catania, october 2012, thermal evolution of neutron stars: theory and observations d.g. yakovlev...

20
Catania, October 2012, THERMAL EVOLUTION OF N THERMAL EVOLUTION OF N EUTRON ST EUTRON ST A A R R S: S: Theory and observations Theory and observations D.G. Yakovlev Ioffe Physical Technical Institute, St.-Petersburg, Russia 1. Formulation of the Cooling Problem 2. Superlfuidity and Heat Capacity 3. Neutrino Emission 4. Cooling Theory versus Observations

Upload: deon-heaslip

Post on 16-Dec-2015

219 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Catania, October 2012, THERMAL EVOLUTION OF NEUTRON STARS: Theory and observations D.G. Yakovlev Ioffe Physical Technical Institute, St.-Petersburg, Russia

Catania, October 2012,

THERMAL EVOLUTION OF NTHERMAL EVOLUTION OF NEUTRON STEUTRON STAARRS:S:Theory and observationsTheory and observations

D.G. Yakovlev

Ioffe Physical Technical Institute, St.-Petersburg, Russia

1. Formulation of the Cooling Problem

2. Superlfuidity and Heat Capacity

3. Neutrino Emission 4. Cooling Theory versus Observations

Page 2: Catania, October 2012, THERMAL EVOLUTION OF NEUTRON STARS: Theory and observations D.G. Yakovlev Ioffe Physical Technical Institute, St.-Petersburg, Russia

MAIN NEUTRINO EMISSION MECHANISMS IN NEUTRON STARS

Main features:• unobserved (but governs the cooling)• complete transparency

QdVL

Q

]c [erg luminosity neutrino and

]scm [erg emissivity neutrino :quantity acticalPr1

13

Page 3: Catania, October 2012, THERMAL EVOLUTION OF NEUTRON STARS: Theory and observations D.G. Yakovlev Ioffe Physical Technical Institute, St.-Petersburg, Russia

e

ep

n

, e e e en p e p e n n n

27 6 3 19

46 6 19

~ 3 10

~ 10

Q T erg cm s

L T erg s

FeFpFn ppp 02 ~

Direct Urca ProcessLattimer, Pethick, Prakash, Haensel (1991)

Threshold:In inner cores of massive stars

Similar processes with muons

Is forbidden in outer core by momentum conservation:

0 9 330 MeV/c, 120 MeV/c, ~ / ~ 0.1 MeV/cFn Fe Fp Bp p p p k T c T

Page 4: Catania, October 2012, THERMAL EVOLUTION OF NEUTRON STARS: Theory and observations D.G. Yakovlev Ioffe Physical Technical Institute, St.-Petersburg, Russia

SLOW NEUTRINO EMISSION PROCESSES EVERYWHERE IN NEUTRON STAR CORES

, e en N p N e p N e n N

8 6SLOW 0S 9 FAST 0F 9 Q Q T L L T

MODIFIED URCA [N=n or p = nucleon-spectator]

NUCLEON-NUCLEON BREMSSTRAHLUNG

N N N N

n n n n

n p n p

p p p p

{

Bahcall and Wolf (1965), Friman and Maxwell (1979), Maxwell (1987),Yakovlev and Levenfish (1995)

Friman and Maxwell (1979)

Any neutrino flavor

Page 5: Catania, October 2012, THERMAL EVOLUTION OF NEUTRON STARS: Theory and observations D.G. Yakovlev Ioffe Physical Technical Institute, St.-Petersburg, Russia

Enhanced emission in inner cores of massive neutron stars

Everywhere in neutron star cores

Neutrino Emission Processes in Neutron Star Cores

6 6FAST 0F 9 FAST 0F 9 Q Q T L L T

Model Process

Direct Urca

3 10 [erg cm s ]Q

e en p e p e n 26 2710 3 10

8 8SLOW 0S 9 FAST 0S 9 Q Q T L L T

Modified Urca

Bremsstrahlung

nN pNe pNe nN

N N N N

20 2110 3 10

19 2010 10

Page 6: Catania, October 2012, THERMAL EVOLUTION OF NEUTRON STARS: Theory and observations D.G. Yakovlev Ioffe Physical Technical Institute, St.-Petersburg, Russia

Direct Urca

Neutrino emission from cores of non-superfluid NSs

Outer core Inner core Slow emission Fast emission

}

}}

e en p e p e n

Modified Urca nN pNe pNe nN

NN bremsstrahlung N N N N

Enhanced emission in inner cores of massive neutron stars:

Everywhere in neutron star cores:

6 6FAST 0F FAST 0F Q Q T L L T

8 8SLOW 0S SLOW 0S Q Q T L L T

STANDARD

Fast

erg

cm

-3 s

-1

NS with nucleon core: N=n, p

n n

n p

p p

Page 7: Catania, October 2012, THERMAL EVOLUTION OF NEUTRON STARS: Theory and observations D.G. Yakovlev Ioffe Physical Technical Institute, St.-Petersburg, Russia

Nucleon Matter with Open Direct Urca Process

Page 8: Catania, October 2012, THERMAL EVOLUTION OF NEUTRON STARS: Theory and observations D.G. Yakovlev Ioffe Physical Technical Institute, St.-Petersburg, Russia

FAST AND SLOW NEUTRINO COOLING

Page 9: Catania, October 2012, THERMAL EVOLUTION OF NEUTRON STARS: Theory and observations D.G. Yakovlev Ioffe Physical Technical Institute, St.-Petersburg, Russia

FAST AND SLOW NEUTRINO COOLING

SUN

Page 10: Catania, October 2012, THERMAL EVOLUTION OF NEUTRON STARS: Theory and observations D.G. Yakovlev Ioffe Physical Technical Institute, St.-Petersburg, Russia

Effects of superfluidity on neutrino emission

Two effects:1.Suppresses traditional neutrino processes2.Creates specific neutrino emission due to Cooper pairing of nucleons

Page 11: Catania, October 2012, THERMAL EVOLUTION OF NEUTRON STARS: Theory and observations D.G. Yakovlev Ioffe Physical Technical Institute, St.-Petersburg, Russia

Neutrino emission due to Cooper pairing

Flowers, Ruderman and Sutherland (1976)Voskresensky and Senatorov (1987)Schaab et al. (1997)

n n

Temperature dependence of neutrino emissivity due to Cooper pairing

Features:• Efficient only for triplet-state pairing of neutrons •Non-monotonic T-dependence• Strong many-body effects

Leinson (2001)Leinson and Perez (2006)Sedrakian, Muether, Schuck (2007)Kolomeitsev, Voskresensky (2008)Steiner, Reddy (2009)Leinson (2010)

Physics:Jumping over cliff from branch A to B

A

B

Neutrino emission due to Cooper pairing

Page 12: Catania, October 2012, THERMAL EVOLUTION OF NEUTRON STARS: Theory and observations D.G. Yakovlev Ioffe Physical Technical Institute, St.-Petersburg, Russia

Distribution over the stellar core

T=3x108 K

2x108

108

6x107

3x107

VQL d CPCP

Page 13: Catania, October 2012, THERMAL EVOLUTION OF NEUTRON STARS: Theory and observations D.G. Yakovlev Ioffe Physical Technical Institute, St.-Petersburg, Russia

Neutrino luminosity due to Cooper pairing

8)10010(~ TLL MurcaCooper

Gusakov et al. (2004)

Page 14: Catania, October 2012, THERMAL EVOLUTION OF NEUTRON STARS: Theory and observations D.G. Yakovlev Ioffe Physical Technical Institute, St.-Petersburg, Russia

Minimal and maximal cooling paradigms

Consider neutron stars with nucleon cores (simplest composition)

Minimal cooling paradigm: no direct Urca in all stars

Maximal cooling paradigm: direct Urca in heavy stars

Pradigm SF SF

Minimal cooling off on

Maximal cooling off on

Four cases

Minimal cooling theory:

Page, Lattimer, Prakash, Steiner (2004)

Gusakov, Kaminker, Yakovlev, Gnedin (2004)

Page 15: Catania, October 2012, THERMAL EVOLUTION OF NEUTRON STARS: Theory and observations D.G. Yakovlev Ioffe Physical Technical Institute, St.-Petersburg, Russia

Minimal and maximal cooling paradigms

Minimal cooling

Maximal cooling

SF off SF on

Page 16: Catania, October 2012, THERMAL EVOLUTION OF NEUTRON STARS: Theory and observations D.G. Yakovlev Ioffe Physical Technical Institute, St.-Petersburg, Russia

~ (10 100)Cooper MurcaL L

Minimal cooling. SF on

Non-superfluid star with nucleon core Standard Murca cooling

Add strong proton super- fluidityVery slow cooling

Add moderate neutron superfluidity: CP neutrino outburst

nn nn

np np

pp pp

nN pNe pNe nN

nN pNe pNe nN

np np

pp pp

nn nn

~ 0.01 MurcaL L MurcaL L

nN pNe pNe nN

nn nn

np np

pp pp

nn

Page 17: Catania, October 2012, THERMAL EVOLUTION OF NEUTRON STARS: Theory and observations D.G. Yakovlev Ioffe Physical Technical Institute, St.-Petersburg, Russia

MAXIMAL COOLING EXAMPLE OF SUPERFLUID REDUCTION OF NEUTRINO EMISSION

Two models for proton superfluidity Neutrino emissivity profiles

Superfluidity:• Suppresses modified Urca process in the outer core• Suppresses direct Urca just after its threshold (“broadens the threshold”)

Page 18: Catania, October 2012, THERMAL EVOLUTION OF NEUTRON STARS: Theory and observations D.G. Yakovlev Ioffe Physical Technical Institute, St.-Petersburg, Russia

MAXIMAL COOLINGSTRONG PROTON AND MILD NEUTRON SUPERFLUIDITY

Page 19: Catania, October 2012, THERMAL EVOLUTION OF NEUTRON STARS: Theory and observations D.G. Yakovlev Ioffe Physical Technical Institute, St.-Petersburg, Russia

Summary of neutrino emission properties

Neutrino emission from neutron star cores is strongly regulated by(1)Temperature(2)Composition of the matter(3)Superfluidity

These regulators may affect the emissivity in a non-trivial way(enhance or suppress)

What is their effect? Next lecture

Page 20: Catania, October 2012, THERMAL EVOLUTION OF NEUTRON STARS: Theory and observations D.G. Yakovlev Ioffe Physical Technical Institute, St.-Petersburg, Russia

REFERENCES

U. Lombardo, H.-J. Schulze. Superfluidity in neutron star matter. In: Physics of Neutron Star Interiors, edited by D. Blaschke, N. Glendenning, A. Sedrakian, Berlin: Springer, 2001, p. 30.

D.G. Yakovlev, K.P. Levenfish, Yu.A. Shibanov. Cooling of neutron stars and superfluidity in their cores. Physics – Uspekhi 42, 737, 1999.

D.G. Yakovlev, A.D. Kaminker, O.Y. Gnedin, P. Haensel. Neutrino emission from neutron stars. Phys. Rep. 354, Nums. 1,2, 2001.