

➠ (ii) use conservations:

Q(f)

1

v

|v|2

dv = 0

Page 81: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

31Moment method (cont)

➠ (iii) Get conservation eqs

∂t

n

q

2W

+ ∇x ·

f

1

v

|v|2

v dv = 0

➠ Problem: Express fluxes in term of the conservedvariables n, q, W

➟∫

fvivj dv (for i 6= j) and∫

f |v|2 v dv cannotbe expressed in terms of n, q, W .

➠ conservation eqs are not closed

Page 82: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

32Fluxes

➠ Density flux:∫

fv dv = q. Define

u =q

nVelocity

➠ Momentum flux tensor:∫

fvv dv =

fuu dv +

f(v − u)(v − u) dv

= nuu + P

P pressure tensor, not defined in terms ofn, q, W

Page 83: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

33Fluxes (cont)

➠ Energy flux∫

f |v|2 v dv = 2(Wu + Pu + Qu)

2Q =

f |v − u|2(v − u) dv

not defined in terms of n, q, W

Page 84: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

34Conservation equations

∂t

n

q

W

+ ∇x ·

nu

nuu + P

Wu + Pu + Q

= 0

➠ Problem: find a prescription which relates P andQ to n, u, W :

Closure problem

Page 85: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

35Hydrodynamic scaling

Microscopic scale Macroscopic scale

η ≪ 1

➠ Rescale: x′ = εx, t′ = εt

ε(∂tfε + v · ∇xf

ε) = Q(f ε)

Page 86: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

36Limit ε → 0

➠ Suppose f ε → f0 smoothly. Then

Q(f0) = 0

i.e. ∃n(x, t), u(x, t), T (x, t) s.t. f = Mn,u,T

nεuε

2Wε

n

nu

2W = n|u|2 + 3nT

Page 87: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

37Fluxes

Pε =

f ε(v − u)(v − u) dv −→ P = p Id

p = nT = Pressure

2Qε =

f ε|v − u|2(v − u) dv −→ 0

Page 88: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

38Conservation eqs as ε → 0: Euler eq.

∂t

n

nu

n|u|2 + 3nT

+∇x·

nu

nuu + nT Id

(n|u|2 + 5nT )u

= 0

➠ Euler eqs of gas dynamics.p = nT perfect gas Equation-of-State

Page 89: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

39Beyond Euler

➠ Problem: find order ε, ε2, . . . corrections to Eulereqs.

➠ Expand (Hilbert or Chapman-Enskog expansion):

f ε = f0 + εf1 + ε2f2 + . . .

➟ Insert in the Boltzmann eq. and solverecursively

➠ Order ε corrections → Navier-Stokes eq.

➟ Higher order corrections (Burnett,super-Burnett) unstable

Page 90: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

40Rigorous results for the hydrodynamic limit

➠ (i) Boltzmann → compressible Euler

Theorem [Caflish, CPAM 1980] n, u, T smoothsolutions of Euler on a time interval [0, t∗] (t∗ <blow-up time of regularity), with initial datan0, u0, T0.∃ε0 > 0, ∀ε < ε0, ∃f ε a solution of the Boltzmannequation with initial data Mn0,u0,T0

on [0, t∗] and

sup[0,t∗]

‖f ε(t) − Mn,u,T (t)‖ ≤ Cε

Page 91: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

41Rigorous results for the hydrodynamic limit (2)

➠ Boltzmann → incompressible Navier-Stokes

➠ Perturbation of a global Maxwellian with u = 0.

➟ Rescale velocity and time (diffusion limit)

➟ ref: [De Masi, Esposito, Lebowitz], [Bardos,Golse, Levermore], [Bardos, Ukai], [Golse,Saint-Raymond]

Page 92: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

42Why looking for new hydrodynamic systems

➠ Perturbation approach not valid when gradientsare large (i.e. ǫ not small)

➠ Higher order perturbation models (beyondNavier-Stokes) are unstable

➠ Find models which are consistent with entropydissipation (Navier-Stokes OK but not Burnett)

Page 93: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

43Higher order moment models

➠ Idea: increase the number of moments

➟ Moment system hierarchies

➟ ref. [Grad], [Muller, Ruggeri (extendedthermodynamics)], [Levermore]

➠ Try to do it consistently with the entropydissipation rule

➟ Levermore models

➟ Developped in the next section

Page 94: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

44

3. Higher order moment systems:Levermore’s approach

Page 95: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

45Moments (1)

➠ List of monomials µi(v)

µ(v) = (µi(v))Ni=0

➠ Contains hydrodynamic moments

µ0(v) = 1; µi(v) = vi, i = 1, 2, 3; µ4(v) = |v|2

➠ Example

µ(v) = {1, v, vv} Gaussian model

µ(v) = {1, v, vv, |v|2v, |v|4}

Page 96: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

46Moments (2)

➠ For a distribution function f , define:

m(f) = (mi(f))Ni=0 , mi(f) =

fµi(v) dv

➠ Eq. for the i-th moment:

∂tmi(f) + ∇x ·

fµi(v)v dv =

Q(f)µi(v) dv

➠ Note∫

Q(f)µi(v) dv 6= 0 if µi 6= hydrodynamicmonomial

Page 97: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

47Closure problem

➠ Find a prescription for∫

fµi(v)v dv and

Q(f)µi(v) dv

in terms of the moments mi

Page 98: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

48Entropy minimization principle (Gibbs)

➠ Let n, T ∈ R+, u ∈ R3 fixed.

min{H(f) =

f(ln f − 1)dv s.t.

f

1

v

|v|2

dv =

n

nu

n|u|2 + 3nT

}

is realized by f = Mn,u,T .

Page 99: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

49Proof of Gibbs principle

➠ Euler-Lagrange eqs of the minimization problem:∃A, C ∈ R, B ∈ R3 (Lagrange multipliers) s.t.∫

(ln f − (A + B · v + C|v|2)) δf dv = 0, ∀ δf

➠ =⇒ f = exp(A + B · v + C|v|2)i.e. f = Maxwellian

Page 100: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

50Euler eqs in view of the entropy principle

➠ Euler eqs = moment system (only involvinghydrodynamical moments), closed by a solutionof the entropy minimization principle

➠ Idea [Levermore], [extended thermodynamics] Usethe same principle for higher order momentsystems

Page 101: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

51Generalized entropy minimization principle

➠ Given a set of moments m = (mi)Ni=0, solve

min{H(f) =

f(ln f−1)dv s.t.

fµ(v)dv = m}

➠ Solution: generalized Maxwellian:∃ vector α = (αi)

Ni=0 s.t.

f = Mα(v) = exp(α · µ(v)) = exp(N

i=0

αiµi(v))

Page 102: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

52Levermore moment systems

➠ Use the generalized Maxwellian Mα as aprescription for the closure

∂t

Mαµ(v) dv+∇x·

Mαµ(v)v dv =

Q(Mα)µ(v) dv

Gives an evolution system for the parameter α

Page 103: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

53Potentials

➠ Has the form of a symmetrizable hyperbolicsystem: Define

Σ(α) =

Mα dv =

exp(α · µ(v)) dv

φ(α) =

Mαv dv =

exp(α · µ(v))v dv

Σ(α) = Massieu-Planck potential, φ = fluxpotential

∂Σ

∂α=

Mαµ(v) dv ,∂φ

∂α=

Mαµ(v)v dv

Page 104: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

54Symmetrized form

➠ Moment system ≡

∂t

∂Σ

∂α+ ∇x ·

∂φ

∂α= r(α)

r(α) =

Q(Mα)µ(v) dv

➠ or∂2Σ

∂α2

∂α

∂t+

∂2φ

∂α2· ∇xα = r(α)

∂2Σ/∂α2 =∫

Mαµ(v)µ(v) dv symmetric ≫ 0

∂2φ/∂α2 =∫

Mαµ(v)µ(v)v dv symmetric

Page 105: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

55Hyperbolicity

➠ Hyperbolicity −→ well posedness (Godounov,Friedrichs)

➠ 6= Grad systems: not everywhere locallywell-posed

Page 106: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

56Entropy

➠ S(m) = Legendre dual of Σ(α):

S(m) = α · m − Σ(α)

where α is such that

m =∂Σ

∂α(=

Mαµ(v) dv)

➠ Then

α =∂S

∂m

Page 107: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

57Entropy (cont)

➠ α and m are conjugate variables.

➟ α = entropic (or intensive) variables

➟ m = conservative (or extensive) variables

➠ Link with H

S(m) =

(α · µ − 1)Mα dv

=

(ln Mα − 1)Mα dv = H(Mα)

Fluid entropy = Kinetic entropy evaluated atequilibrium

Page 108: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

58Levermore’s model in conservative var.

∂tm + ∇x ·∂φ

∂α

(

∂S

∂m(m)

)

= r

(

∂S

∂m(m)

)

➠ Entropy inequality

∂tS(m) + ∇x · F (m) =∂S

∂m· r

F (m) = α ·∂φ

∂α− φ(α) = Entropy flux

with α = ∂S/∂m

Page 109: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

59Entropy dissipation

∂S

∂m· r = α ·

Q(Mα)µ dv

=

Q(Mα) ln Mα dv ≤ 0

Thanks to H-theorem

➠ Levermore system compatible with the entropydissipation

∂tS(m) + ∇x · F (m) ≤ 0

Entropy dissipation = 0 iff Mα = standardMaxwellian Mn,u,T

Page 110: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

60Example: Gaussian closure

➠ µ(v) = {1, v, vv}.

Mα =n

(det 2πΘ)1/2exp

(

−1

2(v − u)Θ−1(v − u)

)

Θ symmetric ≫ 0 matrixα ∼ (n, u, Θ)

∂tn + ∇x · nu = 0

∂tnu + ∇x · (nuu + nΘ) = 0

∂t(nuu + nΘ) + ∇x · (nuuu + 3nΘ ∧ u) = Q(n, Θ)

Page 111: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

61Entropy in the Gaussian model

➠ Collisions

Q(n, Θ) =

Q(Mα)vv dv

➠ Entropy: S = nσEntropy flux: F = nσu

σ = ln

(

n

(det 2πΘ)1/2

)

−5

2

Page 112: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

62General models: constraints

➠ If highest degree monomial of odd parity,integrals like

exp(α · µ)µ dv diverge

➟ Constraint on µ: The set of α s.t. theintegrals converge has non-empty interior

➟ Highest degree monomial must have evenparity

➠ Moment realizability:

➟ characterize the set of m such that ∃α andm =

exp(α · µ)µ dv

➟ ref. [Junk], [Schneider]

Page 113: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

63Example: 5 moment model (in 1D)

➠ ref. [Junk]:

➟ Moment realizability domain not convex

➟ fluid Maxwellians lie at the boundary of therealizability domain

➟ Fluxes and characteristic velocities −→ ∞when m → Maxwell.

➠ Severe drawback since collision operators relax toMaxwellians

Page 114: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

64Problems (cont)

➠ Explicit formulae for∫

exp(α · µ)µ dv and∫

exp(α · µ)µv dv not available beyond Gaussianmodel

➠ Inversion of α → m not explicit. Iterativealgorithms to solve the Legendre transform.

➠ Collision operator: r(α) =∫

Q(Mα)µ dv doesnot give the right Chapman-Enskog limit.(viscosity and heat conductivity < Navier-Stokes)

➟ Needs to correct the collision operator[Levermore, Schneider].

Page 115: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

65Practical use of Levermore’s moment models

➠ Successful applications in a selected number ofcases

➟ Gaussian model [Levemore, Morokoff]

➟ P 2 model of radiative transfer [Dubroca]

➠ Give a systematic methodology to imagine newmodels and new closures.

Page 116: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

66

4. Summary, conclusion and perspectives

Page 117: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

67Summary

➠ Kinetic → fluid by the moment method

➟ closure problem

➟ Relaxation to equilibrium → Euler

➟ Correction to Euler (via the Hilbert orChapman-Enskog expansion): →Navier-Stokes or higher order models (Burnett,. . . )

➠ Transition regimes: perturbation models no morevalid when ε not small

Page 118: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

68Summary (cont) and perspectives

➠ Levermore’s attempt:

➟ closure by means of the entropy minimizationprinciple

➟ Nice features (hyperbolicity) but some flaws(moment realizability)

➠ Use the same methodology for quantumhydrodynamics

Page 119: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

1

Chapter 3

Quantum hydrodynamic models derived from theentropy principle

P. Degond

MIP, CNRS and Universite Paul Sabatier,

118 route de Narbonne, 31062 Toulouse cedex, France

[email protected] (see http://mip.ups-tlse.fr)

Page 120: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

2Summary

1. Quantum setting: a summary

2. QHD via entropy minimization

3. Quantum Isentropic Euler

4. Summary and conclusion

Page 121: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

3

1. Quantum setting: a summary

Page 122: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

4Density operator

➠ Basic object: ρ: Hermitian, positive, trace-classoperator on L2(Rd) s.t.

Trρ = 1

➠ Typically:

ρψ =∑

s∈S

ρs(ψ, φs) φs

for a complete orthonormal system (φs)s∈S and real

numbers (ρs)s∈S such that 0 ≤ ρs ≤ 1,∑

ρs = 1

Page 123: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

5Quantum Liouville equation

i~∂tρ = [H, ρ] + i~Q(ρ)

➠ H = Hamiltonian:

Hψ = −~2

2∆ψ + V (x, t)ψ

➠ Q(ρ) unspecified: accounts for dissipationmechnisms

Page 124: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

6Wigner Transform

➠ ρ(x, x′) integral kernel of ρ:

ρψ =

∫ρ(x, x′)ψ(x′) dx′

➠ W [ρ](x, p) Wigner transform of ρ:

W [ρ](x, p) =

∫ρ(x − 1

2ξ, x +

1

2ξ) ei ξ·p

~ dξ

➠ Note: we use the momentum p instead of thevelocity v used in the classical setting. We makem = 1 so that v = p.

Page 125: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

7Inverse Wigner transform (Weyl quantization)

➠ Let w(x, p). ρ = W−1(w) = Op(w) is theoperator defined by:

W−1(w)ψ =1

(2π)d

∫w(

x + y

2, ~k) ψ(y)eik(x−y) dk dy

w= Weyl symbol of ρ.

➠ Isometries between L2 (Operators s.t. ρρ† is

trace-class) and L2(R2d):

Tr{ρσ†} =

∫W [ρ](x, p)W [σ](x, p)

dx dp

(2π~)d

Page 126: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

8Wigner equation

➠ Eq. for w = W [ρ]:

∂tw + p · ∇xw + Θ~[V ]w = Q(w)

Θ~[V ]w = − i

(2π)d~

∫(V (x +

~

2η) − V (x − ~

2η))

×w(x, q) eiη·(p−q) dq dη

➠ Θ~[V ]w~→0−→ −∇xV · ∇pw

➠ Q(w) collision operator (Wigner transf. of Q)

Page 127: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

9

2. QHD via entropy minimization

Joint work with

C. RinghoferArizona State University, Tempe, USA

J. Stat. Phys. 112 (2003), pp. 587–628.

Page 128: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

10Approach (Levermore)

➠ Take moments of a Boltzmann-like quantum eq.

i~∂tρ = [H, ρ] + i~Q(ρ)

Q(ρ) unspecified: accounts for dissipationmechnisms

➠ Close by the assumption that Q(ρ) relaxes thesystem to an equilibrium ρα defined as :

➟ an entropy minimizer

➟ constrained to have the same prescribedmoments as ρ

➠ How to define such an equilibrium ?

Page 129: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

11Moments

➠ Defined as in classical mechanics: Moments ofthe Wigner distribution

➠ List of monomials µi(p) e.g. (1, p, |p|2)

µ(p) = (µi(p))Ni=0

➠ w(x, p) → moments m[w] = (mi[w])Ni=0

mi[w] =

∫w(x, p) µi(p) dp , dp :=

dp

(2π~)d

e.g. m = (n, q,W)

Page 130: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

12Remarks

➠ Hydrodynamic moments :

n

q

2W

=

∫W [ρ]

1

p

|p|2

dp

➠ Note

mi[ρ](y) = Tr{ρW−1(µi(p)δ(x − y))}= Observation of the observable µi(p) locally atpoint y= Consistent with the quantum definition of anobservable

Page 131: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

13Moment method

➠ Take moments of the Wigner equation:

∂tm[w]+∇x·∫

w µ p dp+

∫Θ[V ]w µ dp =

∫Q(w) µ dp

➠ In general∫

Q(w) µ dp 6= 0 except for thosemoments conserved by the collision operator (e.g.mass, momentum and energy)

➠ Closure problem: find an expression of theintegrals by setting w to be a solution of theentropy minimization problem

Page 132: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

14Quantum entropy

➠ Density operator ρ

ρψ =∑

s∈S

ρs(ψ, φs)φs

for a complete orthonormal basis φs.

0 ≤ ρs ≤ 1 ,∑

s∈S

ρs = 1

➠ Entropy

H[ρ] =∑

s∈S

ρs(ln ρs − 1)

Page 133: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

15Functional calculus

➠ Let h : R → R. Then: h(ρ) defined by

h(ρ)ψ =∑

s∈S

h(ρs)(ψ, φs)φs

➠ Entropy:

H[ρ] = Tr{ρ(ln ρ − 1)}

➠ Note: we do not take into account Trρ = 1 forthe time being

Page 134: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

16Entropy minimization principle

➠ Entropy:

H[ρ] = Tr{ρ(ln ρ − 1)} ; ρ = W−1(w)

➠ Given a set of moments m = (mi(x))Ni=0,

minimize H(ρ) subject to the constraint that∫

W [ρ](x, p) µ(p) dp = m(x) ∀x

Page 135: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

17Density operator vs Wigner

➠ Problem:

➟ Entropy defined in terms of density operator

➟ Moments defined in terms of Wigner functions

➟ Non local correspondence between the tworepresentations

➠ Consequence

➟ Entropy minimization problem must be statedglobally (in space) and not locally like inclassical mechanics

➟ Requires to express the moment constraints interms of the density operator ρ

Page 136: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

18Moments in terms of ρ

➠ Dualize the constraint: Let λ(x) = (λi(x))Ni=0 be

an arbitrary (vector) test function

∫w(x, p) (µ(p) · λ(x)) dx dp =

∫m(x) · λ(x) dx

Tr{ρ W−1[µ(p) · λ(x)]} =

∫m(x) · λ(x) dx

Page 137: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

19Entropy minimization principle: expression

➠ Given a set of (physically admissible) moments

m = (mi(x))Ni=0, solve

min{ H[ρ] = Tr{ρ(ln ρ − 1)} subject to:

Tr{ρ W−1[µ(p) · λ(x)]} =

∫m · λ dx ,

∀λ = (λi(x))Ni=0 }

Page 138: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

20Entropy minimization principle: resolution

➠ Lemma: The Gateaux derivative of H is:

δH

δρδρ

def= lim

t→0

1

t(H[ρ + tδρ] − H[ρ])

= Tr{ln ρ δρ}

➠ ∃ Lagrange multipliers α(x) = (αi)Ni=0 s.t.

Tr{ln ρ δρ} = Tr{δρ W−1[µ(p) · α(x)]}

➠ ln ρ = W−1[µ(p) · α(x)]

Page 139: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

21Solution of the entropy problem

➠ Solution is ρα,

ρα = exp(W−1[α(x) · µ(p)])

α = (αi(x))Ni=0 is determined s.t. m[ρα] = m

➠ Mα = W [ρα] = Exp(α(x) · µ(p))

Exp · = W [exp(W−1(·))](Quantum exponential)

➠ Analogy with the classical case Mα = exp(α · µ)

Page 140: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

22Quantum moment models

➠ Close the moment eqs. with the quantumMaxwellian:

∂t

∫Exp(α · µ) µ dp + ∇x ·

∫Exp(α · µ) µ p dp

+

∫Θ[V ]Exp(α · µ) µ dp =

∫Q(Exp(α · µ)) µ dp

➠ Evolution system for the vector function α(x, t):Quantum Moment Model (QMM)

➠ Note: r.h.s = 0 for the hydrodynamic moments(mass, momentum and energy)

Page 141: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

23QMM via Density operator

➠ The use of density operator is often morepowerful

➠ Transform (QMM) into density operatorformalism using

Tr{ρ W−1[µ(p) · λ(x)]} =

∫m(x) · λ(x) dx

∀ vector test function λ(x) = (λi(x))Ni=0

Page 142: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

24QMM via Density operator (cont)

➠ Start from quantum Liouville eq.

∂tρ = − i

~[H, ρ] + Q(ρ)

➠ Take moments and close with equilibrium ρ = ρα

∂tTr{ραW−1(λ · µ)} = − i

~Tr{[H, ρα]W−1(λ · µ)}

+Tr{Q(ρα)W−1(λ · µ)}, ∀ test fct λ(x) = (λi(x))Ni=0

Page 143: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

25QMM via Density operator (cont)

➠ Use cyclicity of the trace:

∂t

∫m[ρα]λ dx = − i

~Tr{ρα[W−1(λ · µ),H]} +

+Tr{Q(ρα)W−1(λ · µ)}, ∀ test fct λ(x) = (λi(x))Ni=0

➠ Weak form of (QMM) using density operatorformulation

Page 144: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

26Entropy

➠ Kinetic entropy H[ρ] in terms of w = W [ρ]:

H[ρ] = Tr{ρ(ln ρ − 1)} =

∫w(Ln w − 1) dx dp

with quantum log: Ln w = W [ln(W−1(w))]

➠ Fluid entropy S(m):

S(m) = H[ρα] =

∫Exp(α · µ)((α · µ) − 1) dx dp

where α is s.t. m[α] :=∫Exp(α · µ)µdp = m

Page 145: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

27Inversion of the mapping α → m

➠ S(m) convex.

➠ S(m) =

∫α · m dx − Σ(α)

with Σ(α) Legendre dual of S:

Σ(α) =

∫Exp(α · µ)dx dp

➠ Inversion of the mapping α → m:

δS

δm= α ,

δΣ

δα= m (Gateaux derivatives)

Page 146: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

28Inversion of the mapping α → m: proof

➠ Σ(α) = Tr{ exp(W−1(α · µ)) }

➠ δ( Tr{f(ρ)} ) = Tr{ f ′(ρ) δρ }

➠ Then

δΣ = Tr{ exp(W−1(α · µ)) (W−1(δα · µ)) }

=

∫Exp(α · µ) (δα · µ)dx dp

=

∫δα · m dx

➠ δΣ/δα = m QED

Page 147: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

29Proof of inversion of α → m (cont)

➠ δS =

∫(δα · m + α · δm) dx − δΣ

➠ But, just proven that

δΣ =

∫δα · m dx

➠ Therefore

δS =

∫α · δm dx

➠ δS/δm = α QED

Page 148: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

30Entropy dissipation

➠ Moment models compatible with the entropydissipation

∂tS(m(t)) ≤ 0

for any solution m(t) of the QHD equations

➠ Proof: uses the density matrix formulation of(QMM) with choice λ = α as a test function

∂t

∫m[ρα]α dx = − i

~Tr{ρα[W−1(α · µ),H]}

+Tr{Q(ρα)W−1(α · µ)}

Page 149: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

31Entropy dissipation (cont)

➠ First term is the entropy:∫

m[ρα]α dx = Tr{ραW−1(α · µ)}

= Tr{ρα ln ρα} = Tr{ρα(ln ρα − 1)} = S(m)

➠ Second term: use cyclicity of the trace

Tr{ρα[W−1(α · µ),H]} = Tr{[ρα, ln ρα]H} = 0

➠ Q is entropy dissipative:

Tr{Q(ρα)W−1(α · µ)} = Tr{Q(ρα) ln ρα} ≤ 0

Page 150: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

32Quantum Hydrodynamic Model (QHD)

➠ µ = {1, p, |p|2}

∂tn + ∇x · nu = 0

∂tnu + ∇xΠ = −n∇xV

∂tW + ∇x · Φ = −nu · ∇xV

➠ with Π = pressure tensor, Φ = energy flux:

Π =

∫Exp(α · µ) p ⊗ p dp

2Φ =

∫Exp(α · µ) |p|2 p dp

Page 151: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

33QHD (cont)

➠ and

α · µ = A(x) + B(x) · p + C(x)|p|2

s.t.∫

Exp(α · µ)µ dp = (n, nu,W)Tr

Page 152: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

34Quantum Maxwellian

➠ Mα = Exp(α · µ) = W (exp(W−1(α · µ)))with

α · µ = A(x) + B(x) · p + C(x)|p|2

α = (A, B, C) related w. (n, nu,W) in anon-local way. Note: u 6= B/2C in general(classical = ).

➠ W−1(α · µ) is a second order differentialoperator:

W−1(α · µ)ψ = −~2∇ · (C∇ψ)

−i~(B · ∇ψ + (1/2)(∇ · B)ψ) + (A − (~2/4)∆C)ψ

Page 153: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

35Computation of W−1(α · µ)

➠ Lemma:

W−1(A) = A

W−1(B · p) = −i~(B · ∇ +1

2(∇ · B))

W−1(C|p|2) = −~2(C∆ + ∇C · ∇ +

1

4∆C)

➠ Proof

W−1(B · p) ψ =

∫B(

x + y

2) · p ψ(y)e

ip(x−y)~ dp dy

Page 154: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

36Computation of W−1(α · µ) (cont)

➠ Lemma∫

p eip(x−y)

Page 155: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

37Spectrum of W−1(α · µ)

➠ Suppose W−1(α · µ) has point spectrum only:eigenvalues as[α], eigenvectors φs[α]

W−1(α · µ) =∑

s

as(·, φs)φs

ρα = exp(W−1(α · µ)) =∑

s

eas(·, φs)φs

Trρα = 1 =⇒∑

s

eas = 1

=⇒ as < 0 and ass→∞−→ −∞

=⇒ −W−1(α · µ) elliptic operator

’ =⇒ ’ C(x) ≤ 0 + conditions at ∞

Page 156: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

38Mapping (A, B, C) → (n, u,W)

➠ Finding (A, B, C) in terms of (n, u,W) ≡minimization problem: Thanks to m = δΣ

δαand Σ

convex, this problem ⇐⇒

minα

{Σ(α) −∫

α · m dx}i.e.

minα

{∑

s

eas[α] −∫

α · m dx}

➠ Idea used in practical computations (Gallego)

Page 157: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

39

3. Quantum Isentropic Euler

Joint work with

S. Gallego1 and F. Mehats2

1 MIP, Toulouse ; 2 IRMAR, Rennes

Manuscript, submitted

Page 158: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

40Isothermal model

➠ Fixed uniform temperature T

➟ Change the entropy into the Free Energy

G(ρ) = Tr{Th(ρ) + Hρ}h(ρ) = ρ(ln ρ − 1) = Boltzmann entropy

H =|p|22

+ V = Quantum Hamiltonian

➠ Two moments are considered:

➟ Density n

➟ Momentum nu

Page 159: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

41Entropy minimization problem

➠ Find

min G(ρ) = min(Tr{Tρ(ln ρ − 1) + Hρ})subject to the moment constraints

Tr{ρφ} =

∫nφ dx

Tr{ρW−1(p · Φ)} =

∫nu · Φ dx

for all (scalar and vector) test functions φ and Φ

Page 160: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

42Solution of the entropy minimization problem

➠ Must satisfy

T ln ρ + H = A + B · p

➠ After rearrangement

ln ρ = −H(A, B)

T, H(A, B) =

|p − B|22

+ A

with

A = V − A − |B|2/2 , B = B

➠ H(A, B) = ’modified Hamiltonian’

Page 161: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

43Quantum Maxellian

➠ Density operator formulation

ρn,nu = exp(−H(A, B)

T)

➠ Quantum Maxwellian

Mn,nu = Exp(−H(A, B)

T)

➠ With (A, B) related with (n, nu) by the momentcondition

➠ T = 1 from now on

Page 162: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

44Moment reconstruction

➠ Suppose H(A, B) has discrete spectrum

➟ Eigenvalues λp(A, B), p = 1, . . . ,∞➟ Eigenfunctions ψp(A, B)

➠ Then

n(A, B) (x) =∞∑

p=1

exp(−λp(A, B)) |ψp(A, B) (x)|2

nu(A, B) (x) =∞∑

p=1

exp(−λp(A, B)) Im(~ψp (x)∇ψp (x))

Page 163: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

45Moment reconstruction: proof

➠ By construction

ρn,nu · =∞∑

p=1

exp(−λp(A, B))(·, ψp)ψp

➠ ρ diagonal in the basis (ψp)

➟ Diagonal element = exp(−λp(A, B))

➠ The multiplication operator by φ has matrixelement in this basis

φp,p′ =

∫φψpψp′ dx

Page 164: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

46Moment reconstruction: proof (cont)

➠ Trace = summing up the products of diagonalelements

Tr{ρφ} =∞∑

p=1

exp(−λp(A, B))

∫φ|ψp|2 dx

➠ Finally

n(x0) = Tr{ρδ(x − x0)}

=∞∑

p=1

exp(−λp(A, B))|ψp(x0)|2

➠ Similar computation for nu

Page 165: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

47Quantum isentropic Euler

➠ Special case of (QHD) without energy eq.

∂tn + ∇ · nu = 0

∂tnu + ∇Π = −n∇V

➠ With pressure tensor Π given by

Π =

∫Exp(−H(A, B)) p ⊗ p dp

➠ and modified Hamiltonian

H(A, B) =|p − B|2

2+ A

Page 166: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

48Quantum isentropic Euler (cont)

➠ where (A, B) related with (n, nu) by the momentconditions

n(A, B) (x) =∞∑

p=1

exp(−λp(A, B)) |ψp(A, B) (x)|2

nu(A, B) (x) =∞∑

p=1

exp(−λp(A, B)) Im(~ψp (x)∇ψp (x))

Page 167: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

49Computation of π

➠ To be determined: pressure tensor Π:

Π =

∫Exp(−H(A, B)) p ⊗ p dp

➠ Alternately∫

(∇Π) φ dx = −∫

Π∇φ dx

= −∫

Exp(−H(A, B)) (p · ∇φ)p dx dp

= −Tr{exp(−H(A, B)) W−1((p · ∇φ)p)}

Page 168: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

50Computation of moments: method

➠ Idea: use commutation with H(A, B) to reducethe degree of the p-monomial:

➠ Write (p · ∇φ)p = [H(A, B), A ] + Bwhere B is a polynomial in p of degree ≤ 1(from now on, drop W−1)

➠ Then

Tr{exp(−H(A, B)) (p · ∇φ)p} =

= Tr{exp(−H(A, B)) [H(A, B), A ]}+Tr{exp(−H(A, B)) B}

Page 169: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

51Computation of moments: method (cont)

➠ Use cyclic property of trace

Tr{exp(−H(A, B)) [H(A, B), A ]} =

= Tr{[exp(−H(A, B)) , H(A, B)]A}= 0

➠ Then

Tr{exp(−H(A, B)) (p · ∇φ)p} =

= Tr{exp(−H(A, B)) B}and the degree in p is decreased

➠ Find the convenient A and B

Page 170: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

52Commutation relations

➠ Here A = pφ → Compute [H(A, B), pφ]

➠ Lemma (commutation relations)

[φ, ψ] = 0

[p · Φ, ψ] = −i~(Φ · ∇ψ)

[p · Φ, p · Ψ] = −i~((Φ · ∇)Ψ − (Ψ · ∇)Φ) · p[|p|2/2, φ] = −i~∇φ · p[|p|2/2, pφ] = −i~(∇φ · p)p

➠ Commutation decreases the degree in p

Page 171: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

53Commutation relations: example of proof

➠ Prove [p · Φ, ψ] = −i~(Φ · ∇ψ)

➠ Lemma 1 (see above):

p · Φ = −i~ (Φ · ∇ + (∇ · Φ)/2)

➠ Use that two functions of x commute:

[(∇ · Φ), ψ] = 0

➠ Then, compute

[Φ · ∇ , ψ]f = Φ · ∇(ψf) − ψΦ · ∇f

= (Φ · ∇ψ)f

Page 172: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

54Computation of [H(A, B), pφ]

➠ H(A, B) = |p|2/2 − B · p + A + |B|2/2

➠ Then

[H(A, B), pφ] = −i~{(∇φ · p)p − (B · ∇φ)p +

+φ(∇B)p − φ∇(A + |B|2/2)}

➠ Therefore (p · ∇φ)p = [H(A, B), A ] + Bwith

A = (i/~)pφ

B = (B · ∇φ)p − φ(∇B)p + φ∇(A + |B|2/2)

Page 173: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

55Computation of Π (cont)

➠ Then

Tr{exp(−H(A, B)) (p · ∇φ)p} =

= Tr{exp(−H(A, B)) B}= Tr{exp(−H(A, B)) ((B · ∇φ)p − φ(∇B)p +

+φ∇(A + |B|2/2))}

=

∫((B · ∇φ)nu − φ(∇B)nu + nφ∇(A + |B|2/2)) dx

=

∫(−∇(nu ⊗ B) − (∇B)nu + n∇(A + |B|2/2))φ dx

= −∫

(∇Π) φ dx

Page 174: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

56Final expression of Π

➠ Finally

∇Π = ∇(nu ⊗ B) + (∇B)nu − n∇(A + |B|2/2)

Page 175: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

57Quantum Isentropic Euler

➠ Final expression:

∂tn + ∇ · nu = 0

∂tnu + ∇(nu ⊗ B) + (∇B)nu − n∇(A + |B|2/2) = −n∇V

➠ Where (A, B) are related with (n, nu) by:

n(A, B) (x) =∑

exp(−λp(A, B)) |ψp(A, B) (x)|2

nu(A, B) (x) =∑

exp(−λp(A, B)) Im(~ψp (x)∇ψp (x))

➠ And λp(A, B), ψp(A, B): spectrum of

H(A, B) = |p|2/2 − B · p + A + |B|2/2

Page 176: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

58Free energy (entropy)

➠ Fluid free energy G(n, nu):

G(n, nu) = G(ρn,nu)

= Tr{exp(−H(A, B))(−H(A, B) − 1 + H)}= Tr{exp(−H(A, B))(B · p − A − |B|2/2 − 1 + V )}

=

∫(nu · B + n(V − A − |B|2/2 − 1)) dx

➠ By construction: if V is independent of time:

dGdt

≤ 0

(with = for smooth solutions)

Page 177: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

59Free energy (cont)

➠ If V solves Poisson eq.

−∆V = n

Then, againdGdt

≤ 0

(with = for smooth solutions)

Page 178: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

60Gauge invariance

➠ Let S(x) be a smooth function. Then

exp(iS

~) H(A, B) exp(−iS

~) = H(A, B + ∇S)

➠ Proof: write

exp(iS/~)H(A, B) exp(−iS/~) − H(A, B) =

= exp(iS/~)[H(A, B), exp(−iS/~)]

and use the commutation relations

Page 179: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

61Gauge invariance (cont)

➠ Consequence 1: eigenvalues of H(A, B) andH(A, B + ∇S) are the same

➠ Consequence 2:

exp(iS

~) exp(−H(A, B)) exp(−iS

~) = exp(−H(A, B + ∇S))

The equilibrium density operators are conjugate

➠ Consequence 3: eigenvalues of exp(−H(A, B))and exp(−H(A, B + ∇S)) are the same

Page 180: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

62Free energy (again)

➠ Free energy

G(n, nu) =

∫(nu · B + n(V − A − |B|2/2 − 1)) dx

Implies δGδn

= V − A − |B|2/2 = A

δGδnu

= B

➠ Legendre dual

Σ(A, B) =

∫n dx = Tr{exp(−H(A, B))} = Σ(A, B)

Page 181: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

63Inversion formula

➠ Inversion formula and chain rule:

n(A, B) =δΣ

δA= −δΣ

δA

(nu)(A, B) =δΣ

δB=

δΣ

δB− B

δΣ

δA

➠ It results:

δΣ

δA= −n(A, B)

δΣ

δB= (nu)(A, B) − n(A, B) B

Page 182: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

64Gauge invariance (again)

➠ eigenvalues of exp(−H(A, B)) andexp(−H(A, B + ∇S)) are the same:

Σ(A, B) = Tr{exp(−H(A, B))} =

= Tr{exp(−H(A, B + ∇S))} = Σ(A, B + ∇S)

➠ Implies

δΣ

δA(A, B + ∇S) =

δΣ

δA(A, B)

δΣ

δB(A, B + ∇S) =

δΣ

δB(A, B)

Page 183: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

65Velocity constraint

➠ Consequence 1’:

n(A, B + ∇S) = n(A, B)

(nu)(A, B + ∇S) = nu(A, B) + n(A, B)∇S

➠ Consequence 2’: ∀ test function S(x):

limt↓0

t−1(Σ(A, B + t∇S) − Σ(A, B)) = 0 =

=

∫δΣ

δB· ∇S dx =

∫(nu − nB) · ∇S dx

Meaning that ∇ · (n(u − B)) = 0

Page 184: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

66Equivalent formulations of momentum eq.

➠ Form 1 (Original formulation)

∂tnu + ∇(nu ⊗ B) + (∇B)nu − n∇(A + |B|2/2) = −n∇V

➠ Form 2: Use ∇|B|2/2 = (∇B)B

∂tnu + ∇(nu ⊗ B) + n(∇B)(u − B) + n∇(V − A) = 0

➠ Form 3: Use ∇ · (n(u − B)) = 0

∂tnu + ∇(nu ⊗ u) + n(∇× u) × (B − u) +

+n∇(V − A − |B − u|2/2) = 0

Page 185: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

67Equivalent formulations of momentum eq. (cont)

➠ Form 4: Use continuity equation

∂tu + (∇× u) × B + ∇(u · B − |B|2/2 + V − A) = 0

Page 186: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

68Irrotational flows

➠ Define the vorticity ω = ∇× u. ω satisfies

∂tω + ∇× (ω × B) = 0

Proof: take the curl of Form (4)

➠ If ω|t=0 = 0, then ω ≡ 0 for all times: irrotationalflow

➠ Irrotational flow =⇒ ∃S(x, t) s.t. u = ∇S

➠ Then:u = B = ∇S

Page 187: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

69Proof that u = B for irrotational flows

➠ Lemma: nu(A, 0) = 0

➠ Proof: nu(A, 0) =∫Exp(−H(A, 0))p dp

But H(A, 0) = |p|2/2 + A even w.r.t. p

➠ Then Exp(−H(A, 0)) even w.r.t. pNot obvious (Exp 6= exp)Prove it for powers (using Wigner)Then by series expansion, for the exponential

➠ Then nu(A, 0) = 0 by parity

Page 188: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

70u = B for irrotational flows (cont)

➠ Using the Gauge transformation

nu(A,∇S) = nu(A, 0) + n(A, 0)∇S

= 0 + n(A,∇S)∇S

➠ Shows that the solution (A, B) of the momentproblem is given by

➟ A which solves n(A, 0) = n

➟ B = ∇S = u

➠ QED if (A, B) are unique

➟ Only formal

Page 189: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

71Quantum Euler for irrotational flows

➠ Use B = u in Form (3)

∂tn + ∇ · nu = 0

∂tnu + ∇(nu ⊗ u) + n∇(V − A) = 0

∇× u = 0

➠ Where A is related with n by:

n(A) (x) =∑

exp(−λp(A, 0)) |ψp(A, 0) (x)|2

➠ (λp, ψp)(A, 0) spectrum of H(A, 0) = |p|2/2 + A

Page 190: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

72Quantum Euler for irrotational flows (cont)

➠ Advantage: only one quantity A to determinefrom the spectral problem

➠ Important special case: One-dimensional flows

Page 191: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

73Semiclassical asymptotics

➠ When ~ → 0 recover the classical isothermalEuler eqs.

➠ Retaining terms of order ~2 gives

∂tn + ∇ · nu = 0

∂tnu + ∇(nu ⊗ u) + T∇n + n∇V − ~2

6n∇(

∆√

n√n

) +

+~

2

12ω × (∇× (nω)) +

~2

24n∇(|ω|2) = 0

ω = ∇× u

➠ Already given in [Juengel, Matthes]

Page 192: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

74Semiclassical asymptotics + irrotational flows

➠ If ω = 0, system reduces to

∂tn + ∇ · nu = 0

∂tnu + ∇(nu ⊗ u) + T∇n + n∇V − ~2

6n∇(

∆√

n√n

) = 0

So-called ’Quantum Hydrodyanmic Model’

➠ Used in the literature

➟ Also in the rotational cases

➟ Heuristic derivation (only justified if T = 0)

➠ Here, the ’Quantum Hydrodyanmic Model’ isderived based on first principles

Page 193: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

75Preliminary numerical results

➠ One-dimensional model

➟ coupled with Poisson’s eq.

➟ momentum relaxation term

➠ Double barrier structure

➠ Boundary conditions

➟ Dirichlet for the wave-function (andconsequently for the density)

➟ Zero flux for the momentum

➠ Dynamics of electrons injected from the leftboundary

Page 194: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

76Numerical results (I)

0 0.2 0.4 0.6 0.8 10

1

2

3

4

5

6

7

Den

sity

Position0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

6

7

k=0

0 0.2 0.4 0.6 0.8 1

−0.5

0

0.5

1

1.5

2

2.5

Position

Vel

ocity

k=0

Initial data. Left: density and potential.Right: velocity

Page 195: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

77Numerical results (II)

0 0.2 0.4 0.6 0.8 10

1

2

3

4

5

6

7

Den

sity

0 0.2 0.4 0.6 0.8 10

1

2

3

4

Position0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

6

7

k=20

0 0.2 0.4 0.6 0.8 1−1

−0.5

0

0.5

1

1.5

2

2.5

Position

Vel

ocity

k=20

t = 0.1. Left: density and potential.Right: velocity

Page 196: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

78Numerical results (III)

0 0.2 0.4 0.6 0.8 10

1

2

3

4

5

6

7

Den

sity

Position0 0.2 0.4 0.6 0.8 10

1

2

3

4

5

6

7

k=100

0 0.2 0.4 0.6 0.8 1

−0.5

0

0.5

1

1.5

2

2.5

Position

Vel

ocity

k=100

t = 0.5. Left: density and potential.Right: velocity

Page 197: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

79Numerical results (IV)

0 0.2 0.4 0.6 0.8 10

1

2

3

4

5

6

7

Den

sity

Position0 0.2 0.4 0.6 0.8 10

1

2

3

4

5

6

7

k=200

0 0.2 0.4 0.6 0.8 1

−0.5

0

0.5

1

1.5

2

2.5

Position

Vel

ocity

k=200

t = 1. Left: density and potential.Right: velocity

Page 198: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

80Numerical results (V)

0 50 100 150 2000.5

1

1.5

2

2.5

3

Fre

e E

nerg

y

Time iterations

Free energy vs time

Page 199: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

81

4. Summary and conclusion

Page 200: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

82Summary: quantum moment models

➠ Extension of the Levermore’s moment method tothe quantum case

➟ Take local moments of the density operator eq.

➟ Close by a minimizer of the entropy functional

➠ leads to:

➟ Formulation of the entropy minimizationproblem as a global problem (local in classicalmechanics)

➟ Non-local closure to the QuantumHydrodynamics eq.

Page 201: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

83Summary: Isothermal quantum Euler

➠ Isothermal case: entropy = free energy

➟ Analytic computation of pressure tensor

➟ System involves (n, nu) and (A, B)

➟ Related by the quantum moment problem

➠ Gauge invariance

➟ Several equivalent formulations of the model

➟ Constraint between u and B

➠ Special interest for irrotational flows

➟ Simplification: problem depends on A only

➟ One-dimensional flows

Page 202: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

84Perspectives

➠ Show entropy minimization problem has asolution in a reasonable sense

➠ Compute analytical closure for the full QHDmodel (as done for the isothermal case)

➠ Investigate Gauge invariance properties

➠ Small T asymptotics (formal for isothermal case)

➠ ~ expansion up to order ~2: see [Jungel, Matthes,

Milisic]

➠ Normal mode analysis of linearized model

Page 203: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

1

Chapter 4

Diffusion models: classical case

P. Degond

MIP, CNRS and Universite Paul Sabatier,

118 route de Narbonne, 31062 Toulouse cedex, France

[email protected] (see http://mip.ups-tlse.fr)

Page 204: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

2Summary

1. Drift-Diffusion model

2. Energy-Transport model

Page 205: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

3

1. Drift-Diffusion model

Page 206: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

4Linear Boltzmann model

➠ The simplest collisional kinetic model

∂f

∂t+ v · ∇xf −∇xV · ∇vf = Q(f)

Q(f)(v) =

v′∈Rd

[W (v′ → v)f(v′) − W (v → v′)f(v)] dv′

➠ V (x, t) can be

➟ External force potential

➟ Self-consistent Mean-Field potential

➟ In all this part, considered as known

➠ W (v1 → v) ≥ 0: scattering rate

Page 207: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

5Modeling of collisions

➠ Q(f) Models collisions with the surrounding:

➟ Plasmas → electrons against ions, neutrals,. . .

➟ Semiconductors → electrons againstimpurities, phonons, . . .

➟ Nuclear reactors → neutron against fissilematerial, . . .

➟ Radiative transfer → interaction of radiationw. matter, . . .

➟ Chemiotaxis → reaction of bacteria tonutriments

➟ . . .

Page 208: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

6Detailed balance property

➠ Collision operator models relaxation tothermodynamic equilibrium w. scatteringmedium: =⇒ detailed balance property

W (v′ → v)

W (v → v′)=

M(v)

M(v′)

where M = Normalized centered Maxwellian attemperature T of the scattering medium:

T

M(v)

v

M(v) =(

12πT

)d/2e−

v2

2T

Page 209: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

7Collision operator

➠ Introduce φ(v, v′) = W (v → v′)M(v′)−1:φ symmetric φ(v, v′) = φ(v′, v) ≥ 0Then

Q(f)(v) =

v′φ(v, v′)[M(v)f(v′) − M(v′)f(v)]dv′

➠ Special case: φ(v, v′) = ν = Constant

Q(f)(v) = −ν(f(v) − nM(v)) , n =

f dv

BGK operator

➠ We restrict ourselves to this case for simplicity

Page 210: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

8Properties of Q

➠ Q(f)(v) = −ν(f(v) − nM(v))

➠ Conservation of particle number:∫

Q(f)dv = 0

➠ Null set of Q (equilibria) :

Q(f) = 0 ⇐⇒ ∃n ∈ R such that f = nM(v)

➠ Free energy decay :∫

Q(f)(ln f+H) dv = −

ν(f−nM)(ln f−ln(nM)) dv ≤ 0

Page 211: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

9Diffusion scaling

➠ Behaviour at the macro scale −→ introduce

η =mean free path

typical macroscopic distance≪ 1

➠ change of variables (diffusion scaling):

➟ x′ = η x, t′ = η2t, F = ηF ′

η2∂f η

∂t+ η (v · ∇xf

η −∇xV · ∇vfη) = Q(f η)

➠ η → 0 describes the large scale behaviour

➟ Rigorous proof: [POUPAUD], [GOLSE-POUPAUD]

Page 212: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

10Limit η → 0: Drift-Diffusion

➠ as η → 0, f η −→ n(x, t)M(v)n(x, t) satisfies Drift-Diffusion model:

➠ Continuity equation

∂n

∂t+ ∇x · j = 0

➠ Current equation

j = −D(∇xn + nT−1∇xV )

➠ D = ν−1T = Diffusion coefficient

Page 213: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

11Limit η → 0: Sketch of proof

➠ Step 1: f η → Maxwellian nM where n = n(x, t)

➟ Chapman-Enskog expansion: definef η

1 = η−1(f η − nηM)f η

1 = O(1) as η → 0. Define f1 = limη→0 f η1

➠ Step 2: Write continuity eq.Remains valid as η → 0To be determined: Flux

➠ Step 3: Compute the flux taking the appropriatemoment of f1

Page 214: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

12Step 1: Convergence to equilibrium

➠ Suppose f η → f smoothly

Boltzmann eq. =⇒ Q(f η) = O(η)

=⇒ Q(f) = 0

=⇒ f = n(x, t)M(v)

Page 215: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

13Step 1: Chapman-Enskog expansion

➠ Write (exact): f η = nηM + ηf η1

➠ Then:1

ηQ(f η) = −νf η

1 = T f η + η∂tfη

with

T f = v · ∇xf −∇xV · ∇vf Transport operator

➠ As η → 0:

f η1 → f1 = −ν−1T f

Page 216: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

14Step 2: Continuity eq.

➠ integrate Boltzmann eq. with respect to v anduse that Q preserves particle number:

∂nη

∂t+ ∇x · j

η = 0

nη =

f ηdv , jη = η−1

f ηvdv =

f η1 vdv

➠ nη → n and jη → j =

f1vdv and:

∂n

∂t+ ∇x · j = 0

Page 217: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

15Step 3: The current eq.

➠ From f1 = −ν−1T f we compute:

f1 = −ν−1(v · ∇x −∇xV · ∇v)(nM)

= −ν−1(∇xn + nT−1∇xV ) · vM

➠ Then

j =

f1vdv

= −ν−1(

M(v)v ⊗ v dv)(∇xn + nT−1∇xV )

= −Tν−1(∇xn + nT−1∇xV )

Page 218: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

16About the rigorous proof

➠ Rigorous proof follows closely formal proof

➟ Convergence: weak topology enough.

➟ Error estimate f η − f = 0(η) requiresregularity estimates for the Chapman-Enskogexpansion (see e.g. [Ben Abdallah, Tayeb])

➠ Can be extended easily to the more generalcollision operator written at the beginning

➟ With suitable assumptions on the scatteringkernel W (v′ → v)

Page 219: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

17About the Drift-Diffusion model

➠ widely used by the engineers

➟ But not suitable for strongly non equilibriumphenomena

➠ Question to be investigated:

➟ Find more complex macroscopic models

➟ with a broader range of applicability

➟ using the same methodology

➠ Examples:

➟ Energy-Transport model (developed below)

➟ SHE-Fokker-Planck model (skipped)

Page 220: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

18

2. Energy-Transport model

N. Ben Abdallah, P. D., S. Genieys,

J. Stat. Phys. 84 (1996), pp. 205-231

N. Ben Abdallah, P. D.,

J. Math. Phys. 37 (1996), pp. 3306-3333

Page 221: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

19More complex BGK operator

➠ Same expression

Q(f)(v) = −ν(f − nMT (v))

with

MT (v) = (2πT )−d/2 exp(−v2/(2T ))

➠ But now T is a second free parameter s.t.

➟ (n, T ) ensure mass and energy conservation

Q(f)

(

1

|v|2

)

dv = 0

Page 222: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

20Situation modeled by Q(f)

➠ Combination of an elastic and a binary collisionoperator [Ben Abdallah, D., Genieys]

➟ Semiconductors (phonon collisions treated aselastic)

➟ Plasmas (electron-ion collisions treated aselastic)

➟ . . .

➠ Energy exchanges between the particles are moreefficient than with the surrounding

➟ Possibility of a different temperature than thatof the background

Page 223: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

21Determination of (n, T )

➠ (n, T ) are given by:

nMT (v)

(

1

|v|2

)

dv =

(

n

dnT

)

=

f(v)

(

1

|v|2

)

dv

➠ Maxwellian can be rewritten as

nMT (v) = exp(A + C|v|2/2)

with

A = ln(n

(2πT )d/2) , C = −

1

T

➠ Note A = µ/T , µ = Chemical potential

Page 224: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

22Conservative variables vs entropic variables

➠ Energy

W =

f |v|2/2 dv = dnT/2

➠ Two sets of variables

➟ Conservative variables (n,W)

➟ Entropic variables (A, C)

➟ (n,W) ←→ (A, C) is a change of variables

➟ Inversion through entropy (see below)

Page 225: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

23Properties of Q

➠ Mass and energy conservation

Q(f)

(

1

|v|2

)

dv = 0

➠ Null set of Q (equilibria) :

Q(f) = 0 ⇐⇒ ∃(A, C) such that f = exp(A+C|v|2/2)

➠ Entropy decay:

Q(f) ln f dv =

= −

ν(f−exp(A+C|v|2/2))(ln f−(A+C|v|2/2)) dv ≤ 0

Page 226: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

24Diffusion scaling

➠ Boltzmann eq. under diffusion scaling:

η2∂f η

∂t+ η (v · ∇xf

η −∇xV · ∇vfη) = Q(f η)

Page 227: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

25Limit η → 0: Energy-Transport

➠ as η → 0, f η −→ n(x, t)MT (v)where (n, T ) satisfy the Energy-Transport model:

➠ Mass and energy conservation eqs.

∂n

∂t+ ∇x · jn = 0

∂W

∂t+ ∇x · jW + ∇xV · jn = 0

➠ With

➟ W = dnT/2 : energy

➟ jn, jW : particle and energy fluxes

Page 228: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

26Energy-Transport model (cont)

➠ Fluxes(

jn

jW

)

= −D

(

∇xA − C∇xV

∇xC

)

➠ D Diffusion matrix, symmetric, positive-definite

➠ Energy-transport model:

➟ Balance eqs. for the conservative variables

➟ Fluxes expressed in terms of the gradients ofthe entropic variables

Page 229: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

27Limit η → 0: Sketch of proof

➠ Step 1: f η → Maxwellian nMT where(n, T ) = (n, T )(x, t)

➟ Chapman-Enskog expansion: definef η

1 = η−1(f η − nηMT η)f η

1 = O(1) as η → 0. Define f1 = limη→0 f η1

➠ Step 2: Write mass and energy conservationequationsRemain valid as η → 0To be determined: Fluxes

➠ Step 3: Compute the fluxes taking theappropriate moment of f1

Page 230: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

28Step 1: Convergence to equilibrium

➠ Suppose f η → f smoothly

Boltzmann eq. =⇒ Q(f η) = O(η)

=⇒ Q(f) = 0

=⇒ f = n(x, t)MT (v) = exp(A + C|v|2/2)

Page 231: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

29Step 1: Chapman-Enskog expansion

➠ Write (exact): f η = nηMT η + ηf η1

➠ Then:1

ηQ(f η) = −νf η

1 = T f η + η∂tfη

with

T f = v · ∇xf −∇xV · ∇vf Transport operator

➠ As η → 0:

f η1 → f1 = −ν−1T f

Page 232: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

30Step 2: Mass and energy balance eqs. (finite η)

➠ Take moments of the Boltzmann eq. against 1and |v|2/2 and use that Q preserves mass andenergy:

∂nη

∂t+ ∇x · j

ηn = 0

∂Wη

∂t+ ∇x · j

ηW + ∇xV · jη

n = 0

➠ Withjηn = η−1

f ηvdv =

f η1 vdv

jηW = η−1

f ηv |v|2/2 dv =

f η1 v |v|2/2 dv

Page 233: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

31Step 2: Mass and energy balance eqs. (η → 0)

➠ As η → 0

jηn → jn =

f1vdv

jηW → jW =

f1v |v|2/2 dv

➠ Gives the mass and energy balance eqs in thelimit η → 0

∂n

∂t+ ∇x · jn = 0

∂W

∂t+ ∇x · jW + ∇xV · jn = 0

Page 234: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

32Step 3: Eq. for jn

➠ From f1 = −ν−1T f and

f = nMT = exp(A + C|v|2/2)

➠ Compute:

f1 = −ν−1(v · ∇x −∇xV · ∇v)(exp(A + C|v|2/2))

= −ν−1((∇xA − C∇xV ) · v(nMT ) + ∇xC · (|v|2/2) v(nMT ))

➠ Then jn =

f1vdv =

= −ν−1n( (

MT (v)v ⊗ v dv)(∇xA − C∇xV )

+(

MT (v)v ⊗ v |v|2/2 dv)∇xC )

Page 235: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

33Step 3: Eq. for jn (cont)

➠ Denote∫

MT (v)v⊗v dv = a11T Id ,

MT (v)v⊗v |v|2/2 dv = a12T2Id

a11, a12 only depend on the dimension d

➠ Then

jn = −D11(∇xA − C∇xV ) − D12∇xC

D11 = ν−1nTa11 , D12 = ν−1nT 2a12

Page 236: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

34Step 3: Eq. for jW

➠ Similar computation for jW =∫

f1v |v|2/2 dv

gives

jW = −D12(∇xA − C∇xV ) − D22∇xC

D22 = ν−1nT 3a22

➠ where a22 is defined by∫

MT (v)v ⊗ v (|v|2/2)2 dv = a22T3Id

and only depends on the dimension

Page 237: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

35Step 3: Matrix eq. for the fluxes

➠ Can be summarized in the matrix equality(

jn

jW

)

= −D

(

∇xA − C∇xV

∇xC

)

➠ With diffusion matrix

D =

(

D11 D12

D12 D22

)

➠ D symmetric positive-definite

Page 238: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

36Step 3: Positive-definiteness of D

➠ Let a, b two vectors of Rd

(

a

b

)T

D

(

a

b

)

=

MT (v)|(a + b|v|2/2) · v|2 dv ≥ 0

➠ And(

a

b

)T

D

(

a

b

)

= 0 ⇐⇒ a = b = 0

Page 239: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

37About rigorous proof

➠ No rigorous proof

➟ Partial proof [Ben Abdallah, Desvillettes, Genieys] inthe case of Boltzmann + elastic operator

➠ Formal proof for more complex collision operator

➟ see [Ben Abdallah, D. Genieys]

➟ More complicated: Diffusion matrix →inversion of the linearized operator

Page 240: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

38About the Energy-Transport model

➠ increasingly used by engineers

➟ in strongly non equilibrium situations

➠ Examples:

➟ semiconductors

➟ plasmas

➟ . . .

➠ Extensions to the quantum world

➟ To be investigated in the next lectures

Page 241: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

1

Chapter 5

Quantum diffusion models

P. Degond

MIP, CNRS and Universite Paul Sabatier,

118 route de Narbonne, 31062 Toulouse cedex, France

[email protected] (see http://mip.ups-tlse.fr)

Page 242: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

2Summary

1. Quantum energy-Transport model

2. Quantum drift-Diffusion model

3. Summary and conclusion

Page 243: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

3

1. Quantum energy-Transport model

P. D., F Mehats, C. Ringhofer,

J. Stat. Phys. 118 (2005), pp. 625-667

Page 244: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

4Quantum kinetic equation

➠ Diffusion model

➟ Form of the collision operator matters

➟ 6= hydro models

➠ Need to specify Q in Liouville equation

i~ρ = [H, ρ] + i~Q(ρ)

➠ Or in the Wigner eq.

∂tw + p · ∇xw + Θ~[V ]w = Q(w)

Page 245: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

5BGK operator

➠ Classical case

➟ Relaxation to the Maxwellian

Q(f)(v) = −ν(f − exp(A + C|v|2/2))

with (A, C) such that mass and energy arepreserved

➠ Quantum case: replace the classical Maxwellianby the quantum one

Q(w)(v) = −ν(w − Exp(A + C|p|2/2))

➠ Exp w = W (exp (W−1w))

Page 246: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

6Quantum Maxwellian

➠ Wigner form. Mn,W = Exp(A + C|p|2/2)

∫Exp(A + C|p|2/2)

(1

|p|2/2

)dp =

(n

W

)

➠ Density operator form.

ρn,W = W−1(Mn,W) = exp(W−1(A + C|p|2/2))

with, ∀ test fct. φ:

Tr{ρn,W φ} =

∫nφ dx , Tr{ρn,W φ|p|2/2} =

∫Wφ dx

Page 247: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

7Entropy minimization principle

➠ Reminder: ρn,W = exp(W−1(A + C|p|2/2))satisfies the entropy minimization principle:

➟ Solve

min H[ρ] = Tr{ρ(ln ρ − 1)} subject to, ∀ test fct φ:

Tr{ρn,W φ} =

∫nφ dx , Tr{ρn,W φ|p|2/2} =

∫Wφ dx }

➠ In Wigner form

H[ρ] = Tr{ρ(ln ρ − 1)} =

∫w(Ln w − 1) dx dp

with quantum log: Ln w = W [ln(W−1(w))]

Page 248: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

8Quantum BGK operator

➠ For Wigner distribution w given,

➟ denote Mw := Mn,W s.t.n and W are the density and energy of f :

∫Mn,W

(1

|p|2/2

)dp =

∫f

(1

|p|2/2

)dp

➠ Then Quantum BGK operator is written

Q(w) = −ν(w −Mw)

➠ Density operator: call it Mρ as well

Q(ρ) = −ν(ρ −Mρ)

Page 249: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

9Situation modeled by Q(w)

➠ Similar as in the classical case but when quantumeffects need to be taken into account

➠ Energy exchanges between the particles are moreefficient than with the surrounding

➟ Possibility of a different temperature than thatof the background

Page 250: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

10Conservative variables vs entropic variables

➠ Reminder: two sets of variables

➟ Conservative variables (n,W)

➟ Entropic variables (A, C)

➟ (n,W) ←→ (A, C) is a functional change ofvariables

➟ Inversion through entropy

Page 251: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

11Properties of Q

➠ Mass and energy conservation

∫Q(w)

(1

|p|2

)dp = 0

➠ Null set of Q (equilibria) :

Q(w) = 0 ⇐⇒ ∃(A, C) such that w = Exp(A+C|p|2/2)

➠ Entropy decay:∫

Q(w)Lnw dx dp = Tr{Q(ρ) ln ρ} ≤ 0

Page 252: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

12Proof of entropy decay

➠ Proof shown in the classical case does not work(saying that Ln(w) is increasing w.r.t. w ismeaningless)

➠ Use convexity of the function Λ:

λ ∈ [0, 1] → H((1 − λ)Mρ + λρ)

➠ givesdΛ

dλ(1) ≥ Λ(1) − Λ(0)

➠ Reminder

δTr{f(ρ)} = Tr{f ′(ρ) δρ} , δH(ρ) = Tr{ln ρ δρ}

Page 253: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

13Proof of entropy decay (cont)

➠ Then

dλ(λ) = Tr{ln((1 − λ)Mρ + λρ) (ρ −Mρ)}

➠ and

dλ(1) = Tr{ln ρ (ρ −Mρ)} ≥ H(ρ) − H(Mρ)

➠ Entropy minimization principle

H(ρ) − H(Mρ) ≥ 0

➠ Tr{Q(ρ) ln ρ} = −νTr{ln ρ (ρ−Mρ)} ≤ 0 QED

Page 254: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

14Diffusion scaling

➠ Wigner eq. under diffusion scaling:

η2∂wη

∂t+ η(v · ∇xw

η − Θ(wη)) = Q(wη)

Page 255: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

15Limit η → 0: Quantum Energy-Transport

➠ as η → 0, wη −→ Exp(A + C|p|2/2)where (A, C) satisfy the Energy-Transport model:

➠ Mass and energy conservation eqs.

∂n

∂t+ ∇x · jn = 0

∂W∂t

+ ∇x · jW + ∇xV · jn = 0

➠ With∫Exp(A + C|p|2/2)

(1

|p|2/2

)dp =

(n

W

)

Page 256: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

16Energy-Transport model (cont)

➠ Fluxes

jn = −ν−1[∇Π + n∇V ]

jW = −ν−1[∇Q + (W Id + Π)∇V − ~2

8n∇(∆V )]

➠ with

Π(A, C) =

∫Exp(A + C|p|2/2) p ⊗ p dp

Q(A, C) =

∫Exp(A + C|p|2/2) p ⊗ p |p|2/2 dp

Page 257: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

17Structure of the model

➠ Like in the classical case:

➟ Balance eqs. for the conservative variables(n,W)

➟ Fluxes expressed in terms of the gradients ofthe entropic variables (A, C)

➠ Reminder

➟ Passage (n,W) ←→ (A, C) through entropy

➠ However, no clear symmetric positive-definitematrix structure.

➟ Symmetry is more concealed (operator-wise)

Page 258: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

18Entropy decay

➠ Entropy S(n,W) = H(Mn,W):

S(n,W) =

∫Mn,W (LnMn,W − 1) dx dp

=

∫Exp(A + C|p|2/2)(A + C|p|2/2 − 1) dx dp

=

∫(n(A − 1) + CW) dx

➠ Thend

dtS(n,W) ≤ 0

➠ Proof: similar as for hydrodynamic model

Page 259: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

19Limit η → 0: Sketch of proof

➠ Step 1: wη → Maxwellian Exp(A + C|p|2/2)where (A, C) = (A, C)(x, t)

➟ Chapman-Enskog expansion: definewη

1 = η−1(wη −Mwη)wη

1 = O(1) as η → 0. Define w1 = limη→0 wη1

➠ Step 2: Write mass and energy conservationequationsRemain valid as η → 0To be determined: Fluxes

➠ Step 3: Compute the fluxes taking theappropriate moment of w1

Page 260: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

20Step 1: Convergence to equilibrium

➠ Suppose wη → w smoothly

Wigner-BGK eq. =⇒ Q(wη) = O(η)

=⇒ Q(w) = 0

=⇒ w = Exp(A + C|p|2/2)

Page 261: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

21Step 1: Chapman-Enskog expansion

➠ Write (exact): wη = Mwη + ηwη1

➠ Then:1

ηQ(wη) = −νwη

1 = T wη + η∂twη

with

T w = v · ∇xw − Θ~[V ]w Quantum transport operator

➠ As η → 0:

wη1 → w1 = −ν−1T w

Page 262: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

22Step 2: Mass and energy balance eqs. (finite η)

➠ Take moments of the Wigner-BGK eq. against 1and |p|2/2 and use that Q preserves mass andenergy:

∂nη

∂t+ ∇x · jη

n = 0

∂Wη

∂t+ ∇x · jη

W + ∇xV · jηn = 0

➠ Withjηn = η−1

∫wηpdp =

∫wη

1pdp

jηW = η−1

∫wηp |p|2/2 dp =

∫wη

1p |p|2/2 dp

Page 263: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

23Step 2: Mass and energy balance eqs. (η → 0)

➠ As η → 0

jηn → jn =

∫w1pdp

jηW → jW =

∫w1p |p|2/2 dp

➠ Gives the mass and energy balance eqs in thelimit η → 0

∂n

∂t+ ∇x · jn = 0

∂W∂t

+ ∇x · jW + ∇xV · jn = 0

Page 264: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

24Step 3: Eq. for jn

➠ From w1 = −ν−1T w and

w = Exp(A + C|p|2/2)

➠ Compute:

w1 = −ν−1[∇x · (pExp(A + C|p|2/2))

−Θ~[V ]Exp(A + C|p|2/2)]

➠ Then jn =

∫w1pdp =

= −ν−1[∇(

∫Exp(A + C|p|2/2)p ⊗ p dp)

−∫

Θ~[V ](Exp(A + C|p|2/2)) p dp]

Page 265: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

25Step 3: Eq. for jn (cont)

➠ Lemma

∫Θ~[V ]w

1

p

|p|2/2

dp =

0

−n∇V

−nu · ∇V

➠ Lemma∫

Θ~[V ]w|p|2/2p dp = −(W Id+Π)∇V +~2

8n∇(∆V )

➠ Proof: Use definition of Θ~[V ] and simpleproperties of Fourier transform

Page 266: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

26Step 3: Eq. for jn (cont)

➠ Then

jn = −ν−1[∇Π + n∇V ] QED

Page 267: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

27Step 3: Eq. for jW

➠ Similar computation for jW =∫

w1p |p|2/2 dpgives

= −ν−1[∇(

∫Exp(A + C|p|2/2)p ⊗ p |p|2/2dp)

−∫

Θ~[V ](Exp(A+C|p|2/2)) p |p|2/2 dp]

➠ Using previous Lemma:

jW = −ν−1[∇Q + (W Id + Π)∇V − ~2

8n∇(∆V )]

QED

Page 268: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

28~ expansion

➠ Expansion of Π:

Πrs = δrs n T

+ ~2

12d n δrs(∆x ln n + 2∆x ln T + 2∇x ln n · ∇x ln T

−d+2

2|∇x ln T |2)

+~2

12n( − ∂2

rs ln n − 2∂2rs ln T − ∂r ln n ∂s ln T

−∂r ln T ∂s ln n + d+2

2∂r ln T ∂s ln T ),

With T = 2W/(dn)

Page 269: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

29~ expansion

➠ Expansion of Q:

Qrs = d+2

2δrs n T 2

+ ~2

24d n T δrs(∆x ln n + (d + 8)∆x ln T

+2(d + 4)∇x ln n · ∇x ln T + d2−4d−8

2|∇x ln T |2)

+~2

24(d + 4) n T (−∂2

rs ln n − 3∂2rs ln T

−∂r ln n ∂s ln T − ∂r ln T ∂s ln n + d2∂r ln T ∂s ln T )

With T = 2W/(dn)

Page 270: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

30~ expansion: small temperature variation

➠ |∇ ln T |/|∇ ln n| ≪ 1

Jn = −∇(

n T +~2

12dn ∆ ln n

)− n∇(V + VB[n]) ,

Jw = −∇(

d + 2

2n T 2 +

~2

24

d + 4

dn T ∆ ln n

)

−d + 4

2n T ∇VB[n] −

(d + 2

2n T +

~2

12dn ∆ ln n

)∇V

+~2

12n (∇∇ ln n)∇V +

~2

8∇∆ ln n .

Page 271: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

31About Quantum Energy-Transport models

➠ No rigorous proof

➟ existence ?

➟ convergence ?

➠ No numerical simulations (so far)

➠ In the literature

➟ quantum energy-transport models can befound

➟ But: derivation (and model itself) different

➟ e.g. extensions of the DG (Density-Gradientmodel) by [Chen & Liu, JCP 05]

Page 272: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

32Quantum Drift-Diffusion model

➠ Have a nice structure (see next lecture)

➠ Hope that structure can be extended to QuantumEnergy-Transport

Page 273: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

33

2. Quantum drift-Diffusion model

P. D., F Mehats, C. Ringhofer, J. Stat. Phys. 118 (2005), 625-667

P. D., F. M., C. R., Contemp. Math., 371 (2005), 107–131

S. Gallego, F. Mehats, SIAM Num. Anal. 43 (2005), 1828-1849

P. D., S. Gallego, F. Mehats, J. Comp. Phys., to appear

Page 274: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

34BGK operator

➠ Classical case

➟ Relaxation to the Maxwellian with fixedtemperature (T = 1 for simplicity)

Q(f)(v) = −ν(f − exp(A − |v|2/2))

with A such that mass is preservedNote: n ∼ eA up to a normalization constant

➠ Quantum case: replace the classical Maxwellianby the quantum one

Q(w)(v) = −ν(w − Exp(A − |p|2/2))

Page 275: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

35Quantum Maxwellian

➠ Wigner form. Mn = Exp(A − |p|2/2)∫

Exp(A − |p|2/2) dp = n

➠ Density operator form.

ρn = W−1(Mn) = exp(W−1(A − |p|2/2))

with, ∀ test fct. φ:

Tr{ρn φ} =

∫nφ dx

Page 276: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

36Entropy minimization principle

➠ ρn = exp(W−1(A − |p|2/2)) satisfies the Freeenergy minimization principle:

min G[ρ] = Tr{ρ(ln ρ − 1) + Hρ} subject to:

Tr{ρn φ} =

∫nφ dx , ∀ test fct φ

H = |p|2/2 + V = Hamiltonian

➠ In Wigner form

G[ρ] = Tr{ρ(ln ρ−1)+Hρ} =

∫[w(Ln w−1)+Hw] dx dp

with quantum log: Ln w = W [ln(W−1(w))]

Page 277: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

37Quantum BGK operator

➠ For Wigner distribution w given,

➟ denote Mw := Mn s.t.n is the density of f :

∫Mn dp =

∫f dp

➠ Then Quantum BGK operator is written

Q(w) = −ν(w −Mw)

➠ Density operator: call it Mρ as well

Q(ρ) = −ν(ρ −Mρ)

Page 278: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

38Situation modeled by Q(w)

➠ Similar as in the classical case but when quantumeffects need to be taken into account

➠ Energy exchanges between the particles and thesurrounding relax the temperature to thebackground temperature

Page 279: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

39Conservative variable vs entropic variable

➠ Reminder: two variables

➟ Conservative variable n

➟ Entropic variable A

➟ n ←→ A is a functional change of variables

➟ Inversion through entropy

Page 280: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

40Properties of Q

➠ Mass conservation∫

Q(w) dp = 0

➠ Null set of Q (equilibria) :

Q(w) = 0 ⇐⇒ ∃A such that w = Exp(A − |p|2/2)

➠ Free energy decay:∫

Q(w)(Lnw+H) dx dp = Tr{Q(ρ)(ln ρ+H)} ≤ 0

Proof: similar to the energy-transport case

Page 281: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

41Diffusion scaling

➠ Wigner eq. under diffusion scaling:

η2∂wη

∂t+ η(v · ∇xw

η − Θ(wη)) = Q(wη)

Page 282: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

42Limit η → 0: Quantum Drift-Diffusion

➠ as η → 0, wη −→ Exp(A − |p|2/2)where A satisfy the Energy-Transport model:

➠ Mass conservation eq.

∂n

∂t+ ∇x · jn = 0

➠ With ∫Exp(A − |p|2/2) dp = n

Page 283: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

43Drift-Diffusion model (cont)

➠ Flux

jn = −ν−1[∇Π + n∇V ]

➠ with

Π(A) =

∫Exp(A − |p|2/2) p ⊗ p dp

➠ Proof of the limit η → 0: exactly the same as inthe Energy-Transport case → omitted

Page 284: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

44Free energy decay

➠ Fluid free energy G(n) = G(Mn):

G(n) =

∫Mn,W (LnMn,W − 1 + H) dx dp

=

∫Exp(A − |p|2/2)(A − |p|2/2 − 1 + H) dx dp

=

∫n(A + V − 1) dx

➠ Then if either V independent of t or V given by

Poisson’s eq.:d

dtG(n) ≤ 0

Page 285: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

45Computation of Π

➠ To be determined: pressure tensor Π

Π(A) =

∫Exp(−H(A)) p ⊗ p dp

with modified Hamiltonian H(A) = |p|2/2 − A

➠ Π(A) = Π(−A, 0) where Π(A, B) is the pressuretensor of Isentropic Quantum Euler model

Π(A, B) =

∫Exp(−H(A, B)) p ⊗ p dp

with H(A, B) = |p|2/2 − B · p + A + |B|2/2

Page 286: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

46Computation of Π (cont)

➠ In that case, we had

∇Π(A, B) = ∇(nu ⊗ B) + (∇B)nu − n∇(A + |B|2/2)

➠ Here ∇Π(A) is deduced through B = 0 andA → −A

∇Π(A) = n∇A

Page 287: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

47Alternate expression of QDD

➠ QDD model has equivalent formulation:

∂n

∂t+ ∇x · jn = 0

jn = −ν−1(n∇(A + V ))∫Exp(A − |p|2/2) dp = n

Page 288: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

48Moment reconstruction

➠ Suppose Hamiltonian H(A) = |p|2/2 − A hasdiscrete spectrum

➟ Eigenvalues λp(A), p = 1, . . . ,∞➟ Eigenfunctions ψp(A)

➠ Then

n(A) (x) =∞∑

p=1

exp(−λp(A)) |ψp(A) (x)|2

Page 289: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

49Final expression of QDD model

➠ Continuity and current eqs.

∂n

∂t+ ∇x · jn = 0

jn = −ν−1(n∇(A + V ))

➠ n ↔ A relationship

n(A) (x) =∞∑

p=1

exp(−λp(A)) |ψp(A) (x)|2

➠ With λp(A), ψp(A) associated with modified

Hamiltonian H(A) = |p|2/2 − A

Page 290: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

50Equilibrium states

➠ Defined by jn = 0

➟ Implies A = −V

➠ Then

n (x) =∞∑

p=1

exp(−λp) |ψp (x)|2

With λp, ψp associated with the ’true’

Hamiltonian H(A) = |p|2/2 + V

➠ If n ↔ V through Poisson’s eq.Shrodinger-Poisson problem

Page 291: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

51Close to equilibrium

➠ Suppose A ≈ −V

➟ Then, replace A by −V in the moment pbm:

➠ Leads to

∂n

∂t+ ∇x · jn = 0

jn = ν−1(n∇(A + V ))

n(A) (x) =∞∑

p=1

exp(A + V − λp(−V )) |ψp(−V ) (x)|2

➠ Schrodinger-Poisson-Drift-Diffusion [Sacco et al,

Springer Lecture Notes (2004)]

Page 292: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

52~ expansion

➠ up to O(~2) terms, QDD model reads:

∂tn + ∇ · jn = 0 ,

jn = −ν−1[∇n − n∇(V + VB[n]))

VB[n] = −~2

6

1√n

∆(√

n) Bohm potential

➠ Density-Gradient model of [Ancona & Iafrate, Phys.

Rev. B (89)]

Page 293: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

53Free energy for the Density-Gradient model

➠ Free energy for the QDD model expanded up toO(~2) terms:

G2(n) =

Rd

n(ln n − 1 + V + VB[n]) dx

➠ If V independent of t:

d

dtG2(n) = −

Rd

1

νn|∇n+n∇(V +VB[n])|2 dx ≤ 0

➠ Similar expression if V is solved throughPoisson’s eq.

Page 294: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

54About Density-Gradient model

➠ Widely used in the literature

➟ Mathematical theory: [Ben Abdallah & Unterreiter,

ZAMP 98],

➟ Numerical methods: [Pinau, Unterreiter, SINUM

99], [Jungel, Pinau, SINUM 01]

➠ This approach

➟ Provides a derivation of DG model from firstprinciples

➟ Proves (for the first time ?) that DG modeldecreases free energy

Page 295: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

55About Quantum Drift-Diffusion model

➠ No rigorous proof

➟ existence ?

➟ convergence ?

➠ Numerical simulations

➟ The implicit semi-discretized model (coupledw. Poisson) is well-posed and has a variationalformulation [Gallego & Mehats, SIAM J. Num. Anal.

05]

Page 296: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Sum

mar

y)(C

oncl

usio

n)P

ierr

eD

egon

d-

Qua

ntum

fluid

mod

els

-C

etra

ro,s

ept2

006

56Res

onan

ttu

nnel

ing

dio

de

GaAs ( 10 21 m -3 )

GaAs ( 10 24 m -3 )

GaAs ( 10 24 m -3 )

GaAs ( 10 21 m -3 )

Al 0.3 Ga 0.7 As ( 10 21 m -3 )

Al 0.3 Ga 0.7 As ( 10 21 m -3 )

GaAs ( 10 21 m -3 )

Energy ( eV )

0 25

30

35

45

50

75

40

0.4

Pos

ition

( nm

)

Page 297: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

57Isolated diode: density

0 10 20 30 40 50 60 700

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2x 10

21

Position (nm)

Den

sity

(m

−3 )

t=0 fs

0 10 20 30 40 50 60 700

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2x 10

21

Position (nm)

Den

sity

(m

−3 )

t=10 fs

0 10 20 30 40 50 60 700

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2x 10

21

Position (nm)

Den

sity

(m

−3 )

t=1000 fs

0 10 20 30 40 50 60 700

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2x 10

21

Position (nm)

De

nsi

ty (

m−

3)

t=10000 fs

Density vs position at different times

Page 298: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

58Isolated diode: Fermi level

0 10 20 30 40 50 60 70

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Position (nm)

Ele

ctro

che

mic

al P

ote

ntia

l (V

)

t=0 fs

0 10 20 30 40 50 60 70

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Position (nm)

Ele

ctro

che

mic

al P

ote

ntia

l (V

) t=10 fs

0 10 20 30 40 50 60 70

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Position (nm)

Ele

ctro

che

mic

al P

ote

ntia

l (V

)

t=1000 fs

0 10 20 30 40 50 60 70

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Position (nm)

Ele

ctro

che

mic

al P

ote

ntia

l (V

)

t=10000 fs

Fermi level vs position at different times

Page 299: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

59Isolated diode: free energy vs time

0 1000 2000 3000 4000 5000 6000 70000.396

0.397

0.398

0.399

0.4

0.401

0.402

0.403

0.404

Time (fs)

Qua

ntum

free

ene

rgy

(eV

)

Page 300: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

60Isolated diode: comparison between models

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

10−3

10−2

10−1

100

Time (fs)

||neQDD−nSP|| / ||nSP||||neQDD−nSPDD|| / ||nSPDD||

neQDD − nSP (blue) , neQDD − nSPDD (red)Relative error in L2 norm vs time

Page 301: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

61Applied bias: I − V curve

0.067me / 0.092me 0.067me / 1.5×0.092me

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.450

1

2

3

4

5

6

7

8

9x 10

9

Cur

rent

(Am

−2)

Voltage (V)0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

0

0.5

1

1.5

2

2.5

3x 10

9

Cur

rent

(Am

−2)

Voltage (V)

1.5×0.067me / 0.092me 1.5×0.067me / 1.5×0.092me

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.40

0.5

1

1.5

2

2.5

3

3.5

4

4.5x 10

9

Cur

rent

(Am

−2)

Voltage (V)0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0

5

10

15x 10

8

Cur

rent

(Am

−2)

Voltage (V)

Influence of the effective mass

Page 302: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

62Density: peak to valley

0 20 40 60 800

500

1000

1500

0

5

10

15

x 1023

Time (fs)

Position (nm)

Den

sity

(m

−3 )

Density from peak (Va = 0.25V)to valley (Va = 0.31V).

Page 303: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

63Relative magnitude of the eigen-states

0 10 20 30 40 50 60 700

5

10

15x 10

23

position (nm)

Den

sity

(m

−3 )

e−λ1/(k

B T)|ψ

1|2

e−λ2/(k

B T)|ψ

2|2

e−λ3/(k

B T)|ψ

3|2

e−λ4/(k

B T)|ψ

4|2

e−λ5/(k

B T)|ψ

5|2

e−λ6/(k

B T)|ψ

6|2

n=Σ

p e−λ

p/(k

B T)|ψ

p|2

1 2

3

4

5 6 0 10 20 30 40 50 60 70

0

5

10

15x 10

23

position (nm)

Den

sity

(m

−3 )

e−λ1/(k

B T)|ψ

1|2

e−λ2/(k

B T)|ψ

2|2

e−λ3/(k

B T)|ψ

3|2

e−λ4/(k

B T)|ψ

4|2

e−λ5/(k

B T)|ψ

5|2

e−λ6/(k

B T)|ψ

6|2

n=Σ

p e−λ

p/(k

B T)|ψ

p|2

1 2

3

4

5 6

Current peak Valley

λ1 λ2 λ3 λ4 λ5 λ6 λ7

Peak 0.87 1.05 1.56 2.03 2.28 3.03 4.47

Valley 0.87 1.11 1.57 1.70 2.54 3.05 5.03

Page 304: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

64Comparison eQDD / DG

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.450

1

2

3

4

5

6

7

8

9x 10

9

Cu

rre

nt

(Am

−2)

Voltage (V)0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

0

0.5

1

1.5

2

2.5x 10

8

Cu

rre

nt (A

m−

2)

Voltage (V)

Left: eQDD ; Right: DG

Page 305: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

65Influence of the potential

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.040

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2x 10

7

Cu

rre

nt

(Am

−2 )

Voltage (V)

0 20 40 600

0.1

0.2

0.3

0.4 eQDDDG

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.040

2

4

6

8

10

12x 10

9

Cur

rent

(A

m−

2 )

Voltage (V)

0 20 40 600

0.1

0.2

0.3

0.4 eQDDDG

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.040

1

2

3

4

5

6

7

x 107

Cur

rent

(A

m−

2 )

Voltage (V)

eQDDDG

0 20 40 600

0.1

0.2

0.3

0.4

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.040

2

4

6

8

10

12

14

16x 10

9

Cur

rent

(A

m−

2 )

Voltage (V)

eQDDDG

0 20 40 600

0.1

0.2

0.3

0.4

Page 306: Chapter 1 Quantum kinetic equations: an introductionphp.math.unifi.it/users/cime/Courses/2006/04/LN-200643.pdf(Summary) Pierre Degond - Quantum fluid models - Cetraro, sept 2006 (Conclusion)

(Summary) (Conclusion)Pierre Degond - Quantum fluid models - Cetraro, sept 2006

66Comparison between the models

0 200 400 600 800 1000 12000

1

2

3

4

5

6x 10

10

Temperature (K)

Cur

rent

(A

m−

2 )

DGCDDeQDD

➠ As T ր models are closer

➠ (DG) and (eQDD) are closer while (CDD)remains significantly away