category theory (stanford encyclopedia of philosophy)

Upload: carolyn-matthews

Post on 13-Jan-2016

227 views

Category:

Documents


1 download

DESCRIPTION

Category Theory

TRANSCRIPT

  • CategoryTheoryFirstpublishedFriDec6,1996substantiverevisionFriOct3,2014

    Categorytheoryhascometooccupyacentralpositionincontemporarymathematicsandtheoreticalcomputerscience,andisalsoappliedtomathematicalphysics.Roughly,itisageneralmathematicaltheoryofstructuresandofsystemsofstructures.Ascategorytheoryisstillevolving,itsfunctionsarecorrespondinglydeveloping,expandingandmultiplying.Atminimum,itisapowerfullanguage,orconceptualframework,allowingustoseetheuniversalcomponentsofafamilyofstructuresofagivenkind,andhowstructuresofdifferentkindsareinterrelated.Categorytheoryisbothaninterestingobjectofphilosophicalstudy,andapotentiallypowerfulformaltoolforphilosophicalinvestigationsofconceptssuchasspace,system,andeventruth.Itcanbeappliedtothestudyoflogicalsystemsinwhichcasecategorytheoryiscalledcategoricaldoctrinesatthesyntactic,prooftheoretic,andsemanticlevels.Categorytheoryisanalternativetosettheoryasafoundationformathematics.Assuch,itraisesmanyissuesaboutmathematicalontologyandepistemology.Categorytheorythusaffordsphilosophersandlogiciansmuchtouseandreflectupon.

    1.GeneralDefinitions,ExamplesandApplications

    2.BriefHistoricalSketch

    3.PhilosophicalSignificance

    Bibliography

    AcademicTools

    OtherInternetResources

    RelatedEntries

    1.GeneralDefinitions,ExamplesandApplications1.1DefinitionsCategoriesarealgebraicstructureswithmanycomplementarynatures,e.g.,geometric,logical,computational,combinatorial,justasgroupsaremanyfacetedalgebraicstructures.Eilenberg&MacLane(1945)introducedcategoriesinapurelyauxiliaryfashion,aspreparationforwhattheycalledfunctorsandnaturaltransformations.Theverydefinitionofacategoryevolvedovertime,accordingtotheauthor'schosengoalsandmetamathematicalframework.Eilenberg&MacLaneatfirstgaveapurelyabstractdefinitionofacategory,alongthelinesoftheaxiomaticdefinitionofagroup.Others,startingwithGrothendieck(1957)andFreyd(1964),electedforreasonsofpracticalitytodefinecategoriesinsettheoreticterms.

    Analternativeapproach,thatofLawvere(1963,1966),beginsbycharacterizingthecategoryofcategories,andthenstipulatesthatacategoryisanobjectofthatuniverse.Thisapproach,underactivedevelopmentbyvariousmathematicians,logiciansandmathematicalphysicists,leadtowhatarenowcalledhigherdimensionalcategories(Baez1997,Baez&Dolan1998a,Batanin1998,

  • Leinster2002,Hermidaetal.2000,2001,2002).Theverydefinitionofacategoryisnotwithoutphilosophicalimportance,sinceoneoftheobjectionstocategorytheoryasafoundationalframeworkistheclaimthatsincecategoriesaredefinedassets,categorytheorycannotprovideaphilosophicallyenlighteningfoundationformathematics.Wewillbrieflygooversomeofthesedefinitions,startingwithEilenberg's&MacLane's(1945)algebraicdefinition.However,beforegoinganyfurther,thefollowingdefinitionwillberequired.

    Definition:Amappingewillbecalledanidentityifandonlyiftheexistenceofanyproducteoreimpliesthate=ande=Definition(Eilenberg&MacLane1945):AcategoryCisanaggregateObofabstractelements,calledtheobjectsofC,andabstractelementsMap,calledmappingsofthecategory.Themappingsaresubjecttothefollowingfiveaxioms:

    (C1)Giventhreemappings , and ,thetripleproduct ( )isdefinedifandonlyif( ) isdefined.Wheneitherisdefined,theassociativelaw

    ( )=( )

    holds.Thistripleproductiswritten .

    (C2)Thetripleproduct isdefinedwheneverbothproducts and aredefined.

    (C3)Foreachmapping,thereisatleastoneidentitye suchthate isdefined,andatleastoneidentitye suchthate isdefined.

    (C4)Themappinge correspondingtoeachobjectXisanidentity.

    (C5)ForeachidentityethereisauniqueobjectXofCsuchthate =e.

    AsEilenberg&MacLanepromptlyremark,objectsplayasecondaryroleandcouldbeentirelyomittedfromthedefinition.Doingso,however,wouldmakethemanipulationoftheapplicationslessconvenient.Itispracticallysuitable,andperhapspsychologicallymoresimpletothinkintermsofmappingsandobjects.ThetermaggregateisusedbyEilenberg&MacLanethemselves,presumablysoastoremainneutralwithrespecttothebackgroundsettheoryonewantstoadopt.

    Eilenberg&MacLanedefinedcategoriesin1945forreasonsofrigor.Astheynote:

    Itshouldbeobservedfirstthatthewholeconceptofacategoryisessentiallyanauxiliaryoneourbasicconceptsareessentiallythoseofafunctorandofnaturaltransformation().Theideaofacategoryisrequiredonlybythepreceptthateveryfunctionshouldhaveadefiniteclassasdomainandadefiniteclassasrange,forthecategoriesareprovidedasthedomainsandrangesoffunctors.Thusonecoulddropthecategoryconceptaltogetherandadoptanevenmoreintuitivestandpoint,inwhichafunctorsuchasHomisnotdefinedoverthecategoryofallgroups,butforeachparticularpairofgroupswhichmaybegiven.Thestandpointwouldsufficeforapplications,inasmuchasnoneofourdevelopmentswillinvolveelaborateconstructionsonthecategoriesthemselves.(1945,chap.1,par.6,p.247)

    Thingschangedinthefollowingtenyears,whencategoriesstartedtobeusedinhomologytheoryandhomologicalalgebra.MacLane,Buchsbaum,GrothendieckandHellerwereconsidering

    1 2 3 3 2 1

    3 2 1

    3 2 1 3 2 1

    3 2 1

    3 2 1 3 2 2 1

    1 1

    2 2

    X

    X

  • categoriesinwhichthecollectionsofmorphismsbetweentwofixedobjectshaveanadditionalstructure.Morespecifically,givenanytwoobjectsXandYofacategoryC,thesetHom(X,Y)ofmorphismsfromXtoYformanabeliangroup.Furthermore,forreasonsrelatedtothewayshomologyandcohomologytheoriesarelinked,thedefinitionofacategoryhadtosatisfyanadditionalformalproperty(whichwewillleaveasideforthemoment):ithadtobeselfdual.Theserequirementsleadtothefollowingdefinition.

    Definition:AcategoryCcanbedescribedasasetOb,whosemembersaretheobjectsofC,satisfyingthefollowingthreeconditions:

    Morphism:ForeverypairX,Yofobjects,thereisasetHom(X,Y),calledthemorphismsfromXtoYinC.IffisamorphismfromXtoY,wewritef:XY.Identity:ForeveryobjectX,thereexistsamorphismid inHom(X,X),calledtheidentityonX.

    Composition:ForeverytripleX,YandZofobjects,thereexistsapartialbinaryoperationfromHom(X,Y)Hom(Y,Z)toHom(X,Z),calledthecompositionofmorphismsinC.Iff:XYandg:YZ,thecompositionoffandgisnotated(gf):XZ.

    Identity,morphisms,andcompositionsatisfytwoaxioms:

    Associativity:Iff:XY,g:YZandh:ZW,thenh(gf)=(hg)f.Identity:Iff:XY,then(id f)=fand(fid )=f.

    Thisisthedefinitiononefindsinmosttextbooksofcategorytheory.Assuchitexplicitlyreliesonasettheoreticalbackgroundandlanguage.Analternative,suggestedbyLawvereintheearlysixties,istodevelopanadequatelanguageandbackgroundframeworkforacategoryofcategories.Wewillnotpresenttheformalframeworkhere,foritwouldtakeustoofarfromourmainconcern,butthebasicideaistodefinewhatarecalledweakncategories(andweakcategories),andwhathadbeencalledcategorieswouldthenbecalledweak1categories(andsetswouldbeweak0categories).(See,forinstance,Baez1997,Makkai1998,Leinster2004,Baez&May2010,Simpson2011.)

    Alsointhesixties,Lambekproposedtolookatcategoriesasdeductivesystems.Thisbeginswiththenotionofagraph,consistingoftwoclassesArrowsandObjects,andtwomappingsbetweenthem,s:ArrowsObjectsandt:ArrowsObjects,namelythesourceandthetargetmappings.Thearrowsareusuallycalledtheorientededgesandtheobjectsnodesorvertices.Followingthis,adeductivesystemisagraphwithaspecifiedarrow:

    (R1)id :XX,

    andabinaryoperationonarrows:

    (R2)Givenf:XYandg:YZ,thecompositionoffandgis(gf):XZ.

    Ofcourse,theobjectsofadeductivesystemarenormallythoughtofasformulas,thearrowsarethoughtofasproofsordeductions,andoperationsonarrowsarethoughtofasrulesofinference.Acategoryisthendefinedthus:

    X

    Y X

    X

  • Definition(Lambek):Acategoryisadeductivesysteminwhichthefollowingequationsholdbetweenproofs:forallf:XY,g:YZandh:ZW,

    (E1)fid =f,id f=f,h(gf)=(hg)f.

    Thus,byimposinganadequateequivalencerelationuponproofs,anydeductivesystemcanbeturnedintoacategory.Itisthereforelegitimatetothinkofacategoryasanalgebraicencodingofadeductivesystem.Thisphenomenonisalreadywellknowntologicians,butprobablynottoitsfullestextent.AnexampleofsuchanalgebraicencodingistheLindenbaumTarskialgebra,aBooleanalgebracorrespondingtoclassicalpropositionallogic.SinceaBooleanalgebraisaposet,itisalsoacategory.(NoticealsothatBooleanalgebraswithappropriatehomomorphismsbetweenthemformanotherusefulcategoryinlogic.)Thusfarwehavemerelyachangeofvocabulary.Thingsbecomemoreinterestingwhenfirstorderandhigherorderlogicsareconsidered.TheLindenbaumTarskialgebraforthesesystems,whenproperlycarriedout,yieldscategories,sometimescalledconceptualcategoriesorsyntacticcategories(MacLane&Moerdijk1992,Makkai&Reyes1977,Pitts2000).

    1.2ExamplesAlmosteveryknownexampleofamathematicalstructurewiththeappropriatestructurepreservingmapyieldsacategory.

    1. ThecategorySetwithobjectssetsandmorphismstheusualfunctions.Therearevariantshere:onecanconsiderpartialfunctionsinstead,orinjectivefunctionsoragainsurjectivefunctions.Ineachcase,thecategorythusconstructedisdifferent

    2. ThecategoryTopwithobjectstopologicalspacesandmorphismscontinuousfunctions.Again,onecouldrestrictmorphismstoopencontinuousfunctionsandobtainadifferentcategory.

    3. ThecategoryhoTopwithobjectstopologicalspacesandmorphismsequivalenceclassesofhomotopicfunctions.Thiscategoryisnotonlyimportantinmathematicalpractice,itisatthecoreofalgebraictopology,butitisalsoafundamentalexampleofacategoryinwhichmorphismsarenotstructurepreservingfunctions.

    4. ThecategoryVecwithobjectsvectorspacesandmorphismslinearmaps.

    5. ThecategoryDiffwithobjectsdifferentialmanifoldsandmorphismssmoothmaps.

    6. ThecategoriesPordandPoSetwithobjectspreordersandposets,respectively,andmorphismsmonotonefunctions.

    7. ThecategoriesLatandBoolwithobjectslatticesandBooleanalgebras,respectively,andmorphismsstructurepreservinghomomorphisms,i.e.,(,,,)homomorphisms.

    8. ThecategoryHeytwithobjectsHeytingalgebrasand(,,,,)homomorphisms.9. ThecategoryMonwithobjectsmonoidsandmorphismsmonoidhomomorphisms.

    10. ThecategoryAbGrpwithobjectsabeliangroupsandmorphismsgrouphomomorphisms,i.e.(1,,?)homomorphisms

    11. ThecategoryGrpwithobjectsgroupsandmorphismsgrouphomomorphisms,i.e.(1,,?)homomorphisms

    12. ThecategoryRingswithobjectsrings(withunit)andmorphismsringhomomorphisms,i.e.

    X Y

  • (0,1,+,)homomorphisms.

    13. ThecategoryFieldswithobjectsfieldsandmorphismsfieldshomomorphisms,i.e.(0,1,+,)homomorphisms.

    14. AnydeductivesystemTwithobjectsformulaeandmorphismsproofs.

    Theseexamplesnicelyillustrateshowcategorytheorytreatsthenotionofstructureinauniformmanner.Notethatacategoryischaracterizedbyitsmorphisms,andnotbyitsobjects.Thusthecategoryoftopologicalspaceswithopenmapsdiffersfromthecategoryoftopologicalspaceswithcontinuousmapsor,moretothepoint,thecategoricalpropertiesofthelatterdifferfromthoseoftheformer.

    Weshouldunderlineagainthefactthatnotallcategoriesaremadeofstructuredsetswithstructurepreservingmaps.Thusanypreorderedsetisacategory.Forgiventwoelementsp,qofapreorderedset,thereisamorphismf:pqifandonlyifpq.Henceapreorderedsetisacategoryinwhichthereisatmostonemorphismbetweenanytwoobjects.Anymonoid(andthusanygroup)canbeseenasacategory:inthiscasethecategoryhasonlyoneobject,anditsmorphismsaretheelementsofthemonoid.Compositionofmorphismscorrespondstomultiplicationofmonoidelements.Thatthemonoidaxiomscorrespondtothecategoryaxiomsiseasilyverified.

    Hencethenotionofcategorygeneralizesthoseofpreorderandmonoid.Weshouldalsopointoutthatagroupoidhasaverysimpledefinitioninacategoricalcontext:itisacategoryinwhicheverymorphismisanisomorphism,thatisforanymorphismf:XY,thereisamorphismg:YXsuchthatfg=id andgf=id .

    1.3FundamentalConceptsoftheTheoryCategorytheoryunifiesmathematicalstructuresintwodifferentways.First,aswehaveseen,almosteverysettheoreticallydefinedmathematicalstructurewiththeappropriatenotionofhomomorphismyieldsacategory.Thisisaunificationprovidedwithinasettheoreticalenvironment.Second,andperhapsevenmoreimportant,onceatypeofstructurehasbeendefined,itisimperativetodeterminehownewstructurescanbeconstructedoutofthegivenone.Forinstance,giventwosetsAandB,settheoryallowsustoconstructtheirCartesianproductAB.Itisalsoimperativetodeterminehowgivenstructurescanbedecomposedintomoreelementarysubstructures.Forexample,givenafiniteAbeliangroup,howcanitbedecomposedintoaproductofcertainofitssubgroups?Inbothcases,itisnecessarytoknowhowstructuresofacertainkindmaycombine.Thenatureofthesecombinationsmightappeartobeconsiderablydifferentwhenlookedatfromapurelysettheoreticalperspective.

    Categorytheoryrevealsthatmanyoftheseconstructionsareinfactcertainobjectsinacategoryhavingauniversalproperty.Indeed,fromacategoricalpointofview,aCartesianproductinsettheory,adirectproductofgroups(Abelianorotherwise),aproductoftopologicalspaces,andaconjunctionofpropositionsinadeductivesystemareallinstancesofacategoricalproductcharacterizedbyauniversalproperty.Formally,aproductoftwoobjectsXandYinacategoryCisanobjectZofCtogetherwithtwomorphisms,calledtheprojections,p:ZXandq:ZYsuchthatandthisistheuniversalpropertyforallobjectsWwithmorphismsf:WXandg:WY,thereisauniquemorphismh:WZsuchthatph=fandqh=g.

    X Y

  • NotethatwehavedefinedaproductforXandYandnottheproductforXandY.Indeed,productsandotherobjectswithauniversalpropertyaredefinedonlyuptoa(unique)isomorphism.Thusincategorytheory,thenatureoftheelementsconstitutingacertainconstructionisirrelevant.Whatmattersisthewayanobjectisrelatedtotheotherobjectsofthecategory,thatis,themorphismsgoinginandthemorphismsgoingout,or,putdifferently,howcertainstructurescanbemappedintoagivenobjectandhowagivenobjectcanmapitsstructureintootherstructuresofthesamekind.

    Categorytheoryrevealshowdifferentkindsofstructuresarerelatedtooneanother.Forinstance,inalgebraictopology,topologicalspacesarerelatedtogroups(andmodules,rings,etc.)invariousways(suchashomology,cohomology,homotopy,Ktheory).Asnotedabove,groupswithgrouphomomorphismsconstituteacategory.Eilenberg&MacLaneinventedcategorytheorypreciselyinordertoclarifyandcomparetheseconnections.Whatmattersarethemorphismsbetweencategories,givenbyfunctors.Informally,functorsarestructurepreservingmapsbetweencategories.GiventwocategoriesCandD,afunctorFfromCtoDsendsobjectsofCtoobjectsofD,andmorphismsofCtomorphismsofD,insuchawaythatcompositionofmorphismsinCispreserved,i.e.,F(gf)=F(g)F(f),andidentitymorphismsarepreserved,i.e.,F(id )=id .Itimmediatelyfollowsthatafunctorpreservescommutativityofdiagramsbetweencategories.Homology,cohomology,homotopy,Ktheoryareallexampleoffunctors.

    Amoredirectexampleisprovidedbythepowersetoperation,whichyieldstwofunctorsonthecategoryofsets,dependingonhowonedefinesitsactiononfunctions.ThusgivenasetX,(X)istheusualsetofsubsetsofX,andgivenafunctionf:XY,(f):(X)(Y)takesasubsetAofXandmapsittoB=f(A),theimageoffrestrictedtoAinX.Itiseasilyverifiedthatthisdefinesafunctorfromthecategoryofsetsintoitself.

    Ingeneral,therearemanyfunctorsbetweentwogivencategories,andthequestionofhowtheyareconnectedsuggestsitself.Forinstance,givenacategoryC,thereisalwaystheidentityfunctorfromCtoCwhichsendseveryobject/morphismofCtoitself.Inparticular,thereistheidentityfunctoroverthecategoryofsets.

    Now,theidentityfunctorisrelatedinanaturalmannertothepowersetfunctordescribedabove.Indeed,givenasetXanditspowerset(X),thereisafunctionh whichtakesanelementxofXandsendsittothesingletonset{x},asubsetofX,i.e.,anelementof(X).Thisfunctioninfactbelongstoafamilyoffunctionsindexedbytheobjectsofthecategoryofsets{h :Y(X)|YinOb(Set)}.Moreover,itsatisfiesthefollowingcommutativitycondition:givenanyfunctionf:XY,theidentityfunctoryieldsthesamefunctionId(f):Id(X)Id(Y).Thecommutativityconditionthusbecomes:h Id(f)=(f)h .Thusthefamilyoffunctionsh()relatesthetwofunctorsinanaturalmanner.Suchfamiliesofmorphismsarecallednaturaltransformationsbetweenfunctors.Similarly,naturaltransformationsbetweenmodelsofatheoryyieldtheusualhomomorphismsofstructuresinthetraditionalsettheoreticalframework.

    Theabovenotions,whileimportant,arenotfundamentaltocategorytheory.Thelatterheadingarguablyincludethenotionsoflimit/colimitinturn,thesearespecialcasesofwhatiscertainlythecornerstoneofcategorytheory,theconceptofadjointfunctors,firstdefinedbyDanielKanin1956andpublishedin1958.

    Adjointfunctorscanbethoughtofasbeingconceptualinverses.Thisisprobablybestillustrated

    X

    FX

    X

    Y

    Y X

  • byanexample.LetU:GrpSetbetheforgetfulfunctor,thatis,thefunctorthatsendstoeachgroupGitsunderlyingsetofelementsU(G),andtoagrouphomomorphismf:GHtheunderlyingsetfunctionU(f):U(G)U(H).Inotherwords,Uforgetsaboutthegroupstructureandforgetsthefactthatmorphismsaregrouphomomorphisms.ThecategoriesGrpandSetarecertainlynotisomorphic,ascategories,tooneanother.(Asimpleargumentrunsasfollows:thecategoryGrphasazeroobject,whereasSetdoesnot.)Thus,wecertainlycannotfindaninverse,intheusualalgebraicsense,tothefunctorU.ButtherearemanynonisomorphicwaystodefineagroupstructureonagivensetX,andonemighthopethatamongtheseconstructionsatleastoneisfunctorialandsystematicallyrelatedtothefunctorU.Whatistheconceptualinversetotheoperationofforgettingallthegrouptheoreticalstructureandobtainingaset?Itistoconstructagroupfromasetsolelyonthebasisoftheconceptofgroupandnothingelse,i.e.,withnoextraneousrelationordata.Suchagroupisconstructedfreelythatis,withnorestrictionwhatsoeverexceptthoseimposedbytheaxiomsofthetheory.Inotherwords,allthatisrememberedintheprocessofconstructingagroupfromagivensetisthefactthattheresultingconstructionhastobeagroup.Suchaconstructionexistsitisfunctorialandityieldswhatarecalledfreegroups.Inotherwords,thereisafunctorF:SetGrp,whichtoanysetXassignsthefreegroupF(X)onX,andtoeachfunctionf:XY,thegrouphomomorphismF(f):F(X)F(Y),definedintheobviousmanner.Thesituationcanbedescribedthusly:wehavetwoconceptualcontexts,agrouptheoreticalcontextandasettheoreticalcontext,andtwofunctorsmovingsystematicallyfromonecontexttotheotherinoppositedirections.Oneofthesefunctorsiselementary,namelytheforgetfulfunctorU.Itisapparentlytrivialanduninformative.Theotherfunctorismathematicallysignificantandimportant.ThesurprisingfactisthatFisrelatedtoUbyasimpleruleand,insomesense,itarisesfromU.Oneofthestrikingfeaturesofadjointsituationsispreciselythefactthatfundamentalmathematicalandlogicalconstructionsariseoutofgivenandoftenelementaryfunctors.

    ThefactthatUandFareconceptualinversesexpressesitselfformallyasfollows:applyingFfirstandthenUdoesnotyieldtheoriginalsetX,butthereisafundamentalrelationshipbetweenXandUF(X).Indeed,thereisafunction:XUF(X),calledtheunitoftheadjunction,thatsimplysendseachelementofXtoitselfinUF(X)andthisfunctionsatisfiesthefollowinguniversalproperty:givenanyfunctiong:XU(G),thereisauniquegrouphomomorphismh:F(X)GsuchthatU(h)=g.Inotherwords,UF(X)isthebestpossiblesolutiontotheproblemofinsertingelementsofXintoagroup(whatiscalledinsertionofgeneratorsinthemathematicaljargon).ComposingUandFintheoppositeorder,wegetamorphism:FU(G)G,calledthecounitoftheadjunction,satisfyingthefollowinguniversalproperty:foranygrouphomomorphismg:F(X)G,thereisauniquefunctionh:XU(G)suchthatF(h)=gFU(G)constitutesthebestpossiblesolutiontotheproblemoffindingarepresentationofGasaquotientofafreegroup.IfUandFweresimplealgebraicinversestooneanother,wewouldhavethefollowingidentity:UF=I andFU=I ,whereI denotestheidentityfunctoronSetandI theidentityfunctoronGrp.Aswehaveindicated,theseidentitiescertainlydonotholdinthiscase.However,someidentitiesdohold:theyarebestexpressedwiththehelpofthecommutativediagrams:

    UU UFU F

    F FUF

    U F

    U F

    Set Grp Set

    Grp

  • wherethediagonalarrowsdenotetheappropriateidentitynaturaltransformations.

    Thisisbutonecaseofaverycommonsituation:everyfreeconstructioncanbedescribedasarisingfromanappropriateforgetfulfunctorbetweentwoadequatelychosencategories.Thenumberofmathematicalconstructionsthatcanbedescribedasadjointsissimplystunning.Althoughthedetailsofeachoneoftheseconstructionsvaryconsiderably,thefactthattheycanallbedescribedusingthesamelanguageillustratestheprofoundunityofmathematicalconceptsandmathematicalthinking.Beforewegivemoreexamples,aformalandabstractdefinitionofadjointfunctorsisinorder.

    Definition:LetF:CDandG:DCbefunctorsgoinginoppositedirections.FisaleftadjointtoG(GarightadjointtoF),denotedbyFG,ifthereexistsnaturaltransformations:I GFand:FGI ,suchthatthecomposites

    GG GFG

    G G

    and

    FF FGF

    F F

    aretheidentitynaturaltransformations.(Fordifferentbutequivalentdefinitions,seeMacLane1971or1998,chap.IV.)

    Herearesomeoftheimportantfactsregardingadjointfunctors.Firstly,adjointsareuniqueuptoisomorphismthatisanytwoleftadjointsFandF'ofafunctorGarenaturallyisomorphic.Secondly,thenotionofadjointnessisformallyequivalenttothenotionofauniversalmorphism(orconstruction)andtothatofrepresentablefunctor.(See,forinstanceMacLane1998,chap.IV.)Eachandeveryoneofthesenotionsexhibitanaspectofagivensituation.Thirdly,aleftadjointpreservesallthecolimitswhichexistinitsdomain,and,dually,arightadjointpreservesallthelimitswhichexistinitsdomain.

    Wenowgivesomeexamplesofadjointsituationstoillustratethepervasivenessofthenotion.

    1. Insteadofhavingaforgetfulfunctorgoingintothecategoryofsets,insomecasesonlyapartofthestructureisforgotten.Herearetwostandardexamples:

    ThereisanobviousforgetfulfunctorU:AbGrpAbMonfromthecategoryofabeliangroupstothecategoryofabelianmonoids:Uforgetsabouttheinverseoperation.ThefunctorUhasaleftadjointF:AbMonAbGrpwhich,givenanabelianmonoidM,assignstoitthebestpossibleabeliangroupF(M)suchthatMcanbeembeddedinF(M)asasubmonoid.Forinstance,ifMis,thenF()is,thatis,itisisomorphicto.Similarly,thereisanobviousforgetfulfunctorU:HausTopfromthecategoryofHausdorfftopologicalspacestothecategoryoftopologicalspaceswhichforgetstheHausdorffcondition.Again,thereisafunctorF:TopHaussuchthatFU.GivenatopologicalspaceX,F(X)yieldsthebestHausdorffspaceconstructedfromX:itisthequotientofXbytheclosureofthediagonal XX,whichisanequivalence

    C D

    X

  • relation.Incontrastwiththepreviousexamplewherewehadanembedding,thistimewegetaquotientoftheoriginalstructure.

    2. ConsidernowthecategoryofcompactHausdorffspaceskHausandtheforgetfulfunctorU:kHausTop,whichforgetsthecompactnesspropertyandtheseparationproperty.TheleftadjointtothisUistheStoneCechcompactification.

    3. ThereisaforgetfulfunctorU:Mod AbGrpfromacategoryofRmodulestothecategoryofabeliangroups,whereRisacommutativeringwithunit.ThefunctorUforgetstheactionofRonagroupG.ThefunctorUhasbothaleftandarightadjoint.TheleftadjointisR:AbGrpMod whichsendsanabeliangroupGtothetensorproductRGandtherightadjointisgivenbythefunctorHom(R,):AbGrpMod whichassignstoanygroupGthemodulesoflinearmappingsHom(R,G).

    4. ThecasewherethecategoriesCandDareposetsdeservesspecialattentionhere.AdjointfunctorsinthiscontextareusuallycalledGaloisconnections.LetCbeaposet.Considerthediagonalfunctor:CCC,with(X)=X,Xandforf:XY,(f)=f,f:X,XY,Y.Inthiscase,theleftadjointtoisthecoproduct,orthesup,andtherightadjointtoistheproduct,ortheinf.Theadjointsituationcanbedescribedinthefollowingspecialform:

    XYZ XZ,YZ

    ZXY ZY,ZX

    wheretheverticaldoublearrowcanbeinterpretedasrulesofinferencegoinginbothdirections.

    5. Implicationcanalsobeintroduced.Considerafunctorwithaparameter:(X):CC.ItcaneasilybeverifiedthatwhenCisaposet,thefunction(X)isorderpreservingandthereforeafunctor.Arightadjointto(X)isafunctorthatyieldsthelargestelementofCsuchthatitsinfimumwithXissmallerthanZ.ThiselementissometimescalledtherelativepseudocomplementofXor,morecommonly,theimplication.ItisdenotedbyXZorbyXZ.Theadjunctioncanbepresentedasfollows:

    YXZ

    YXZ

    6. ThenegationoperatorXcanbeintroducedfromthelastadjunction.Indeed,letZbethebottomelementofthelattice.Then,sinceYXisalwaystrue,itfollowsthatYXisalsoalwaystrue.ButsinceXXisalwaysthecase,wegetatthenumeratorthatXX=.Hence,XisthelargestelementdisjointfromX.WecanthereforeputX= X.

    7. Limits,colimits,andallthefundamentalconstructionsofcategorytheorycanbedescribedasadjoints.Thus,productsandcoproductsareadjoints,asareequalizers,coequalizers,pullbacksandpushouts,etc.Thisisoneofthereasonsadjointnessiscentraltocategorytheoryitself:becauseallthefundamentaloperationsofcategorytheoryarisefromadjointsituations.

    8. Anequivalenceofcategoriesisaspecialcaseofadjointness.Indeed,ifintheabove

    R

    R

    R

    def

  • triangularidentitiesthearrows:I GFand:FGI arenaturalisomorphisms,thenthefunctorsFandGconstituteanequivalenceofcategories.Inpractice,itisthenotionofequivalenceofcategoriesthatmattersandnotthenotionofisomorphismofcategories.

    Itiseasytoprovecertainfactsabouttheseoperationsdirectlyfromtheadjunctions.Consider,forinstance,implication.LetZ=X.ThenwegetatthenumeratorthatYXX,whichisalwaystrueinaposet(asiseasilyverified).Hence,YXXisalsotrueforallYandthisisonlypossibleifXX=,thetopelementofthelattice.Notonlycanlogicaloperationsbedescribedasadjoints,buttheynaturallyariseasadjointstobasicoperations.Infact,adjointscanbeusedtodefinevariousstructures,distributivelattices,Heytingalgebras,Booleanalgebras,etc.(SeeWood,2004.)Itshouldbeclearfromthesimpleforegoingexamplehowtheformalismofadjointnesscanbeusedtogivesyntacticpresentationsofvariouslogicaltheories.Furthermore,andthisisakeyelement,thestandarduniversalandexistentialquantifierscanbeshowntobearisingasadjointstotheoperationofsubstitution.Thus,quantifiersareonaparwiththeotherlogicaloperations,insharpcontrastwiththeotheralgebraicapproachestologic.(See,forinstanceAwodey1996orMacLane&Moerdijk1992.)Moregenerally,Lawvereshowedhowsyntaxandsemanticsarerelatedbyadjointfunctors.(SeeLawvere1969b.)

    Dualitiesplayanimportantroleinmathematicsandtheycanbedescribedwiththehelpofequivalencesbetweencategories.Inotherwords,manyimportantmathematicaltheoremscanbetranslatedasstatementsabouttheexistenceofadjointfunctors,sometimessatisfyingadditionalproperties.Thisissometimestakenasexpressingtheconceptualcontentofthetheorem.Considerthefollowingfundamentalcase:letCbethecategorywhoseobjectsarethelocallycompactabeliangroupsandthemorphismsarethecontinuousgrouphomomorphisms.Then,thePontryagindualitytheoremamountstotheclaimthatthecategoryCisequivalenttothecategoryC,thatis,totheoppositecategory.Ofcourse,theprecisestatementrequiresthatwedescribethefunctorsF:CCandG:CCandprovethattheyconstituteanequivalenceofcategories.

    AnotherwellknownandimportantdualitywasdiscoveredbyStoneinthethirtiesandnowbearshisname.Inonedirection,anarbitraryBooleanalgebrayieldsatopologicalspace,andintheotherdirection,froma(compactHausdorffandtotallydisconnected)topologicalspace,oneobtainsaBooleanalgebra.Moreover,thiscorrespondenceisfunctorial:anyBooleanhomomorphismissenttoacontinuousmapoftopologicalspaces,and,conversely,anycontinuousmapbetweenthespacesissenttoaBooleanhomomorphism.Inotherwords,thereisanequivalenceofcategoriesbetweenthecategoryofBooleanalgebrasandthedualofthecategoryofBooleanspaces(alsocalledStonespaces).(SeeJohnstone1982foranexcellentintroductionandmoredevelopments.)TheconnectionbetweenacategoryofalgebraicstructuresandtheoppositeofacategoryoftopologicalstructuresestablishedbyStone'stheoremconstitutesbutoneexampleofageneralphenomenonthatdidattractandstillattractsagreatdealofattentionfromcategorytheorists.Categoricalstudyofdualitytheoremsisstillaveryactiveandsignificantfield,andislargelyinspiredbyStone'sresult.(Forrecentapplicationsinlogic,see,forinstanceMakkai1987,Taylor2000,2002a,2002b,Caramello2011.)

    2.BriefHistoricalSketchItisdifficulttodojusticetotheshortbutintricatehistoryofthefield.Inparticularitisnotpossibletomentionallthosewhohavecontributedtoitsrapiddevelopment.Withthiswordofcautionout

    C D

  • oftheway,wewilllookatsomeofthemainhistoricalthreads.

    Categories,functors,naturaltransformations,limitsandcolimitsappearedalmostoutofnowhereinapaperbyEilenberg&MacLane(1945)entitledGeneralTheoryofNaturalEquivalences.Wesayalmost,becausetheirearlierpaper(1942)containsspecificfunctorsandnaturaltransformationsatwork,limitedtogroups.Adesiretoclarifyandabstracttheir1942resultsledEilenberg&MacLanetodevisecategorytheory.Thecentralnotionatthetime,astheirtitleindicates,wasthatofnaturaltransformation.Inordertogiveageneraldefinitionofthelatter,theydefinedfunctor,borrowingthetermfromCarnap,andinordertodefinefunctor,theyborrowedthewordcategoryfromthephilosophyofAristotle,Kant,andC.S.Peirce,butredefiningitmathematically.

    Aftertheir1945paper,itwasnotclearthattheconceptsofcategorytheorywouldamounttomorethanaconvenientlanguagethisindeedwasthestatusquoforaboutfifteenyears.CategorytheorywasemployedinthismannerbyEilenberg&Steenrod(1952),inaninfluentialbookonthefoundationsofalgebraictopology,andbyCartan&Eilenberg(1956),inagroundbreakingbookonhomologicalalgebra.(Curiously,althoughEilenberg&Steenroddefinedcategories,Cartan&Eilenbergsimplyassumedthem!)Thesebooksallowednewgenerationsofmathematicianstolearnalgebraictopologyandhomologicalalgebradirectlyinthecategoricallanguage,andtomasterthemethodofdiagrams.Indeed,withoutthemethodofdiagramchasing,manyresultsinthesetwobooksseeminconceivable,orattheveryleastwouldhaverequiredaconsiderablymoreintricatepresentation.

    ThesituationchangedradicallywithGrothendieck's(1957)landmarkpaperentitledSurquelquespointsd'algbrehomologique,inwhichtheauthoremployedcategoriesintrinsicallytodefineandconstructmoregeneraltheorieswhichhe(Grothendieck1957)thenappliedtospecificfields,e.g.,toalgebraicgeometry.Kan(1958)showedthatadjointfunctorssubsumetheimportantconceptsoflimitsandcolimitsandcouldcapturefundamentalconceptsinotherareas(inhiscase,homotopytheory).

    Atthispoint,categorytheorybecamemorethanaconvenientlanguage,byvirtueoftwodevelopments.

    1. Employingtheaxiomaticmethodandthelanguageofcategories,Grothendieck(1957)definedinanabstractfashiontypesofcategories,e.g.,additiveandAbeliancategories,showedhowtoperformvariousconstructionsinthesecategories,andprovedvariousresultsaboutthem.Inanutshell,Grothendieckshowedhowtodeveloppartofhomologicalalgebrainanabstractsettingofthissort.Fromthenon,aspecificcategoryofstructures,e.g.,acategoryofsheavesoveratopologicalspaceX,couldbeseenasatokenofanabstractcategoryofacertaintype,e.g.,anAbeliancategory.Onecouldthereforeimmediatelyseehowthemethodsof,e.g.,homologicalalgebracouldbeappliedto,forinstance,algebraicgeometry.Furthermore,itmadesensetolookforothertypesofabstractcategories,onesthatwouldencapsulatethefundamentalandformalaspectsofvariousmathematicalfieldsinthesamewaythatAbeliancategoriesencapsulatedfundamentalaspectsofhomologicalalgebra.

    2. ThanksinlargeparttotheeffortsofFreydandLawvere,categorytheoristsgraduallycametoseethepervasivenessoftheconceptofadjointfunctors.Notonlydoestheexistenceofadjointstogivenfunctorspermitdefinitionsofabstractcategories(andpresumablythosewhicharedefinedbysuchmeanshaveaprivilegedstatus)butaswementionedearlier,manyimportanttheoremsandeventheoriesinvariousfieldscanbeseenasequivalenttothe

  • existenceofspecificfunctorsbetweenparticularcategories.Bytheearly1970's,theconceptofadjointfunctorswasseenascentraltocategorytheory.

    Withthesedevelopments,categorytheorybecameanautonomousfieldofresearch,andpurecategorytheorycouldbedeveloped.Andindeed,itdidgrowrapidlyasadiscipline,butalsoinitsapplications,mainlyinitssourcecontexts,namelyalgebraictopologyandhomologicalalgebra,butalsoinalgebraicgeometryand,aftertheappearanceofLawvere'sPh.Dthesis,inuniversalalgebra.Thisthesisalsoconstitutesalandmarkinthishistoryofthefield,forinitLawvereproposedthecategoryofcategoriesasafoundationforcategorytheory,settheoryand,thus,thewholeofmathematics,aswellasusingcategoriesforthestudyofthelogicalaspectsofmathematics.

    Overthecourseofthe1960's,Lawvereoutlinedthebasicframeworkforanentirelyoriginalapproachtologicandthefoundationsofmathematics.Heachievedthefollowing:

    Axiomatizedthecategoryofsets(Lawvere1964)andofcategories(Lawvere1966)

    Gaveacategoricaldescriptionoftheoriesthatwasindependentofsyntacticalchoicesandsketchedhowcompletenesstheoremsforlogicalsystemscouldbeobtainedbycategoricalmethods(Lawvere1967)

    CharacterizedCartesianclosedcategoriesandshowedtheirconnectionstologicalsystemsandvariouslogicalparadoxes(Lawvere1969)

    Showedthatthequantifiersandthecomprehensionschemescouldbecapturedasadjointfunctorstogivenelementaryoperations(Lawvere1966,1969,1970,1971)

    Arguedthatadjointfunctorsshouldgenerallyplayamajorfoundationalrolethroughthenotionofcategoricaldoctrines(Lawvere1969).

    Meanwhile,Lambek(1968,1969,1972)describedcategoriesintermsofdeductivesystemsandemployedcategoricalmethodsforprooftheoreticalpurposes.

    Allthisworkculminatedinanothernotion,thankstoGrothendieckandhisschool:thatofatopos.Eventhoughtoposesappearedinthe1960's,inthecontextofalgebraicgeometry,againfromthemindofGrothendieck,itwascertainlyLawvereandTierney's(1972)elementaryaxiomatizationofatoposwhichgaveimpetustoitsattainingfoundationalstatus.Veryroughly,anelementarytoposisacategorypossessingalogicalstructuresufficientlyrichtodevelopmostofordinarymathematics,thatis,mostofwhatistaughttomathematicsundergraduates.Assuch,anelementarytoposcanbethoughtofasacategoricaltheoryofsets.Butitisalsoageneralizedtopologicalspace,thusprovidingadirectconnectionbetweenlogicandgeometry.(Formoreonthehistoryofcategoricallogic,seeMarquis&Reyes2012,Bell2005.)

    The1970ssawthedevelopmentandapplicationofthetoposconceptinmanydifferentdirections.Theveryfirstapplicationsoutsidealgebraicgeometrywereinsettheory,wherevariousindependenceresultswererecastintermsoftopos(Tierney1972,Bunge1974,butalsoBlass&Scedrov1989,Blass&Scedrov1992,Freyd1980,MacLane&Moerdijk1992,Scedrov1984).Connectionswithintuitionisticand,moregenerallyconstructivemathematicswerenotedearlyon,andtoposesarestillusedtoinvestigatemodelsofvariousaspectsofintuitionismandconstructivism(Lambek&Scott1986,MacLane&Moerdijk1992,VanderHoeven&Moerdijk1984a,1984b,1984c,Moerdijk1984,Moerdijk1995a,Moerdijk1998,Moerdijk&Palmgren1997,Moerdijk&Palmgren2002),Palmgren2012.Formoreonthehistoryoftopostheory,see

  • McLarty(1992).

    Morerecently,topostheoryhasbeenemployedtoinvestigatevariousformsofconstructivemathematicsorsettheory(Joyal&Moerdijk1995,Taylor1996,Awodey2008),recursiveness,andmodelsofhigherordertypetheoriesgenerally.Theintroductionofthesocalledeffectivetoposandthesearchforaxiomsforsyntheticdomaintheoryareworthmentioning(Hyland1982,Hyland1988,1991,Hylandetal.1990,McLarty1992,Jacobs1999,VanOosten2008,VanOosten2002andthereferencestherein).Lawvere'searlymotivationwastoprovideanewfoundationfordifferentialgeometry,alivelyresearchareawhichisnowcalledsyntheticdifferentialgeometry(Lawvere2000,2002,Kock2006,Bell1988,1995,1998,2001,Moerdijk&Reyes1991).Thisisonlythetipoftheicebergtoposescouldprovetobeforthe21stcenturywhatLiegroupsweretothe20thcentury.

    Fromthe1980stothepresent,categorytheoryhasfoundnewapplications.Intheoreticalcomputerscience,categorytheoryisnowfirmlyrooted,andcontributes,amongotherthings,tothedevelopmentofnewlogicalsystemsandtothesemanticsofprogramming.(Pitts2000,Plotkin2000,Scott2000,andthereferencestherein).Itsapplicationstomathematicsarebecomingmorediverse,eventouchingontheoreticalphysics,whichemployshigherdimensionalcategorytheorywhichistocategorytheorywhathigherdimensionalgeometryistoplanegeometrytostudythesocalledquantumgroupsandquantumfieldtheory(Majid1995,Baez&Dolan2001andotherpublicationsbytheseauthors).

    3.PhilosophicalSignificanceCategorytheorychallengesphilosophersintwoways,whicharenotnecessarilymutuallyexclusive.Ontheonehand,itiscertainlythetaskofphilosophytoclarifythegeneralepistemologicalandontologicalstatusofcategoriesandcategoricalmethods,bothinthepracticeofmathematicsandinthefoundationallandscape.Ontheotherhand,philosophersandphilosophicallogicianscanemploycategorytheoryandcategoricallogictoexplorephilosophicalandlogicalproblems.Inowdiscussthesechallenges,briefly,inturn.

    Categorytheoryisnowacommontoolinthemathematician'stoolboxthatmuchisclear.Itisalsoclearthatcategorytheoryorganizesandunifiesmuchofmathematics.(SeeforinstanceMacLane1971,1998orPedicchio&Tholen2004.)Noonewilldenythesesimplefacts.

    Doingmathematicsinacategoricalframeworkisalmostalwaysradicallydifferentfromdoingitinasettheoreticalframework(theexceptionbeingworkingwiththeinternallanguageofaBooleantoposwheneverthetoposisnotBoolean,thenthemaindifferenceliesinthefactthatthelogicisintuitionistic).Hence,asisoftenthecasewhenadifferentconceptualframeworkisadopted,manybasicissuesregardingthenatureoftheobjectsstudied,thenatureoftheknowledgeinvolved,andthenatureofthemethodsusedhavetobereevaluated.Wewilltakeupthesethreeaspectsinturn.

    Twofacetsofthenatureofmathematicalobjectswithinacategoricalframeworkhavetobeemphasized.First,objectsarealwaysgiveninacategory.Anobjectexistsinanddependsuponanambientcategory.Furthermore,anobjectischaracterizedbythemorphismsgoinginitand/orthemorphismscomingoutofit.Second,objectsarealwayscharacterizeduptoisomorphism(inthebestcases,uptoauniqueisomorphism).Thereisnosuchthing,forinstance,asthenatural

  • numbers.However,itcanbearguedthatthereissuchathingastheconceptofnaturalnumbers.Indeed,theconceptofnaturalnumberscanbegivenunambiguously,viatheDedekindPeanoLawvereaxioms,butwhatthisconceptreferstoinspecificcasesdependsonthecontextinwhichitisinterpreted,e.g.,thecategoryofsetsoratoposofsheavesoveratopologicalspace.Itishardtoresistthetemptationtothinkthatcategorytheoryembodiesaformofstructuralism,thatitdescribesmathematicalobjectsasstructuressincethelatter,presumably,arealwayscharacterizeduptoisomorphism.Thus,thekeyherehastodowiththekindofcriterionofidentityatworkwithinacategoricalframeworkandhowitresemblesanycriteriongivenforobjectswhicharethoughtofasformsingeneral.Oneofthestandardobjectionspresentedagainstthisviewisthatifobjectsarethoughtofasstructuresandonlyasabstractstructures,meaningherethattheyareseparatedfromanyspecificorconcreterepresentation,thenitisimpossibletolocatethemwithinthemathematicaluniverse.(SeeHellman2003forastandardformulationoftheobjection,McLarty1993,Awodey2004,Landry&Marquis2005,Shapiro2005,Landry2011,Linnebo&Pettigrew2011,McLarty2011forrelevantmaterialontheissue.)

    Aslightlydifferentwaytomakesenseofthesituationistothinkofmathematicalobjectsastypesforwhichtherearetokensgivenindifferentcontexts.Thisisstrikinglydifferentfromthesituationonefindsinsettheory,inwhichmathematicalobjectsaredefineduniquelyandtheirreferenceisgivendirectly.Althoughonecanmakeroomfortypeswithinsettheoryviaequivalenceclassesorisomorphismtypesingeneral,thebasiccriterionofidentitywithinthatframeworkisgivenbytheaxiomofextensionalityandthus,ultimately,referenceismadetospecificsets.Furthermore,itcanbearguedthattherelationbetweenatypeanditstokenisnotrepresentedadequatelybythemembershiprelation.Atokendoesnotbelongtoatype,itisnotanelementofatype,butratheritisaninstanceofit.Inacategoricalframework,onealwaysreferstoatokenofatype,andwhatthetheorycharacterizesdirectlyisthetype,notthetokens.Inthisframework,onedoesnothavetolocateatype,buttokensofitare,atleastinmathematics,epistemologicallyrequired.Thisissimplythereflectionoftheinteractionbetweentheabstractandtheconcreteintheepistemologicalsense(andnottheontologicalsenseoftheselatterexpressions.)(SeeEllerman1988,Marquis2000,Marquis2006,Marquis2013.)

    Thehistoryofcategorytheoryoffersarichsourceofinformationtoexploreandtakeintoaccountforanhistoricallysensitiveepistemologyofmathematics.Itishardtoimagine,forinstance,howalgebraicgeometryandalgebraictopologycouldhavebecomewhattheyarenowwithoutcategoricaltools.(See,forinstance,Carter2008,Corfield2003,Krmer2007,Marquis2009,McLarty1994,McLarty2006.)Categorytheoryhasleadtoreconceptualizationsofvariousareasofmathematicsbasedonpurelyabstractfoundations.Moreover,whendevelopedinacategoricalframework,traditionalboundariesbetweendisciplinesareshatteredandreconfiguredtomentionbutoneimportantexample,topostheoryprovidesadirectbridgebetweenalgebraicgeometryandlogic,tothepointwherecertainresultsinalgebraicgeometryaredirectlytranslatedintologicandviceversa.Certainconceptsthatweregeometricalinoriginaremoreclearlyseenaslogical(forexample,thenotionofcoherenttopos).Algebraictopologyalsolurksinthebackground.Onadifferentbutimportantfront,itcanbearguedthatthedistinctionbetweenmathematicsandmetamathematicscannotbearticulatedinthewayithasbeen.Alltheseissueshavetobereconsideredandreevaluated.

    Movingclosertomathematicalpractice,categorytheoryallowedforthedevelopmentofmethodsthathavechangedandcontinuetochangethefaceofmathematics.Itcouldbearguedthatcategorytheoryrepresentstheculminationofoneofdeepestandmostpowerfultendenciesintwentieth

  • centurymathematicalthought:thesearchforthemostgeneralandabstractingredientsinagivensituation.Categorytheoryis,inthissense,thelegitimateheiroftheDedekindHilbertNoetherBourbakitradition,withitsemphasisontheaxiomaticmethodandalgebraicstructures.Whenusedtocharacterizeaspecificmathematicaldomain,categorytheoryrevealstheframeuponwhichthatareaisbuilt,theoverallstructurepresidingtoitsstability,strengthandcoherence.Thestructureofthisspecificarea,inasense,mightnotneedtorestonanything,thatis,onsomesolidsoil,foritmightverywellbejustonepartofalargernetworkthatiswithoutanyArchimedeanpoint,asiffloatinginspace.Touseawellknownmetaphor:fromacategoricalpointofview,Neurath'sshiphasbecomeaspaceship.

    Still,itremainstobeseenwhethercategorytheoryshouldbeonthesameplane,sotospeak,assettheory,whetheritshouldbetakenasaseriousalternativetosettheoryasafoundationformathematics,orwhetheritisfoundationalinadifferentsensealtogether.(Thatthisveryquestionappliesevenmoreforcefullytotopostheorywillnotdetainus.)

    Lawverefromearlyonpromotedtheideathatacategoryofcategoriescouldbeusedasafoundationalframework.(SeeLawvere1964,1966.)Thisproposalnowrestsinpartonthedevelopmentofhigherdimensionalcategories,alsocalledweakncategories.(See,forinstanceMakkai1998.)Theadventoftopostheoryintheseventiesbroughtnewpossibilities.MacLanehassuggestedthatcertaintoposesbeconsideredasagenuinefoundationformathematics.(SeeMacLane1986.)Lambekproposedthesocalledfreetoposasthebestpossibleframework,inthesensethatmathematicianswithdifferentphilosophicaloutlooksmightnonethelessagreetoadoptit.(SeeCouture&Lambek1991,1992,Lambek1994.)Hehasrecentlyarguedthatthereisnotoposthatcanthoroughlysatisfyaclassicalmathematician.(SeeLambek2004.)(Formoreonthevariousfoundationalviewsamongcategorytheorists,seeLandry&Marquis2005.)

    Argumentshavebeenadvancedforandagainstcategorytheoryasafoundationalframework.(Blass1984surveystherelationshipsbetweencategorytheoryandsettheory.Feferman1977,Bell1981,andHellman2003argueagainstcategorytheory.SeeMarquis1995foraquickoverviewandproposalandMcLarty2004andAwodey2004forrepliestoHellman2003.)Thismatterisfurthercomplicatedbythefactthatthefoundationsofcategorytheoryitselfhaveyettobeclarified.Fortheremaybemanydifferentwaystothinkofauniverseofhigherdimensionalcategoriesasafoundationsformathematics.Anadequatelanguageforsuchauniversestillhastobepresentedtogetherwithdefiniteaxiomsformathematics.(SeeMakkai1998forashortdescriptionofsuchalanguage.AdifferentapproachbasedonhomotopytheorybutwithclosedconnectionswithhigherdimensionalcategorieshasbeenproposedbyVoevodskyetal.andisbeingvigorouslypursued.SeethebookHomotopyTypeTheory,byAwodeyetal.2013.)

    Itisanestablishedfactthatcategorytheoryisemployedtostudylogicandphilosophy.Indeed,categoricallogic,thestudyoflogicbycategoricalmeans,hasbeenunderwayforabout30yearsnowandstillvigorous.Someofthephilosophicallyrelevantresultsobtainedincategoricallogicare:

    Thehierarchyofcategoricaldoctrines:regularcategories,coherentcategories,HeytingcategoriesandBooleancategoriesallthesecorrespondtowelldefinedlogicalsystems,togetherwithdeductivesystemsandcompletenesstheoremstheysuggestthatlogicalnotions,includingquantifiers,arisenaturallyinaspecificorderandarenothaphazardlyorganized

    Joyal'sgeneralizationofKripkeBethsemanticsforintuitionisticlogictosheafsemantics

  • (Lambek&Scott1986,MacLane&Moerdijk1992)

    Coherentandgeometriclogic,socalled,whosepracticalandconceptualsignificancehasyettobeexplored(Makkai&Reyes1977,MacLane&Moerdiejk1992,Johnstone2002,Caramello2011b,2012a)

    Thenotionsofgenericmodelandclassifyingtoposofatheory(Makkai&Reyes1977,Boileau&Joyal1981,Bell1988,MacLane&Moerdijk1992,Johnstone2002,Caramello2012b)

    Thenotionofstrongconceptualcompletenessandtheassociatedtheorems(Makkai&Reyes1977,Butz&Moerdijk1999,Makkai1981,Pitts1989,Johnstone2002)

    Geometricproofsoftheindependenceofthecontinuumhypothesisandotherstrongaxiomsofsettheory(Tierney1972,Bunge1974,Freyd1980,1987,Blass&Scedrov1983,1989,1992,MacLane&Moerdijk1992)

    Modelsanddevelopmentofconstructivemathematics(seebibliographybelow)

    Syntheticdifferentialgeometry,analternativetostandardandnonstandardanalysis(Kock1981,Bell1998,2001,2006)

    Theconstructionofthesocalledeffectivetopos,inwhicheveryfunctiononthenaturalnumbersisrecursive(McLarty1992,Hyland1982,1991,VanOosten2002,VanOosten2008)

    Categoricalmodelsoflinearlogic,modallogic,fuzzysets,andgeneralhigherordertypetheories(Reyes1991,Reyes&Zawadoski1993,Reyes&Zolfaghari1991,1996,Makkai&Reyes1995,Ghilardi&Zawadowski2002,Rodabaugh&Klement2003,Jacobs1999,Taylor1999,Johnstone2002,Blute&Scott2004,Awodey&Warren2009,Awodeyet.al.2013)

    Agraphicalsyntaxcalledsketches(Barr&Wells1985,1999,Makkai1997a,1997b,1997c,Johnstone2002).

    Quantumlogic,thefoundationsofquantumphysicsandquantumfieldtheory(Abramsky&Duncan2006,Heunenet.al.2009,Baez&Stay2010,Baez&Lauda2011,Coecke2011,Isham2011,Dring2011).

    Categoricaltoolsinlogicofferconsiderableflexibility,asisillustratedbythefactthatalmostallthesurprisingresultsofconstructiveandintuitionisticmathematicscanbemodeledinapropercategoricalsetting.Atthesametime,thestandardsettheoreticnotions,e.g.Tarski'ssemantics,havefoundnaturalgeneralizationsincategories.Thus,categoricallogichasrootsinlogicasitwasdevelopedinthetwentiethcentury,whileatthesametimeprovidingapowerfulandnovelframeworkwithnumerouslinkstootherpartsofmathematics.

    Categorytheoryalsobearsonmoregeneralphilosophicalquestions.Fromtheforegoingdisussion,itshouldbeobviousthatcategorytheoryandcategoricallogicoughttohaveanimpactonalmostallissuesarisinginphilosophyoflogic:fromthenatureofidentitycriteriatothequestionofalternativelogics,categorytheoryalwaysshedsanewlightonthesetopics.Similarremarkscanbemadewhenweturntoontology,inparticularformalontology:thepart/wholerelation,boundariesofsystems,ideasofspace,etc.Ellerman(1988)hasbravelyattemptedtoshowthatcategorytheoryconstitutesatheoryofuniversals,onehavingpropertiesradicallydifferentfromsettheory,whichisalsoseenasatheoryofuniversals.Movingfromontologytocognitivescience,MacNamara&

  • Reyes(1994)havetriedtoemploycategoricallogictoprovideadifferentlogicofreference.Inparticular,theyhaveattemptedtoclarifytherelationshipsbetweencountnounsandmassterms.Otherresearchersareusingcategorytheorytostudycomplexsystems,cognitiveneuralnetworks,andanalogies.(See,forinstance,Ehresmann&Vanbremeersch1987,2007,Healy2000,Healy&Caudell2006,ArziGonczarowski1999,Brown&Porter2006.)Finally,philosophersofsciencehaveturnedtocategorytheorytoshedanewlightonissuesrelatedtostructuralisminscience.(See,forinstance,Brading&Landry2006,Bain2013,Lam&Wthrichforthcoming.)

    Categorytheoryoffersthusmanyphilosophicalchallenges,challengeswhichwillhopefullybetakenupinyearstocome.

    BibliographyReadersmayfindthefollowinguseful:

    ProgrammaticReadingGuide

    Thecitationsinthisguideandinthetextabovecanallbefoundinthelistbelow.

    Abramsky,S.&Duncan,R.,2006,ACategoricalQuantumLogic,MathematicalStructuresinComputerScience,16(3):469489.

    Adamek,J.etal.,1990,AbstractandConcreteCategories:TheJoyofCats,NewYork:Wiley.

    Adamek,J.etal.,1994,LocallyPresentableandAccessibleCategories,Cambridge:CambridgeUniversityPress.

    ArziGonczaworski,Z.,1999,PerceiveThisasThatAnalogies,ArtificialPerception,andCategoryTheory,AnnalsofMathematicsandArtificialIntelligence,26(1):215252.

    Awodey,S.,1996,StructureinMathematicsandLogic:ACategoricalPerspective,PhilosophiaMathematica,3:209237.

    ,2004,AnAnswertoHellman'sQuestion:DoesCategoryTheoryProvideaFrameworkforMathematicalStructuralism,PhilosophiaMathematica,12:5464.

    ,2006,CategoryTheory,Oxford:ClarendonPress.

    ,2007,RelatingFirstOrderSetTheoriesandElementaryToposes,TheBulletinofSymbolic,13(3):340358.

    ,2008,ABriefIntroductiontoAlgebraicSetTheory,TheBulletinofSymbolic,14(3):281298.

    Awodey,S.,etal.,2013,HomotopyTypeTheory:UnivalentFoundationsofMathematics,TheUnivalentFoundationsProgram.

    Awodey,S.&Butz,C.,2000,TopologicalCompletenessforHigherOrderLogic,JournalofSymbolicLogic,65(3):11681182.

    Awodey,S.&Reck,E.R.,2002,CompletenessandCategoricityI.NineteenCenturyAxiomaticstoTwentiethCenturyMetalogic,HistoryandPhilosophyofLogic,23(1):130.

    ,2002,CompletenessandCategoricityII.TwentiethCenturyMetalogictoTwentyfirstCenturySemantics,HistoryandPhilosophyofLogic,23(2):7794.

  • Awodey,S.&Warren,M.,2009,HomotopytheoreticModelsofIdentityTypes,MathematicalProceedingsoftheCambridgePhilosophicalSociety,146(1):4555.

    Baez,J.,1997,AnIntroductiontonCategories,CategoryTheoryandComputerScience,LectureNotesinComputerScience(Volume1290),Berlin:SpringerVerlag,133.

    Baez,J.&Dolan,J.,1998a,HigherDimensionalAlgebraIII.nCategoriesandtheAlgebraofOpetopes,AdvancesinMathematics,135:145206.

    ,1998b,Categorification,HigherCategoryTheory(ContemporaryMathematics,Volume230),EzraGetzlerandMikhailKapranov(eds.),Providence:AMS,136.

    ,2001,FromFiniteSetstoFeynmanDiagrams,MathematicsUnlimited2001andBeyond,Berlin:Springer,2950.

    Baez,J.&Lauda,A.D.,2011,APrehistoryofnCategoricalPhysics,DeepBeauty:UnderstandingtheQuantumWorldThroughMathematicalInnovation,H.Halvorson,ed.,Cambridge:CambridgeUniversityPress,13128.

    Baez,J.&May,P.J.,2010,TowardsHigherCategoryTheory,Berlin:Springer.

    Baez,J.&Stay,M.,2010,Physics,Topology,LogicandComputation:aRosettaStone,NewStructuresforPhysics(LectureNotesinPhysics813),B.Coecke(ed.),NewYork,Springer:95172.

    Baianu,I.C.,1987,ComputerModelsandAutomataTheoryinBiologyandMedecine,inWitten,Matthew,Eds.MathematicalModelling,Vol.7,1986,chapter11,PergamonPress,Ltd.,15131577.

    Bain,J.,2013,CategorytheoreticStructureandRadicalOnticStructuralRealism,Synthese,190:16211635.

    Barr,M.&Wells,C.,1985,Toposes,TriplesandTheories,NewYork:SpringerVerlag.

    ,1999,CategoryTheoryforComputingScience,Montreal:CRM.

    Batanin,M.,1998,MonoidalGlobularCategoriesasaNaturalEnvironmentfortheTheoryofWeaknCategories,AdvancesinMathematics,136:39103.

    Bell,J.L.,1981,CategoryTheoryandtheFoundationsofMathematics,BritishJournalforthePhilosophyofScience,32:349358.

    ,1982,Categories,ToposesandSets,Synthese,51(3):293337.

    ,1986,FromAbsolutetoLocalMathematics,Synthese,69(3):409426.

    ,1988,Infinitesimals,Synthese,75(3):285315.

    ,1988,ToposesandLocalSetTheories:AnIntroduction,Oxford:OxfordUniversityPress.

    ,1995,InfinitesimalsandtheContinuum,MathematicalIntelligencer,17(2):5557.

    ,1998,APrimerofInfinitesimalAnalysis,Cambridge:CambridgeUniversityPress.

    ,2001,TheContinuuminSmoothInfinitesimalAnalysis,ReunitingtheAntipodesConstructiveandNonstandardViewsontheContinuum(SyntheseLibrary,Volume306),Dordrecht:Kluwer,1924.

    ,2005,TheDevelopmentofCategoricalLogic,inHandbookofPhilosophicalLogic(Volume12),2nded.,D.M.Gabbay,F.Guenthner(eds.),Dordrecht:Springer,pp.279362.

    rd

  • Birkoff,G.&MacLane,S.,1999,Algebra,3 ed.,Providence:AMS.

    Blass,A.,1984,TheInteractionBetweenCategoryTheoryandSetTheory,inMathematicalApplicationsofCategoryTheory(Volume30),Providence:AMS,529.

    Blass,A.&Scedrov,A.,1983,ClassifyingTopoiandFiniteForcing,JournalofPureandAppliedAlgebra,28:111140.

    ,1989,Freyd'sModelfortheIndependenceoftheAxiomofChoice,Providence:AMS.

    ,1992,CompleteTopoiRepresentingModelsofSetTheory,AnnalsofPureandAppliedLogic,57(1):126.

    Blute,R.&Scott,P.,2004,CategoryTheoryforLinearLogicians,inLinearLogicinComputerScience,T.Ehrhard,P.Ruet,JY.Girard,P.Scott,eds.,Cambridge:CambridgeUniversityPress,152.

    Boileau,A.&Joyal,A.,1981,Lalogiquedestopos,JournalofSymbolicLogic,46(1):616.

    Borceux,F.,1994,HandbookofCategoricalAlgebra,3volumes,Cambridge:CambridgeUniversityPress.

    Brading,K.&Landry,E.,2006,ScientificStructuralism:PresentationandRepresentation,PhilosophyofScience,73:571581.

    Brown,R.&Porter,T.,2006,CategoryTheory:anabstractsettingforanalogyandcomparison,WhatisCategoryTheory?,G.Sica,ed.,Monza:Polimetrica:257274.

    Bunge,M.,1974,ToposTheoryandSouslin'sHypothesis,JournalofPureandAppliedAlgebra,4:159187.

    ,1984,ToposesinLogicandLogicinToposes,Topoi,3(1):1322.

    Caramello,O.,2011,ACharacterizationTheoremforGeometricLogic,AnnalsofPureandAppliedLogic,162,4:318321.

    ,2012a,UniversalModelsandDefinability,MathematicalProceedingsoftheCambridgePhilosophicalSociety,152(2):279302.

    ,2012b,SyntacticCharacterizationsofPropertiesofClassifyingToposes,TheoryandApplicationsofCategories,26(6):176193.

    Carter,J.,2008,Categoriesfortheworkingmathematician:makingtheimpossiblepossible,Synthese,162(1):113.

    Cheng,E.&Lauda,A.,2004,HigherDimensionalCategories:anillustratedguidebook,availableat:http://cheng.staff.shef.ac.uk/guidebook/index.html

    Cockett,J.R.B.&Seely,R.A.G.,2001,FiniteSumproductLogic,TheoryandApplicationsofCategories(electronic),8:6399.

    Coecke,B.,2011,AUniverseofProcessesandSomeofitsGuises,DeepBeauty:UnderstandingtheQuantumWorldthroughMathematicalInnovation,Cambridge:CambridgeUniversityPress:129186.

    Couture,J.&Lambek,J.,1991,PhilosophicalReflectionsontheFoundationsofMathematics,Erkenntnis,34(2):187209.

    http://arxiv.org/abs/1103.3493,1992,Erratum:PhilosophicalReflectionsontheFoundationsofMathematics,Erkenntnis,36(1):134.

    rd

  • Crole,R.L.,1994,CategoriesforTypes,Cambridge:CambridgeUniversityPress.

    Dieudonn,J.&Grothendieck,A.,1960[1971],lmentsdeGomtrieAlgbrique,Berlin:SpringerVerlag.

    Dring,A.,2011,ThePhysicalInterpretationofDaseinisation,DeepBeauty:UnderstandingtheQuantumWorldthroughMathematicalInnovation,Cambridge:CambridgeUniversityPress:207238.

    Ehresmann,A.&Vanbremeersch,J.P.,2007,MemoryEvolutiveSystems:Hierarchy,Emergence,Cognition,Amsterdam:Elsevier

    ,1987,HierarchicalEvolutiveSystems:aMathematicalModelforComplexSystems,BulletinofMathematicalBiology,49(1):1350.

    Eilenberg,S.&Cartan,H.,1956,HomologicalAlgebra,Princeton:PrincetonUniversityPress.

    Eilenberg,S.&MacLane,S.,1942,GroupExtensionsandHomology,AnnalsofMathematics,43:757831.

    ,1945,GeneralTheoryofNaturalEquivalences,TransactionsoftheAmericanMathematicalSociety,58:231294.

    Eilenberg,S.&Steenrod,N.,1952,FoundationsofAlgebraicTopology,Princeton:PrincetonUniversityPress.

    Ellerman,D.,1988,CategoryTheoryandConcreteUniversals,Erkenntnis,28:409429.

    Feferman,S.,1977,CategoricalFoundationsandFoundationsofCategoryTheory,Logic,FoundationsofMathematicsandComputability,R.Butts(ed.),Reidel,149169.

    ,2004,TypicalAmbiguity:tryingtohaveyourcakeandeatittoo,OneHundredYearsofRussell'sParadox,G.Link(ed.),Berlin:DeGruyter,135151.

    Freyd,P.,1964,AbelianCategories.AnIntroductiontotheTheoryofFunctors,NewYork:Harper&Row.

    ,1965,TheTheoriesofFunctorsandModels.TheoriesofModels,Amsterdam:NorthHolland,107120.

    ,1972,AspectsofTopoi,BulletinoftheAustralianMathematicalSociety,7:176.

    ,1980,TheAxiomofChoice,JournalofPureandAppliedAlgebra,19:103125.

    ,1987,ChoiceandWellOrdering,AnnalsofPureandAppliedLogic,35(2):149166.

    ,1990,Categories,Allegories,Amsterdam:NorthHolland.

    ,2002,CartesianLogic,TheoreticalComputerScience,278(12):321.

    Freyd,P.,Friedman,H.&Scedrov,A.,1987,LindembaumAlgebrasofIntuitionisticTheoriesandFreeCategories,AnnalsofPureandAppliedLogic,35(2):167172.

    Galli,A.&Reyes,G.&Sagastume,M.,2000,CompletenessTheoremsviatheDoubleDualFunctor,StudiaLogical,64(1):6181.

    Ghilardi,S.,1989,PresheafSemanticsandIndependenceResultsforsomeNonclassicalfirstorderlogics,ArchiveforMathematicalLogic,29(2):125136.

    Ghilardi,S.&Zawadowski,M.,2002,Sheaves,Games&ModelCompletions:ACategoricalApproachtoNonclassicalPorpositionalLogics,Dordrecht:Kluwer.

  • Goldblatt,R.,1979,Topoi:TheCategoricalAnalysisofLogic,Studiesinlogicandthefoundationsofmathematics,Amsterdam:Elsevier.

    Grothendieck,A.,1957,SurQuelquesPointsd'algbrehomologique,TohokuMathematicsJournal,9:119221.

    Grothendieck,A.etal.,SminairedeGomtrieAlgbrique,Vol.17,Berlin:SpringerVerlag.

    Hatcher,W.S.,1982,TheLogicalFoundationsofMathematics,Oxford:PergamonPress.

    Healy,M.J.,2000,CategoryTheoryAppliedtoNeuralModelingandGraphicalRepresentations,ProceedingsoftheIEEEINNSENNSInternationalJointConferenceonNeuralNetworks:IJCNN200,Como,vol.3,M.Gori,SI.Amari,C.L.Giles,V.Piuri,eds.,IEEEComputerSciencePress,3540.

    Healy,M.J.,&Caudell,T.P.,2006,OntologiesandWorldsinCategoryTheory:ImplicationsforNeuralSystems,Axiomathes,16(12):165214.

    Hellman,G.,2003,DoesCategoryTheoryProvideaFrameworkforMathematicalStructuralism?,PhilosophiaMathematica,11(2):129157.

    ,2006,MathematicalPluralism:thecaseofsmoothinfinitesimalanalysis,JournalofPhilosophicalLogic,35(6):621651.

    Hermida,C.&Makkai,M.&Power,J.,2000,OnWeakHigherdimensionalCategoriesI,JournalofPureandAppliedAlgebra,154(13):221246.

    ,2001,OnWeakHigherdimensionalCategories2,JournalofPureandAppliedAlgebra,157(23):247277.

    ,2002,OnWeakHigherdimensionalCategories3,JournalofPureandAppliedAlgebra,166(12):83104.

    Heunen,C.&Landsmann,N.&Spitters,B.,2009,AToposforAlgebraicQuantumTheory,CommunicationsinMathematicalPhysics,291(1):63110.

    Hyland,J.M.E.,1982,TheEffectiveTopos,StudiesinLogicandtheFoundationsofMathematics(Volume110),Amsterdam:NorthHolland,165216.

    ,1988,ASmallCompleteCategory,AnnalsofPureandAppliedLogic,40(2):135165.

    ,1991,FirstStepsinSyntheticDomainTheory,CategoryTheory(Como1990)(LectureNotesinMathematics,Volume1488),Berlin:Springer,131156.

    ,2002,ProofTheoryintheAbstract,AnnalsofPureandAppliedLogic,114(13):4378.

    Hyland,J.M.E.&Robinson,E.P.&Rosolini,G.,1990,TheDiscreteObjectsintheEffectiveTopos,ProceedingsoftheLondonMathematicalSociety(3),60(1):136.

    Isham,C.J.,2011,ToposMethodsintheFoundationsofPhysics,DeepBeauty:UnderstandingtheQuantumWorldthroughMathematicalInnovation,Cambridge:CambridgeUniversityPress:187206.

    Jacobs,B.,1999,CategoricalLogicandTypeTheory,Amsterdam:NorthHolland.

    Johnstone,P.T.,1977,ToposTheory,NewYork:AcademicPress.

    ,1979a,ConditionsRelatedtoDeMorgan'sLaw,ApplicationsofSheaves(LectureNotesinMathematics,Volume753),Berlin:Springer,479491.

    ,1979b,AnotherConditionEquivalenttoDeMorgan'sLaw,CommunicationsinAlgebra,7

  • (12):13091312.

    ,1981,Tychonoff'sTheoremwithouttheAxiomofChoice,FundamentaMathematicae,113(1):2135.

    ,1982,StoneSpaces,Cambridge:CambridgeUniversityPress.

    ,1985,HowGeneralisaGeneralizedSpace?,AspectsofTopology,Cambridge:CambridgeUniversityPress,77111.

    ,2001,ElementsoftheHistoryofLocaleTheory,HandbookoftheHistoryofGeneralTopology,Vol.3,Dordrecht:Kluwer,835851.

    ,2002a,SketchesofanElephant:aToposTheoryCompendium.Vol.1(OxfordLogicGuides,Volume43),Oxford:OxfordUniversityPress.

    Joyal,A.&Moerdijk,I.,1995,AlgebraicSetTheory,Cambridge:CambridgeUniversityPress.

    Kan,D.M.,1958,AdjointFunctors,TransactionsoftheAmericanMathematicalSociety,87:294329.

    Kock,A.,2006,SyntheticDifferentialGeometry(LondonMathematicalSocietyLectureNoteSeries,Volume51),Cambridge:CambridgeUniversityPress,2nded.

    Krmer,R.,2007,ToolandObjects:AHistoryandPhilosophyofCategoryTheory,Basel:Birkhuser.

    LaPalmeReyes,M.,JohnMacnamara,GonzaloE.Reyes,andHoumanZolfaghari,1994,ThenonBooleanLogicofNaturalLanguageNegation,PhilosophiaMathematica,2(1):4568.

    ,1999,CountNouns,MassNouns,andtheirTransformations:aUnifiedCategorytheoreticSemantics,Language,LogicandConcepts,Cambridge:MITPress,427452.

    Lambek,J.,1968,DeductiveSystemsandCategoriesI.SyntacticCalculusandResiduatedCategories,MathematicalSystemsTheory,2:287318.

    ,1969,DeductiveSystemsandCategoriesII.StandardConstructionsandClosedCategories,CategoryTheory,HomologyTheoryandtheirApplicationsI,Berlin:Springer,76122.

    ,1972,DeductiveSystemsandCategoriesIII.CartesianClosedCategories,IntuitionisticPropositionalCalculus,andCombinatoryLogic,Toposes,AlgebraicGeometryandLogic(LectureNotesinMathematics,Volume274),Berlin:Springer,5782.

    ,1982,TheInfluenceofHeraclitusonModernMathematics,ScientificPhilosophyToday,J.AgassiandR.S.Cohen,eds.,Dordrecht,Reidel,111122.

    ,1986,CartesianClosedCategoriesandTypedlambdacalculi,CombinatorsandFunctionalProgrammingLanguages(LectureNotesinComputerScience,Volume242),Berlin:Springer,136175.

    ,1989a,OnSomeConnectionsBetweenLogicandCategoryTheory,StudiaLogica,48(3):269278.

    ,1989b,OntheSheafofPossibleWorlds,CategoricalTopologyanditsrelationtoAnalysis,AlgebraandCombinatorics,Teaneck:WorldScientificPublishing,3653.

    ,1993,LogicwithoutStructuralRules,SubstructuralLogics(StudiesinLogicandComputation,Volume2),Oxford:OxfordUniversityPress,179206.

  • ,1994a,SomeAspectsofCategoricalLogic,Logic,MethodologyandPhilosophyofScienceIX(StudiesinLogicandtheFoundationsofMathematics,Volume134),Amsterdam:NorthHolland,6989.

    ,1994b,AretheTraditionalPhilosophiesofMathematicsReallyIncompatible?,MathematicalIntelligencer,16(1):5662.

    ,1994c,WhatisaDeductiveSystem?,WhatisaLogicalSystem?(StudiesinLogicandComputation,Volume4),Oxford:OxfordUniversityPress,141159.

    ,2004,WhatistheworldofMathematics?ProvincesofLogicDetermined,AnnalsofPureandAppliedLogic,126:13,149158.

    Lambek,J.&Scott,P.J.,1981,IntuitionisticTypeTheoryandFoundations,JournalofPhilosophicalLogic,10(1):101115.

    ,1983,NewProofsofSomeIntuitionisticPrinciples,ZeitschriftfrMathematischeLogikundGrundlagenderMathematik,29(6):493504.

    ,1986,IntroductiontoHigherOrderCategoricalLogic,Cambridge:CambridgeUniversityPress.

    Lam,V.&Wtrich,C.,forthcoming,NoCategoricalSupportforRadicalOnticStructuralRealism,BritishJournalforthePhilosophyofScience.

    Landry,E.,1999,CategoryTheory:theLanguageofMathematics,PhilosophyofScience,66(3)(Supplement):S14S27.

    ,2001,Logicism,StructuralismandObjectivity,Topoi,20(1):7995.

    ,2007,SharedStructureneednotbeSharedSetstructure,Synthese,158(1):117.

    ,2011,HowtobeaStructuralistallthewaydown,Synthese,179:435454.

    Landry,E.&Marquis,J.P.,2005,CategoriesinContext:Historical,Foundationalandphilosophical,PhilosophiaMathematica,13:143.

    Lawvere,F.W.,1963,FunctorialSemanticsofAlgebraicTheories,ProceedingsoftheNationalAcademyofSciencesU.S.A.,50:869872.

    ,1964,AnElementaryTheoryoftheCategoryofSets,ProceedingsoftheNationalAcademyofSciencesU.S.A.,52:15061511.

    ,1965,AlgebraicTheories,AlgebraicCategories,andAlgebraicFunctors,TheoryofModels,Amsterdam:NorthHolland,413418.

    ,1966,TheCategoryofCategoriesasaFoundationforMathematics,ProceedingsoftheConferenceonCategoricalAlgebra,LaJolla,NewYork:SpringerVerlag,121.

    ,1969a,DiagonalArgumentsandCartesianClosedCategories,CategoryTheory,HomologyTheory,andtheirApplicationsII,Berlin:Springer,134145.

    ,1969b,AdjointnessinFoundations,Dialectica,23:281295.

    ,1970,EqualityinHyperdoctrinesandComprehensionSchemaasanAdjointFunctor,ApplicationsofCategoricalAlgebra,Providence:AMS,114.

    ,1971,QuantifiersandSheaves,ActesduCongrsInternationaldesMathmaticiens,Tome1,Paris:GauthierVillars,329334.

    ,1972,Introduction,Toposes,AlgebraicGeometryandLogic,LectureNotesin

  • Mathematics,274,SpringerVerlag,112.

    ,1975,ContinuouslyVariableSets:AlgebraicGeometry=GeometricLogic,ProceedingsoftheLogicColloquiumBristol1973,Amsterdam:NorthHolland,135153.

    ,1976,VariableQuantitiesandVariableStructuresinTopoi,Algebra,Topology,andCategoryTheory,NewYork:AcademicPress,101131.

    ,1992,CategoriesofSpaceandofQuantity,TheSpaceofMathematics,FoundationsofCommunicationandCognition,Berlin:DeGruyter,1430.

    ,1994a,CohesiveToposesandCantor'slauterEnsein,PhilosophiaMathematica,2(1):515.

    ,1994b,ToolsfortheAdvancementofObjectiveLogic:ClosedCategoriesandToposes,TheLogicalFoundationsofCognition(VancouverStudiesinCognitiveScience,Volume4),Oxford:OxfordUniversityPress,4356.

    ,2000,CommentsontheDevelopmentofToposTheory,DevelopmentofMathematics19502000,Basel:Birkhuser,715734.

    ,2002,CategoricalAlgebraforContinuumMicroPhysics,JournalofPureandAppliedAlgebra,175(13):267287.

    ,2003,FoundationsandApplications:AxiomatizationandEducation.NewProgramsandOpenProblemsintheFoundationofMathematics,BulletinofSymbolicLogic,9(2):213224.

    Lawvere,F.W.&Rosebrugh,R.,2003,SetsforMathematics,Cambridge:CambridgeUniversityPress.

    Lawvere,F.W.&Schanuel,S.,1997,ConceptualMathematics:AFirstIntroductiontoCategories,Cambridge:CambridgeUniversityPress.

    Leinster,T.,2002,ASurveyofDefinitionsofncategories,TheoryandApplicationsofCategories,(electronic),10:170.

    ,2004,HigherOperads,HigherCategories,LondonMathematicalSocietyLectureNoteSeries,298,Cambridge:CambridgeUniversityPress.

    Linnebo,O.&Pettigrew,R.,2011,CategoryTheoryasanAutonomousFoundation,PhilosophiaMathematica,19(3):227254.

    Lurie,J.,2009,HigherToposTheory,Princeton:PrincetonUniversityPress.

    MacLane,S.,1950,DualitiesforGroups,BulletinoftheAmericanMathematicalSociety,56:485516.

    ,1969,FoundationsforCategoriesandSets,CategoryTheory,HomologyTheoryandtheirApplicationsII,Berlin:Springer,146164.

    ,1969,OneUniverseasaFoundationforCategoryTheory,ReportsoftheMidwestCategorySeminarIII,Berlin:Springer,192200.

    ,1971,CategoricalalgebraandSetTheoreticFoundations,AxiomaticSetTheory,Providence:AMS,231240.

    ,1975,Sets,Topoi,andInternalLogicinCategories,StudiesinLogicandtheFoundationsofMathematics(Volumes80),Amsterdam:NorthHolland,119134.

  • ,1981,MathematicalModels:aSketchforthePhilosophyofMathematics,AmericanMathematicalMonthly,88(7):462472.

    ,1986,Mathematics,FormandFunction,NewYork:Springer.

    ,1988,ConceptsandCategoriesinPerspective,AnCenturyofMathematicsinAmerica,PartI,Providence:AMS,323365.

    ,1989,TheDevelopmentofMathematicalIdeasbyCollision:theCaseofCategoriesandToposTheory,CategoricalTopologyanditsRelationtoAnalysis,AlgebraandCombinatorics,Teaneck:WorldScientific,19.

    ,1996,StructureinMathematics.MathematicalStructuralism,PhilosophiaMathematica,4(2):174183.

    ,1997,CategoricalFoundationsoftheProteanCharacterofMathematics,PhilosophyofMathematicsToday,Dordrecht:Kluwer,117122.

    ,1998,CategoriesfortheWorkingMathematician,2 edition,NewYork:SpringerVerlag.

    MacLane,S.&Moerdijk,I.,1992,SheavesinGeometryandLogic,NewYork:SpringerVerlag.

    MacNamara,J.&Reyes,G.,(eds.),1994,TheLogicalFoundationofCognition,Oxford:OxfordUniversityPress.

    Majid,S.,1995,FoundationsofQuantumGroupTheory,Cambridge:CambridgeUniversityPress.

    Makkai,M.,1987,StoneDualityforFirstOrderLogic,AdvancesinMathematics,65(2):97170.

    ,1988,StrongConceptualCompletenessforFirstOrderLogic,AnnalsofPureandAppliedLogic,40:167215.

    ,1997a,GeneralizedSketchesasaFrameworkforCompletenessTheoremsI,JournalofPureandAppliedAlgebra,115(1):4979.

    ,1997b,GeneralizedSketchesasaFrameworkforCompletenessTheoremsII,JournalofPureandAppliedAlgebra,115(2):179212.

    ,1997c,GeneralizedSketchesasaFrameworkforCompletenessTheoremsIII,JournalofPureandAppliedAlgebra,115(3):241274.

    ,1998,TowardsaCategoricalFoundationofMathematics,LectureNotesinLogic(Volume11),Berlin:Springer,153190.

    ,1999,OnStructuralisminMathematics,Language,LogicandConcepts,Cambridge:MITPress,4366.

    Makkai,M.&Par,R.,1989,AccessibleCategories:theFoundationsofCategoricalModelTheory,ContemporaryMathematics104,Providence:AMS.

    Makkai,M.&Reyes,G.,1977,FirstOrderCategoricalLogic,SpringerLectureNotesinMathematics611,NewYork:Springer.

    ,1995,CompletenessResultsforIntuitionisticandModalLogicinaCategoricalSetting,AnnalsofPureandAppliedLogic,72(1):25101.

    Marquis,J.P.,1993,Russell'sLogicismandCategoricalLogicisms,RussellandAnalyticPhilosophy,A.D.Irvine&G.A.Wedekind,(eds.),Toronto,UniversityofTorontoPress,293324.

    nd

  • ,1995,CategoryTheoryandtheFoundationsofMathematics:PhilosophicalExcavations,Synthese,103:421447.

    ,2000,ThreeKindsofUniversalsinMathematics?,inLogicalConsequence:RivalApproachesandNewStudiesinExactPhilosophy:Logic,MathematicsandScience,Vol.II,B.Brown&J.Woods(eds.),Oxford:Hermes,191212.

    ,2006,Categories,SetsandtheNatureofMathematicalEntities,inTheAgeofAlternativeLogics.Assessingphilosophyoflogicandmathematicstoday,J.vanBenthem,G.Heinzmann,Ph.Nabonnand,M.Rebuschi,H.Visser(eds.),Springer,181192.

    ,2009,FromaGeometricalPointofView:AStudyintheHistoryandPhilosophyofCategoryTheory,Berlin:Springer.

    ,2013,MathematicalFormsandFormsofMathematics:leavingtheshoresofextensionalmathematics,Synthese,190(12):21412164.

    Marquis,J.P.&Reyes,G.,2012,TheHistoryofCategoricalLogic:19631977,HandbookoftheHistoryofLogic,Vol.6,D.Gabbay&J.Woods,eds.,Amsterdam:Elsevier,689800.

    McLarty,C.,1986,LeftExactLogic,JournalofPureandAppliedAlgebra,41(1):6366.

    ,1990,UsesandAbusesoftheHistoryofToposTheory,BritishJournalforthePhilosophyofScience,41:351375.

    ,1991,AxiomatizingaCategoryofCategories,JournalofSymbolicLogic,56(4):12431260.

    ,1992,ElementaryCategories,ElementaryToposes,Oxford:OxfordUniversityPress.

    ,1993,NumbersCanbeJustWhatTheyHaveto,Nos,27:487498.

    ,1994,CategoryTheoryinRealTime,PhilosophiaMathematica,2(1):3644.

    ,2004,ExploringCategoricalStructuralism,PhilosophiaMathematica,12:3753.

    ,2005,LearningfromQuestionsonCategoricalFoundations,PhilosophiaMathematica,13(1):4460.

    ,2006,EmmyNoether'ssettheoretictopology:fromDedekindtotheriseoffunctors,TheArchitectureofModernMathematics,J.J.Gray&J.Ferreiros,Oxford:OxfordUniversityPress,187208.

    ,2011,RecentDebateoverCategoricalFoundations,inFoundationalTheoriesofClassicalandConstructiveMathematics,G.Sommaruga,ed.,NewYork:Springer:145154.

    Moerdijk,I.,1984,HeineBoreldoesnotimplytheFanTheorem,JournalofSymbolicLogic,49(2):514519.

    ,1995a,AModelforIntuitionisticNonstandardArithmetic,AnnalsofPureandAppliedLogic,73(1):3751.

    ,1998,Sets,TopoiandIntuitionism,PhilosophiaMathematica,6(2):169177.

    Moerdijk,I.&Palmgren,E.,1997,MinimalModelsofHeytingArithmetic,JournalofSymbolicLogic,62(4):14481460.

    ,2002,TypeTheories,ToposesandConstructiveSetTheory:PredicativeAspectsofAST,AnnalsofPureandAppliedLogic,114(13):155201.

    Moerdijk,I.&Reyes,G.,1991,ModelsforSmoothInfinitesimalAnalysis,NewYork:Springer

  • Verlag.

    Palmgren,E.,2012,ConstructivistandStructuralistFoundations:Bishop'sandLawvere'sTheoriesofSets,AnnalsofPureandAppliedLogic,63:13841399.

    Pareigis,B.,1970,CategoriesandFunctors,NewYork:AcademicPress.

    Pedicchio,M.C.&Tholen,W.,2004,CategoricalFoundations,Cambridge:CambridgeUniversityPress.

    Peirce,B.,1991,BasicCategoryTheoryforComputerScientists,Cambridge:MITPress.

    Pitts,A.M.,1987,InterpolationandConceptualCompletenessforPretoposesviaCategoryTheory,MathematicalLogicandTheoreticalComputerScience(LectureNotesinPureandAppliedMathematics,Volume106),NewYork:Dekker,301327.

    ,1989,ConceptualCompletenessforFirstorderIntuitionisticLogic:anApplicationofCategoricalLogic,AnnalsofPureandAppliedLogic,41(1):3381.

    ,1992,OnanInterpretationofSecondorderQuantificationinFirstorderPropositionalIntuitionisticLogic,JournalofSymbolicLogic,57(1):3352.

    ,2000,CategoricalLogic,HandbookofLogicinComputerScience,Vol.5,Oxford:OxfordUnversityPress,39128.

    Pitts,A.M.&Taylor,P.,1989,ANoteofRussell'sParadoxinLocallyCartesianClosedCategories,StudiaLogica,48(3):377387.

    Plotkin,B.,2000,Algebra,CategoriesandDatabases,HandbookofAlgebra,Vol.2,Amsterdam:Elsevier,79148.

    Porter,T.,2004,InterpretedSystemsandKripkeModelsforMultiagentSystemsfromaCategoricalPerspective,TheoreticalComputerScience,323(13):235266.

    Reyes,G.,1991,ATopostheoreticApproachtoReferenceandModality,NotreDameJournalofFormalLogic,32(3):359391.

    ,1974,FromSheavestoLogic,inStudiesinAlgebraicLogic,A.Daigneault,ed.,Providence:AMS.

    Reyes,G.&Zawadowski,M.,1993,FormalSystemsforModalOperatorsonLocales,StudiaLogica,52(4):595613.

    Reyes,G.&Zolfaghari,H.,1991,TopostheoreticApproachestoModality,CategoryTheory(Como1990)(LectureNotesinMathematics,Volume1488),Berlin:Springer,359378.

    ,1996,BiHeytingAlgebras,ToposesandModalities,JournalofPhilosophicalLogic,25(1):2543.

    Rodabaugh,S.E.&Klement,E.P.,eds.,TopologicalandAlgebraicStructuresinFuzzySets:AHandbookofRecentDevelopmentsintheMathematicsofFuzzySets(TrendsinLogic,Volume20),Dordrecht:Kluwer.

    Scedrov,A.,1984,ForcingandClassifyingTopoi,Providence:AMS.

    Scott,P.J.,2000,SomeAspectsofCategoriesinComputerScience,HandbookofAlgebra,Vol.2,Amsterdam:NorthHolland,377.

    Seely,R.A.G.,1984,LocallyCartesianClosedCategoriesandTypeTheory,MathematicalProceedingsoftheCambridgeMathematicalSociety,95(1):3348.

  • Shapiro,S.,2005,Categories,StructuresandtheFregeHilbertControversy:theStatusofMetamathematics,PhilosophiaMathematica,13(1):6177.

    Sica,G.,ed.,2006,WhatisCategoryTheory?,Firenze:Polimetrica.

    Simpson,C.,2011,HomotopyTheoryofHigherCategories,Cambridge:CambridgeUniversityPress.

    Taylor,P.,1996,IntuitionisticsetsandOrdinals,JournalofSymbolicLogic,61:705744.

    ,1999,PracticalFoundationsofMathematics,Cambridge:CambridgeUniversityPress.

    Tierney,M.,1972,SheafTheoryandtheContinuumHypothesis,Toposes,AlgebraicGeometryandLogic,F.W.Lawvere(ed.),SpringerLectureNotesinMathematics274,1342.

    VanOosten,J.,2002,Realizability:aHistoricalEssay,MathematicalStructuresinComputerScience,12(3):239263.

    ,2008,Realizability:anIntroductiontoitsCategoricalSide(StudiesinLogicandtheFoundationsofMathematics,Volume152),Amsterdam:Elsevier.

    VanderHoeven,G.&Moerdijk,I.,1984a,SheafModelsforChoiceSequences,AnnalsofPureandAppliedLogic,27(1):63107.

    ,1984b,OnChoiceSequencesdeterminedbySpreads,JournalofSymbolicLogic,49(3):908916.

    ,1984c,ConstructingChoiceSequencesforLawlessSequencesofNeighbourhoodFunctions,ModelsandSets(LectureNotesinMathematics,Volume1103),Berlin:Springer,207234.

    Wood,R.J.,2004,OrderedSetsviaAdjunctions,CategoricalFoundations,M.C.Pedicchio&W.Tholen,eds.,Cambridge:CambridgeUniversityPress.

    Yanofski,N.,2003,AUniversalApproachtoSelfReferentialParadoxes,IncompletenessandFixedPoints,TheBulletinofSymbolicLogic,9(3):362386.