catalog of solar heliostats - fika.org

35
T E C H N I C A L R E P O R T No. III - 1/00 Catalog of Solar Heliostats June, 2000 IEA-Solar Power and Chemical Energy Systems Task III: Solar Technology and Applications

Upload: hoangdan

Post on 14-Feb-2017

298 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Catalog of Solar Heliostats - fika.org

T E C H N I C A L R E P O R TNo. III - 1/00

Catalog of Solar Heliostats

June, 2000

IEA-Solar Power and Chemical Energy SystemsTask III: Solar Technology and Applications

Page 2: Catalog of Solar Heliostats - fika.org

SolarPACES, Operating Agent TASK IIIDeutsches Zentrum für Luft- und Raumfahrt e.V.Solare Energietechnik (DLR, EN-SE)D-51170 KölnTelephone: (0)2203-601-2479Telefax: (0)2203-66 900E-mail: [email protected]

Page 3: Catalog of Solar Heliostats - fika.org

Catalog of Solar Heliostats

Editor : Thomas R. Mancini

Sandia National LabotatoriesSolar Thermal Technology

Albuquerque, N.M 87185, USA

Page 4: Catalog of Solar Heliostats - fika.org

i

-- i --

Page 5: Catalog of Solar Heliostats - fika.org

ii

-- ii --

FOREWORD

This document was prepared as part of the International Energy Agency’s Solar Powerand Chemical Energy Systems (IEA SolarPACES) Task III: Solar TechnologyApplications. The principal participants in assembling this material were: Peter Heller,Scott Jones, Manuel Romero, and Tom Mancini.

There were only two requirements for having a heliostat included in the catalog:

1) it must be available for purchase today; and

2) the detailed information must be provided by the manufacturer of the heliostat.

The information presented in this catalog was prepared by the manufacturers of theheliostats and has not been edited or changed in any way. Many of these heliostatshave been tested at Solar PACES’ member test facilities and test reports on theirperformance may be available on request.

This document is for informational purposes only. The presence of a heliostat design inthis catalog is not to be construed as an endorsement of the design or a validation ofthe reported performance by SolarPACES or any of the member countries.

December 23, 1999

Editor

Page 6: Catalog of Solar Heliostats - fika.org

iii

-- iii --

Table of Contents

Section of the Report Page No.

Foreword --------------------------------------------------------------------------------- ii

Table of Contents --------------------------------------------------------------------- iii

List of Figures --------------------------------------------------------------------------- iv

Instructions for Completing the Form ------------------------------------------- v

What are heliostats? ------------------------------------------------------------------ 1

What are the component parts of a heliostat? ------------------------------- 2

What is the cost of a heliostat? --------------------------------------------------- 3

Guidance to readers of this catalog.--------------------------------------------- 3

Colon 70 Heliostat --------------------------------------------------------------------- 4

SAIC Multi-Facet Stretched Membrane Heliostat -------------------------- 6

PSI 120 Heliostat ---------------------------------------------------------------------- 8

Sanlucar 90 Heliostat ---------------------------------------------------------------- 10

Hellas 01 Heliostat -------------------------------------------------------------------- 12

ATS H100 Heliostat ------------------------------------------------------------------- 15

ATS H150 Heliostat ------------------------------------------------------------------- 16

ATM 150 Heliostat ---------------------------------------------------------------- 17

Page 7: Catalog of Solar Heliostats - fika.org

iv

-- iv --

List of FiguresFig. 1 Solar Power Tower --------------------------------------------------- 1

Fig. 2 Parts of a heliostat --------------------------------------------------- 2

Fig. 3 Front View of the Colon 70 Heliostat --------------------------- 5

Fig. 4 Back View of the Colon 70 Heliostat --------------------------- 5

Fig. 5 SAIC Faceted Stretched-Membrane Heliostat -------------- 7

Fig. 6 Front View of the PSI 120 Heliostat ---------------------------- 9

Fig. 7 Back View of the PSI 120 Heliostat ---------------------------- 9

Fig. 8 Finite Element Model of the Sanlucar Heliostat ------------ 11

Fig. 9 Front View of the Hellas 01 Heliostat -------------------------- 13

Fig. 10 Back View of the Hellas 01 Heliostat -------------------------- 13

Fig. 11 The ATS H150 Heliostat ------------------------------------------- 16

Page 8: Catalog of Solar Heliostats - fika.org

v

-- v --

The following instructions were prepared by the Task III Working Group and distributedto the heliostat manufacturers.

Instructions for completing the form

Line 1. Provide the name and model number of the heliostat. If you have more than one model, pleasecomplete a separate form for each model.

Lines 2 -- 7. List the heliostat manufacturer and contact information for the responsible person. Please providename, address, telephone and FAX numbers, email addresses and any other information that youfeel is appropriate.

Line 8. This section is for the physical data describing the heliostat.Line 9. How many heliostats of this model have been built? How many are operating in the field today?

Line 10. What is the date of this design?Line 11. What is the area of the heliostat? What are its critical dimensions – i.e., length, width, height, etc.Line 12. How many facets are on the heliostat and what are their sizes?Line 13. Please describe the construction of the facets. How are they made? What are the materialsLine 14. What is the size of glass lights used on the heliostat? What is its thickness and who is the glass

manufacturer? If glass is not the reflective surface, please describe the reflective surface.Line 15. What is the measured reflectivity of the glass (or other reflective surface)? What instrument was

used to measure the reflectivity?Lines 16 - 17. Please describe the azimuth and elevation drives. What kind of drives are they? i.e., worm, etc.

Who makes the gear drives?Line 18. What are the respective gear reduction ratios on the azimuth drive? On the elevation drive?Line 19. Please describe your heliostat controller and control system. What hardware is used in these

systems? What functional control does the software provide? What information is passed back andforth between the master controller and the local controller? Who owns the software?

Line 20. What type of support is provided for your heliostat and drives? Please describe the type of supportand its dimensions.

Line 21. What is the total weight of the heliostat excluding the foundation?Line 22. Other Information – please provide any additional information that you feel is necessary to describe

your heliostat.Line 23. In this section, we are asking you to document any test results for the heliostat. If test reports are

available, please provide a complete reference in this section.Line 24. Where were tests performed and by whom?

Lines 25 - 29. Please provide detailed descriptions of the tests and the test results.Line 30. What is the total heliostat error as characterized by the 1 σ value of the slope error distribution?Line 31. This section addresses the cost of the heliostat. This does not include shipping cost but should

include consideration for installation.Line 32. What fraction of the total heliostat cost can be attributed to the facets? To the facet supports? To

the elevation drive? To the azimuth drive? To the pedestal? To the controller? To installation?Line 33 - 38. This question addresses the cost of the heliostat based on the annual production. Please use

production levels for which you have mad detailed calculations.39. Please provide an electronic photograph of your heliostat, if possible in color.40. Can you identify and briefly describe the top 3 design or technical issues that need addressed in

order to reduce the cost of your heliostat below the values shown above? We all recognize that alarge order will result in reduced costs, but please focus your answers to this question on processes,materials, or component costs.

Page 9: Catalog of Solar Heliostats - fika.org

vi

-- vi --

Heliostats

WHAT ARE HELIOSTATS?

Heliostats provide the fuel for a power tower (sometimes referred to as a centralreceiver) power plant. Heliostats are named helio for sun and stat for the fact that thereflected solar image is maintained at a fixed position over the course of the day. Theyare nearly flat mirrors (some curvature is required to focus the sun’s image) that collectand concentrate the solar energy on a tower-mounted receiver located 100 to 1000meters distant. Figure 1 is a photograph of the power tower at Solar Two in Barstow,CA.

Figure 1. The Solar Power Tower at Barstow, CA

To maintain the sun’s image on the solar receiver, heliostats must at all times track apoint in the sky that is midway between the sun and the receiver. The solar energy iscollected at the receiver and delivered to a storage system or used directly to generatesteam and power a conventional turbine generator. In Figure 1, the receiver is thesmall cylinder at the top of the tower. On top of the receiver is a crane used for itsinstallation and maintenance. The bright white areas immediately above and below thereceiver are the insulated headers, and the large trapezoidal areas below the receiverare targets that are used to align the glass facets of the heliostats. The light areas inthe sky on either side of the receiver are the stand-by positions where heliostats arefocused before tracking onto the receiver. The structures on the ground around thetower are the heliostats.

Studies have shown that a 100 MW power tower would require nearly one millionsquare meters of glass heliostats, corresponding to approximately 10,000, 100-m2

heliostats. The heliostats represent 40% to 50% of the cost of a power tower, so they

Page 10: Catalog of Solar Heliostats - fika.org

2

-- 2 --

must be relatively low cost in order for cost of power from the plant to compete with thatof fossil fuels.

WHAT ARE THE COMPONENT PARTS OF A HELIOSTAT?

The major components of a heliostat are shown in Figure 2 and described briefly below.These components are the mirror assemblies (typically glass and metal), the supportstructure, the pedestal and foundation, the tracking control system, and the drives.

The mirror surfaces of state-of-the-artheliostats are made with thin silveredglass, which may or may not have a lowiron content for enhanced reflection.Aluminum and silver polymer films havebeen under development for solarapplications for some time, but thesematerials have not yet demonstrated theability to survive the 20 to 25 yearsrequired for power plant applications. Inorder to provide the proper contour for theoptical surface and for attachment to thesupport structure, the glass may bebonded or otherwise attached to a metal,honeycomb or slumped-glass substratethat has been “shaped” to the propercurvature.

The optical element support structurepositions the mirrors accurately andcarries the weight of the structure andwind loads through the drives to ground.For a heliostat, it is important that the mirror facets be located relative to one another sothat each of their images is focused on the receiver at the top of the tower. The majorissues that the heliostat designer must confront are the two requirements, e.g.maintaining mirror alignment and providing structural strength to carry wind loadsthrough the structure to ground.

By far the most common type of ground support for solar concentrators is the poured-in-place tubular pedestal. This is not the only type of tracking structure that has beenused for heliostats, however. Alidade-type structures with pintel bearings and polartracking structures have also been used (refer to the ASM 150 m2 heliostat design.

Tracking controls are the electronics and control algorithms that are used to provide thesignals to the drive motors for maintaining the position of the concentrator relative to thesun. Heliostats must always track a point in the sky that is located midway between thereceiver and the sun in order to reflect their images onto the receiver.

The concentrator drive causes the heliostat to track across the sky in two axes, azimuthand elevation, to maintain the sun’s image at a predetermined location on the tower.The drive not only provide the tracking but it also must carry the weight of theconcentrator and any wind loads to ground through the pedestal and foundation.

Tube

SupportStructure

Torque

Back

Pedestal

Drive

Page 11: Catalog of Solar Heliostats - fika.org

3

-- 3 --

What is the cost of a heliostat?

Power towers must have low capital and operations and maintenance costs in order tocompete with the relatively low cost electrical power produced from the combustion offossil fuels. The heliostats currently represent 40 – 50% of the capital cost of acentral receiver power plant.. The relative fraction of the total cost of a heliostat of itsmajor components is shown in Table 1. below.

Table 1. Concentrator Costs

In mass production, the cost of a 100 m2 heliostat or dish is projected to be from$12,000 to $15,000.

Guidance to readers of this catalog.

The heliostat designs presented in this document are at various stages of development.Most of them are prototypes and, as such, have been tested but have not beendeployed and operated for long periods of time. Also, designs and costs changequickly, so if you are interested in the most up to date information, we stronglyrecommend that you contact the manufacturers.

Component % of CostAz and El Drives 30 - 35 %Mirror Assemblies 25 - 30%Structural Support 15 - 20%Assembly and Install 10 - 15%Pedestal and Foundation 10 - 15%Controls 5 - 10%

Page 12: Catalog of Solar Heliostats - fika.org

4

-- 4 --

Colon 70 Heliostat

1. Name/Model Number of the Heliostat Colon 70

2. Manufacturer Inabensa, Instalaciones Abengoa, S.A.

3. Contact Rafael Osuna Gonzalez-Aguilar4. Address C/ Manuel Velasco Pando 7

5. 41007 Sevilla

6. SPAIN

7. Telephone 34 954 93 60 00 FAX 34 954 93 60 15 Email [email protected]. Physical Data

9. Number heliostats built 1

10. Date of current design 1997

11. Area (h, w) in meters H7.82m x W9.04m

12. Facet (size, number) Facets = H1.1m x W3m = 3.3 m2 Nº Facets = H7 x W3 =21Reflective Surface = 21 x 3.3 m2= 69.3 m2

13. Facet Construction Mirror fixed to steel frame with steel nails on a facets jig table

14. Glass (size of lights) H1.1m x W3m x 4mm Pilkington / Cristaleria Española

15. Reflectivity 0.93 / 0.92 measured with a bidirectional reflectometer

16. Azimuth drive Winsmith, worm-gear

17. Elevation drive Winsmith, worm-gear

18. Drive ratios (AZ/EL) Az 1:18000 & El 1:1800019. Controller Type CIEMAT hardware/software & master/local controllers

20. Pedestal Type Steel tube 0.5 m ∅

21. Weight (w/o fndat) kg 4000 kg without foundations

22. Other Information23. Performance

24. Where were tests done? Wind Tunnel. Test Facility Installation at Plataforma Solar de Almeria

25. Types of tests? Mechanical & Optical

26. Descriptions Simulations in Wind Tunnel. Real performance at Test Facility during two years

27. Wind perform Ok28. Elev/Az perform Ok

29. Other test results Ok

30. Heliost slope error (mr) 2.8 mrad (beam) 1.4 mrad (normal)

31. Heliostat costs

32. Cost by component(facets, facets suppts.,elev. Drive, azimuthdrive, pedestal, control, etc.) in %

Mirror 5%Frame 10%Structure 25%Drives 50%Pedestal 5%Control system 5%

33. Heliostat costs (build)

34. i.e 1/yr 380 $/m235. 100/yr 220 $/m2

36. 1000/yr 130 $/m2

37. /yr

38. /yr

39. Photograph of heliostat Please provide an electronic photograph of your heliostat.40. Critical Cost Issues

Page 13: Catalog of Solar Heliostats - fika.org

5

-- 5 --

Figure 3. Front View of the Colon 70 Heliostat on test at the PSA in Almeria, Spain

Figure 4. Back structure of the Colon 70 heliostat with image shown on tower.

Page 14: Catalog of Solar Heliostats - fika.org

6

-- 6 --

SAIC Multi-Facet Stretched Membrane Heliostat

1. Name/Model Number of the Heliostat Multi-Facet Stretched Membrane Heliostat2. Manufacturer SAIC Energy Products Division3. Contact Barry Butler4. Address SAIC5. 9455 Towne Centre Dr.6. San Diego, CA 921217. Telephone (858)826-6004 FAX (858)826-6335 Email [email protected]. Physical Data

9. Number heliostats built 410. Date of current design September 199811. Area (h, w) in meters 19.3m wide x 13.0m high; Reflective area: 170.72 sq.m12. Facet (size, number) 22 round mirror facets, each 3.2 m in diameter13. Facet Construction Stretched membrane: stainless steel rings with welded s.s. membranes;

mirrors adhesively applied to membranes14. Glass (size of lights) Standard is 3/32” float glass, back-silvered; largest tile ~1.2mx1.5m;

Optionally, (about $4000 additional cost) 1 mm low-iron glass with 95.3%reflectance

15. Reflectivity 89.6% new16. Azimuth drive Flenders (worm drive with spur gear reduction)17. Elevation drive Flenders (worm drive with spur gear reduction)18. Drive ratios (AZ/EL) 18615:1 in drive, 5.5:1 input motor speed reducer; overall: 102382.5:119. Controller Type Microprocessor controller, RS-485 network, on/off AC motor control20. Pedestal Type Flanged 30” diameter steel pipe attached at foundation with bolts; heliostat

structure consists of a horizontal torque tube with vertical trusses to whichfacets are attached at 3 points each.

21. Weight (w/o fndat) kg 10,000 kg (22,000 lb)22. Other Information Mirrors may be focused for short focal-length applications; Structure

can be partially populated with facets to create a smaller system(e.g., 14 facets or 18 facets, instead of 22).

23. Performance

24. Where were tests done? NREL and Sandia National Labs

25. Types of tests? Tracking, Optics, Wind Effects, Reliability26. Descriptions Beam Characterization System tests over multiple days; Evaluation of

tracking errors vs. time; Evaluation of tracking errors due to wind27. Wind perform Operate up to 15 mph; survive 90 mph in stow, 50 mph gust while tracking28. Elev/Az perform 0.03-0.04 degree std. Deviation from desired tracking point over time29. Other test results Achieved over 2100 hours of automated operation on two systems with

overall availability >90%; Demonstrated operation of two networkedsystems with ~1000 m communication distance to central computer; testresults in NREL/SR-550-25837 and

30. Heliost slope error (mr) 1.531. Heliostat costs

32. Cost by component(facets, facets suppts.,elev. Drive, azimuthdrive, pedestal, control, etc.) in %

One unit: Facets 41%, Supports 40%, Drive System 11%, Pedestal 5.7%,Controls 2.3%2000 Units/year: Facets 26%, Supports 46%, Drive System 20%,Pedestal 6.6%, Controls 1.4%

33. Heliostat costs (build)

Page 15: Catalog of Solar Heliostats - fika.org

7

-- 7 --

34. i.e 1/yr $137,000 total -- $100,000 Materials + $27,000 Installation + $10,000engineering (1998 US$)

35. 100/yr

36. 2000/yr $28,500 total -- $21,500 Materials + $4,950 Installation + $915OH/indirect/capital cost amortization (1998 US$)

37. /yr

38. /yr

39. Photograph of heliostat

40. Critical Cost Issues Drive systems are expensive and not easily available

Figure 5. SAIC Heliostat on test at the National Renewable Energy Laboratory in Golden, CO, USA.

Page 16: Catalog of Solar Heliostats - fika.org

8

-- 8 --

PSI 120 Heliostat

1. Name/Model Number of the Heliostat PSI 1202. Manufacturer Inabensa, Instalaciones Abengoa, S.A.

3. Contact Rafael Osuna Gonzalez-Aguilar

4. Address C/ Manuel Velasco Pando 7

5. 41007 Sevilla

6. SPAIN

7. Telephone +34 954 93 60 00 FAX +34 954 93 60 15 Email [email protected]

8. Physical Data

9. Number heliostats built 110. Date of current design 1996

11. Area (h, w) in meters H10.06m x W12.08m

12. Facet (size, number) Facets = H1.1m x W3m = 3.3 m2 Nº Facets = (H9 x W4) +1 =37Reflective Surface = 37 x 3.3 m2= 122.1 m2

13. Facet Construction Mirror fixed to steel frame with steel nails on a facets jig table14. Glass (size of lights) H1.1m x W3m x 4mm Pilkington / Cristalería Española

15. Reflectivity 0.93 / 0.92 measured with a reflectometer

16. Azimuth drive Pujol Muntalá, worm-gear

17. Elevation drive Pujol Muntalá, worm-gear

18. Drive ratios (AZ/EL) Az 1:36000 & El 1:3600019. Controller Type Paul Scherrer Institut hardware/software & master/local controllers

20. Pedestal Type Steel tube 0.6 m ∅

21. Weight (w/o fndat) kg 6500 kg without foundation

22. Other Information23. Performance

24. Where were tests done? Wind Tunnel & Test Facility installation

25. Types of tests? Mechanical & Optical

26. Descriptions Simulations in Wind Tunnel. Real performance at PSITest Facility during two years

27. Wind perform Ok28. Elev/Az perform Ok

29. Other test results Ok

30. Heliost slope error (mr) 3.0 mrad beam (flat facets)

31. Heliostat costs

32. Cost by component(facets, facets suppts.,elev. Drive, azimuthdrive, pedestal, control, etc.) in %

Mirror 5%Frame 10%Structure 25%Drives 50%Pedestal 5%Control system 5%

33. Heliostat costs (build)

34. i.e 1/yr 475 $/m2

35. 100/yr 230 $/m2

36. 1000/yr 150 $/m2

37. /yr

38. /yr

39. Photograph of heliostat Please provide an electronic photograph of your heliostat.40. Critical Cost Issues

Page 17: Catalog of Solar Heliostats - fika.org

9

-- 9 --

Figure 6. Front view of the PSI 120 heliostat.

Figure 7. Back view of the PSI 120 heliostat.

Page 18: Catalog of Solar Heliostats - fika.org

10

-- 10 --

Sanlucar 90 Heliostat

1. Name/Model Number of the Heliostat Sanlucar 902. Manufacturer Inabensa, Instalaciones Abengoa, S.A.

3. Contact Rafael Osuna Gonzalez-Aguilar

4. Address C/ Manuel Velasco Pando 7

5. 41007 Sevilla

6. SPAIN

7. Telephone +34 954 93 60 00 FAX +34 954 93 60 15 Email [email protected]

8. Physical Data

9. Number heliostats built Prototype in Construction (Expected by October 1999)10. Date of current design 1999

11. Area (h, w) in meters H9.57m x W9.67m

12. Facet (size, number) Facets = H1.35m x W3.21m = 4.33 m2 Nº Facets = H7 x W3 =21Reflective Surface = 21 x 4.33 m2= 91.0 m2

13. Facet Construction Mirror fixed to steel frame with steel nails on a facets jig table14. Glass (size of lights) H1.35m x W3.21m x 3mm Cristaleria Española

15. Reflectivity 0.92 measured with a reflectometer

16. Azimuth drive Winsmith, worm-gear / hydraulic

17. Elevation drive Winsmith, worm-gear / hydraulic

18. Drive ratios (AZ/EL) Az 1:18000 & El 1:1800019. Controller Type CIEMAT hardware/software & master/local controllers

20. Pedestal Type Concrete 0.5 m ∅

21. Weight (w/o fndat) kg 3500 kg without foundations

22. Other Information23. Performance

24. Where were tests done? Planned in Wind Tunnel & in Test Facility Installation

25. Types of tests? Mechanical & Optical

26. Descriptions Simulations in Wind Tunnel. Real performance at Test Facility

27. Wind perform

28. Elev/Az perform

29. Other test results

30. Heliost slope error (mr) Expected lower than 2.8 mrad31. Heliostat costs

32. Cost by component(facets, facets suppts.,elev. Drive, azimuthdrive, pedestal, control, etc.) in %

Mirror 5%Frame 10%Structure 25%Drives 50%Pedestal 5%Control system 5%

33. Heliostat costs (build)

34. i.e 1/yr 360 $/m2

35. 100/yr 210 $/m2

36. 1000/yr 130 $/m237. /yr

38. /yr

39. Photograph of heliostat Please provide an electronic photograph of your heliostat.

40. Critical Cost Issues

Page 19: Catalog of Solar Heliostats - fika.org

11

-- 11 --

Figure 8. Support structure for the Sanlucar heliostat.

Page 20: Catalog of Solar Heliostats - fika.org

12

-- 12 --

HELLAS 01 Heliostat

1. Name/Model Number of the Heliostat HELLAS ø12. Manufacturer GHER S. A3. Contact MR. PEDRO GRIMALDI4. Address AV. DEL PUERTO 1-6-E5. 1006 CADIZ6. SPAIN7. Telephone +34-956-289311 FAX +34-956-282202 Email

8. Physical Data

9. Number heliostats built TWO10. Date of current design 199911. Area (h, w) in meters 3,2 X 6 m (19,2 m²)12. Facet (size, number) 3,2 X 2 (9,4 m²) ; 313. Facet Construction GLAS MIRROR OVER FRAME14. Glass (size of lights) 3,2 X 2 m15. Reflectivity 94 %16. Azimuth drive LINEAR ACTUATOR17. Elevation drive LINEAR ACTUATOR18. Drive ratios (AZ/EL) N/A / N/A19. Controller Type MICROPROCESSOR, SELF-SUFFICIENT20. Pedestal Type CONCRETE PILLAR, INTEGRATED WITH FOUNDATION.21. Weight (w/o fndat) kg 790 Kg.22. Other Information23. Performance

24. Where were tests done? PLATAFORMA SOLAR ALMERIA

25. Types of tests? OPTICAL, MECHANICAL, ENERGY CONSUMPTION.26. Descriptions BEAM QUALITY AND TRACKING CHARACTERISATION.27. Wind perform O.K28. Elev/Az perform O.K29. Other test results

30. Heliost slope error (mr) 1.2 (normal)31. Heliostat costs

32. Cost by component(facets, facets suppts.,elev. Drive, azimuthdrive, pedestal, control, etc.) in %

33. Heliostat costs (build) We are presently working on the reduction & determination of final costs.34. i.e 1/yr

35. 100/yr

36. /yr

37. /yr

38. /yr

39. Photograph of heliostat Please provide an electronic photograph of your heliostat.

40. Critical Cost Issues STRUCTURE.

Page 21: Catalog of Solar Heliostats - fika.org

13

-- 13 --

Figure 9. Front view of the HELLAS 01 heliostat.

Figure 10. Back view of the Hellas 01 heliostat.

Page 22: Catalog of Solar Heliostats - fika.org

14

-- 14 --

ATS H100

1. Name/Model Number of the Heliostat H1002. Manufacturer Advanced Thermal Systems, Inc.3. Contact David Gorman4. Address 5031 W. Red Rock Drive5. Larkspur, CO 801186.

7. Telephone (303) 681-9480 FAX (303) 681-2668 Email [email protected]

8. Physical Data

9. Number heliostats built 2 Heliostats 756 Mirror Enhanced PV Trackers10. Date of current design 198311. Area (h, w) in meters 9512. Facet (size, number) 4ft x 16ft, 1613. Facet Construction Silvered glass second surface mirrors bonded to formed sheet metal back14. Glass (size of lights) 4ft x 4ft15. Reflectivity 0.9416. Azimuth drive Two-stage worm Optional: Eccentric planetary17. Elevation drive Two-stage worm Optional: Combination worm/ballscrew

18. Drive ratios (AZ/EL) 18,400/18,400 Optional: 16,560/19. Controller Type Open-loop, by central computer with individual microprocessor packages20. Pedestal Type 24 inch diameter flanged pipe21. Weight (w/o fndat) kg 350022. Other Information

23. Performance24. Where were tests done? Taft, CA USA by Arco Solar Inc.

25. Types of tests? Structural loading (by Arco)26. Descriptions Structural: Using hydraulic cylinders to obtain az, el and cross-el loadings27. Wind perform Tracking capability up to 27 mph, survivable up to 90 mph28. Elev/Az perform Should be similar to H15029. Other test results

30. Heliost slope error (mr) Should be similar to H15031. Heliostat costs32. Cost by component

(facets, facets suppts.,elev. Drive, azimuthdrive, pedestal, control, etc.) in %

Mirror modules: 25% Gear-drive assy: 30% Support Structure: 15% Controls: 5% Other: 5% G&A & profit: 20%

33. Heliostat costs (build)34. 1,000/yr $18,300 each35. /yr

36. /yr37. /yr

38. /yr

39. Photograph of heliostat Please provide an electronic photograph of your heliostat.40. Critical Cost Issues Gear drive assembly, glass

Page 23: Catalog of Solar Heliostats - fika.org

15

-- 15 --

ATS H1501. Name/Model Number of the Heliostat H1502. Manufacturer Advanced Thermal Systems, Inc.3. Contact David Gorman4. Address 5031 W. Red Rock Drive5. Larkspur, CO 801186.

7. Telephone (303) 681-9480 FAX (303) 681-2668 Email [email protected]

8. Physical Data

9. Number heliostats built 2 Heliostats 44 PV Trackers (No mirrors)10. Date of current design 198411. Area (h, w) in meters 14812. Facet (size, number) 4ft x 20ft, 2013. Facet Construction Silvered glass second surface mirrors bonded to formed sheet metal back14. Glass (size of lights) 4ft x 4ft15. Reflectivity 0.9416. Azimuth drive Two-stage worm Optional: Eccentric planetary17. Elevation drive Two-stage worm Optional: Combination worm/ballscrew18. Drive ratios (AZ/EL) 18,400/18,400 Optional: 16,560/19. Controller Type Open-loop, by central computer with individual microprocessor packages20. Pedestal Type 24 inch diameter flanged pipe21. Weight (w/o fndat) kg 500022. Other Information

23. Performance

24. Where were tests done? Taft, CA USA by Arco Solar Inc., and Albuqureque, NM USA bySandia Labs

25. Types of tests? Structural loading (by Arco), Tracking & beam quality (by Sandia)26. Descriptions Structural: Using hydraulic cylinders to obtain az, el and cross-el loadings

Tracking Performance: Using video BCS to obtain tracking errordataBeam Quality: Using BCS to obtain beam flux distribution data

27. Wind perform Tracking capability up to 27 mph, survivable up to 90 mph28. Elev/Az perform See Sandia Report SAND92-138129. Other test results See Sandia Report SAND92-138130. Heliost slope error (mr) See Sandia Report SAND92-138131. Heliostat costs

32. Cost by component(facets, facets suppts.,elev. Drive, azimuthdrive, pedestal, control, etc.) in %

Mirror modules: 25% Gear-drive assy: 30% Support structure: 15% Controls: 5% Other: 5% G&A & profit.: 20%

33. Heliostat costs (build)

34. i.e 1/yr

35. /yr

36. 1,000 /yr $22,900 each37. /yr

38. /yr

39. Photograph of heliostat Please provide an electronic photograph of your heliostat.

40. Critical Cost Issues Gear drive assembly, glass

Page 24: Catalog of Solar Heliostats - fika.org

16

-- 16 --

Figure 11. Advanced Thermal Systems H150 heliostat on test at Sandia’s NSTTF.A photograph of the H100 was not available but it identical in construction to the H150, except smaller.

Page 25: Catalog of Solar Heliostats - fika.org

17

-- 17 --

AMS H150

1. Name/Model Number of the Heliostat ASM-1502. Manufacturer Babcock Borsig Power Environment3. Contact Mr. Manfred Schmitz-Goeb4. Address D 51641 Gummersbach5.

6. Germany7. Telephone +49.(0)2261.85.2067 FAX 49.(0)2261.85.2067 Email maschmit@steinmueller.

de8. Physical Data

9. Number heliostats built 1 built, 1 operated10. Date of current design 199511. Area (h, w) in meters Circular heliostat ( r≅7m, A=150m² )12. Facet (size, number) Single element13. Facet Construction Metal stretched membrane14. Glass (size of lights) Thin glass mirror 0.9mm15. Reflectivity 0.9416. Azimuth drive Electric driven turn table with absolute position encoder17. Elevation drive Electric driven spoke wheel with absolute position encoder18. Drive ratios (AZ/EL) (AZ) 270° / (EL) 180°19. Controller Type Pulse-width modulated 4-quadrant servo controller using measured sun

vector as input; resolution of 40000 increments/360° per axis20. Pedestal Type Platform or concrete ring and central core21. Weight (w/o fndat) kg <22kg/m²22. Other Information Focal length adjustable from 100-600m23. Performance

24. Where were tests done? Plataforma Solar de Almeria (PSA)

25. Types of tests? Extensive performance test program26. Descriptions Analysis of beam quality, tracking accuracy, flux distribution, parasitic

losses27. Wind perform Norm. operation: ≤18km/h, red. operation: ≤60km/h, stow pos.: ≤145km/h28. Elev/Az perform Tracking quality: 0.6 mrad29. Other test results Ptot=126.5kW, φpeak=8.3kW/², 90%-radius = 2.59m, concentration factor = 8.3,

typical daily electric power consumption (8h tracking day ): 650 Wh/d

30. Heliost slope error (mr) Symmetrical circular beam quality σBQ=1.72 ± 0.1mrad31. Heliostat costs

32. Cost by component(facets, facets suppts.,elev. Drive, azimuthdrive, pedestal, control, etc.) in %

33. Heliostat costs (build)

34. i.e 1/yr

35. 100/yr

36. /yr

37. /yr

38. /yr

Page 26: Catalog of Solar Heliostats - fika.org

18

-- 18 --

39. Photograph of heliostat

40. Critical Cost Issues

Page 27: Catalog of Solar Heliostats - fika.org

SSPS TECHNICAL REPORTS/SOLARPACES TECHNICAL REPORTS

SSPS TR-1/79 - Martin Marietta Corp.; Heliostat Field and Data AcquisitionSubsystem for CRS, December 1979

SSPS TR-2/79 - McDonnell Douglas Corp.; CRS-Heliostat Field, Interface Control andData Acquisition System, December 1979

SSPS TR-1/80 - Sandia and DFVLR; Collector Qualification Tests for the IEA500 kWe Distributed Collector System, July 1980

SSPS TR-2/80 - Belgonucleaire; Analysis of Special Hydraulical Effects in the SHTSPiping System, November 1980

SSPS TR-3/80 - Interatom; Redesign of the CRS - Almeria Receiver Aperture andComparison of Interatom and MMC Reference Heliostat Field PerformanceCalculations, November 1980

SSPS TR-1/81 - Belgonucleaire; Tabernas Meteo Data Analysis Based on EvaluatedData Prepared by the SSPS-O.A., June 1981

SSPS TR-2/81 - Belgonucleaire; DCS Instrumentation Review, June 1981

SSPS TR-3/81 - Belgonucleaire; CRS Instrumentation Review, June 1981

SSPS TR-4/81 - A. F. Baker, Sandia; IEA Small Solar Power Systems (SSPS),Project Review (January 1981), July 1981

SSPS TR-5/81 - DFVLR; Device for the Measurement of Heat Flux Distributions(HFD) near the Receiver Aperture Plane of the Almeria CRS Solar Power Stations,November 1981

SSPS TR-6/81 - DFVLR; Determination of the Spectral Reflectivity and theBidirectional Reflectance Characteristics of Some White Surfaces, December 1981

SSPS TR-1/82 - SSPS Workshop on Functional and Performance Characteristics ofSolar Thermal Pilot Plants, April 1982Part 1: A. Kalt - Results of the DCS-Plant SessionPart 2: M. Becker - Results of the Tower Facilities Session

SSPS TR-2/82 - G. von Tobel, Ch. Schelders and M. Real, E.I.R.; Concentrated SolarFlux Measurements at the IEA-SSPS Solar Central Receiver Power Plant, Tabernas-Almeria, April 1982

SSPS TR-3/82 - G. Lemperle, DFVLR; Effect of Sunshape on Flux Distribution andIntercept Factor of the Solar Tower Power Plant at Almeria, September 1982

Page 28: Catalog of Solar Heliostats - fika.org

SSPS TR-1/83 - A. Kalt and J. G. Martin (editors);DCS-Midterm Workshop Proceedings (December 9+10, 1982), February 1983

SSPS TR-2/83 - G. Lensch, K. Brudi and P. Lippert, Fachhochschule Wedel; FH-PTLWedel Reflectometer, Type 02-1 No. 3, Final Report and Report on the Test Program,March 1983

SSPS TR-3/83 - AGIP Nucleare and FRANCO TOSI; The Advanced Sodium Receiver(ASR) - Topic Reports, May 1983

SSPS TR-4/83 - M. Becker, DFVLR (editor);SSPS-CRS Midterm Workshop, Tabernas, April 19+20, 1983, June 1983

SSPS TR-5/83 - W. Bucher, DFVLR (editor); Investigations and Findings Concerningthe Sodium Tank Leakages, July 1983

SSPS TR-6/83 - Th. van Steenberghe, ITET; First Year Average Performance of theSSPS-DCS Plant, July 1983

SSPS TR-7/83 - H. Jacobs, ITET; Thermal Losses of the Sodium Storage Vessels ofthe Central Receiver System, November 1983

SSPS TR-1/84 - C. S. Selvage (ITET); Executive Summary - IEA SSPS-CRSWorkshop (April 1983), March 1984

SSPS TR-2/84 - C. S. Selvage and J. G. Martin, (ITET); SSPS-DCS Proceedings ofthe International Workshop "The First Term", Tabernas, December 6-8, 1983, May 1984

SSPS TR-3/84 - J. P. Fabry, H. Richel, H. Lamotte, M. Vereb and P. Brusselaers;SESAM-DCS, A Computer Code for Solar System Modelling, March 1984 Part 1: Analysis Report Part 2: How to use

SSPS TR-4/84 - R. Carmona and J. G. Martin; The Control of Large Collector Arrays:The SSPS Experience, June 1984

SSPS TR-5/84 - P. Wattiez, J. G. Martin and M. Andersson; SSPS-DCS PlantPerformance "The Stair Step", June 1984

SSPS TR-6/84 - B. Wong Swanson, Univ. of Arizona; Availability and OperationFrequency of Solar Thermal Systems, December 1984

SSPS TR-7/84 - A. Brinner, DFVLR; IEA SSPS-CRS Calibration Report, Calibrationof Relevant Measuring Sensors, December 1984

Page 29: Catalog of Solar Heliostats - fika.org

SSPS TR-1/85 - M. Becker, DFVLR (editor); Proceedings of the IEA-SSPS ExpertsMeeting on High Temperature Technology and Application, Atlanta, USA (June 18-21,1985), June 1985

SSPS TR-2/85 - G. Lemperle, DFVLR; ASR-Thermodynamics, Results of a NumericalSimulation and Surface Temperature Measurements, October 1985

SSPS TR-1/86 - M. Sanchez, R. Carmona and E. Zarza; Behavior of DCS Fields in aWide Temperature Range. Present Status of Test Campaigns and Preliminary Results,May 1986

SSPS TR-2/86 - M. Geyer, DFVLR (editor); Proceedings of the First IEA-SSPS TaskIV Status Meeting on High Temperature Thermal Storage, Tabernas, July 3-4, 1986,Sept. 1986

SSPS TR-3/86 - R. Carmona, F. Rosa, H. Jacobs and M. Sanchez; Evaluation ofAdvanced Sodium Receiver Losses During Operation, December 1986

SSPS TR-1/87 - M. Sanchez, R. Carmona, E. Zarza; Behavior of DCS Fields in aWide Temperature Range, March 1987

SSPS TR-2/87 - M. Becker, M. Böhmer, DFVLR (editors); Proceedings of the ThirdMeeting of SSPS - TASK III - Working Group on "High Temperature Receiver -Technology", Albuquerque, N.M., USA, March 3+4, 1987, June 1987

SSPS TR-3/87 - Motor Columbus Consulting Engineers Inc., Baden, Switzerland;Lessons from the SSPS-CRS Sodium Fire Incident; June 1987

SSPS TR-4/87 - Proceedings of the 2nd IEA-SSPS TASK IV Status Meeting on "HighTemperature Thermal Storage", at SERI, August 24/25, 1987 (edited by M. Geyer), Nov.1987

SSPS TR-5/87 - M. Geyer, K. Werner, F. Dinter; Evaluation of the Dual MediumStorage Tank (DMST) at the IEA-SSPS Project in Almeria (Spain), November 1987

SSPS TR-1/88 - M. Becker, M. Böhmer, DLR (editors) Proceedings of the FourthMeeting of SSPS - TASK III - Working Group on "High Temperature Receiver -Technology", Denver, Co., USA, June 20, 1988, September 1988

SSPS TR-1/89 - F. Rosa, A. Valverde, J.M. Aranda, J. Aranda; Solar Furnace at theCESA-1 Tower: Construction and Applications to the HERMES Tests, March 1989

SSPS TR-2/89 - Report of the Wire Pack Volumetric Receiver Tests Performed at thePlataforma Solar de Almeria, Spain in 1987 and 1988 (SSPS TASK VII - FirstExperiment), July 1989

Page 30: Catalog of Solar Heliostats - fika.org

SSPS TR-3/89 - M. Becker, M. Böhmer (DLR) (editors); W. Meinecke, E. v. Unger(Interatom) (authors); Volumetric Receiver Evaluation, Preparatory Material andEvaluation Report of Experts Meeting, in Cologne, January 1989, December 1989

SSPS TR-1/90 - M. Becker, M. Böhmer (DLR) (editors); Volumetric Metal FoilReceiver CATREC, Development and Tests, December 1990

SSPS TR-2/90 - M. Becker, M. Böhmer, W. Meinecke (editors); Proceedings of theFifth Meeting of SSPS TASK III Working Group on "High Temperature ReceiverTechnology", Davos/CH, September 3rd-4th, 1990, December 1990

SSPS TR-3/90 - M. Böhmer, W. Meinecke (editors); Proceedings of the First Meetingof SSPS TASK VIII Working Group on "Concentrator/Generator Systems for Small SolarThermal Power Units", Davos/CH, September 3rd, 1990, December 1990

SSPS TR-1/91 - M. Becker, M. Böhmer, S. Cordes (editors); DLR/CeramTecVolumetric Ceramic Foil Receiver, June 1991

SSPS TR-2/91 - M. Böhmer, W. Meinecke (editors); Proceedings of the VolumetricReceiver Workshop, February 13 -15, 1991, Köln, March 1991

SSPS TR-3/91 - M. Böhmer, U. Langnickel (editors); Proceedings of the Workshop onMethane Reforming, June 11 -13, 1991, Köln, September 1991

SSPS TR-4/91 - M. Becker, M. Böhmer (editors); Proceedings of the Sixth Meeting ofSSPS Task III Working Group on "High Temperature Receiver Technology" and theThird Meeting of SSPS Task IV Working Group on "High Temperature ThermalStorage", August 16th, 1991, Denver, CO/USA, November 1991

SSPS TR-5/91 - M. Böhmer, M. Becker (editors); Proceedings of the Second Meetingof SSPS TASK VIII Working Group on "Concentrator/Generator Systems for Small SolarThermal Power Units", August 16th, 1991, Denver, CO/USA, November 1991

SSPS TR-6/91 - R. Tamme, M. Geyer (editors); IEA - SSPS Task IV Report on HighTemperature Thermal Storage, Activities 1988 - 1990, October 1991

SSPS TR-1/92 - W. Meinecke, M. Becker, M. Böhmer (editors); Proceedings of theFirst Meeting of SolarPACES - Task 3 - Working Group on "Solar Technology andApplications", Almería (E), September 23th, 1992

Page 31: Catalog of Solar Heliostats - fika.org

SolarPACES TR-III-1/94 - M. Sánchez (editor); Proceedings of the Task III, Sector 2(Supporting Tools and Test Facilities) "Heliostat Field Operation Workshop",September 7 - 9, 1993, Almería/Spain

SolarPACES TR-III-2/94 - A. Neumann; Flux Densities in the Focal Region of the PSASolar Furnace (Report of a Measurement Campaign Performed from March 7 - 25,1994)

SolarPACES TR-III-3/94 - M. Becker, M. Böhmer, R. Pitz-Paal (editors), Minutes of theThird Task-III-Meeting within IEA-SolarPACES on "Solar Technology and Applications",June 22 and 23 1994, Köln

SolarPACES TR-III-4/94 - S. Cordes, M. Böhmer, R. Monterreal Espinosa, Test andEvaluation of the Schlaich, Bergermann und Partner Heliostat Prototype Concentrator,Final Report

SolarPACES TR-III-5/94 - M. Becker, M, Böhmer, A. Neumann (editors), Proceedingsof the Fourth Task-III-Meeting within IEA-SolarPACES on "Solar Technology andApplications", Moscow, September 24th, 1994-

SolarPACES TR-III-1/95 - W. Meinecke, M. Becker, M. Böhmer (editors), Proceedingsof the Fifth Meeting within SolarPACES - Task III - Working Group on "Solar Technologyand Applications", PSI, Villigen, March 8th, 1995

SolarPACES TR-III-2/95 - A. Neumann (editor), Proceedings of the High Flux andTemperature Measurement Workshop, DLR, Cologne, March 2 - 3, 1995

SolarPACES TR-III-3/95 - M. Sánchez, E. Zarza, A Guide to Computer ProgramsDeveloped for Solar Thermal Technologies, Plataforma Solar de Almería, June 1995

SolarPACES TR-III-4/95 - G. García Navajas, Technical Development of a New Stand-Alone Heliostat Field Control, Plataforma Solar de Almería, June 1995

SolarPACES TR-III-5/95 - M. Sánchez (editor), The Solar Thermal Test Facilities Report(in preparation)

SolarPACES TR-III-6/95 - W. Meinecke, M. Böhmer, M. Becker (editors), Proceedingsof the Sixth Meeting within SolarPACES Task III - Working Group Meeting on "SolarTechnology and Applications", Golden (USA), September 28th, 1995 and Stuttgart (D),October 10th, 1995

SolarPACES TR-III-7/95 - J. Hansen (editor) The ANUTECH 400-m² Dish and Its InitialApplications (in preparation)

Page 32: Catalog of Solar Heliostats - fika.org

SolarPACES TR-III-1/96 - W. Meinecke, M. Böhmer, M. Becker (editors), Proceedingsof the Seventh Meeting within SolarPACES Task III - Working Group Meeting on "SolarTechnology and Applications", PSA, Almería (E), April 15th, 1996

SolarPACES TR-III-2/96 - R. Pitz-Paal, Evaluation of the Catrec II Receiver Test, May,1996

SolarPACES TR-III-3/96 - V. Scheglov et al, Investigation of the Action of ConcentratedSolar Radiation on Material Surface Properties Using Polarization Measurements,October 1996

SolarPACES TR-III-4/96 - R. Pitz-Paal, B. Hoffschmidt, M. Böhmer, M. Becker (editors)Proceedings of the Eighth Task III-Meeting within IEA SolarPACES on "SolarTechnology and Applications", Köln, October 15th, 1996

SolarPACES TR-III-5/96 - A. Neumann (editor), Proceedings of the 3rd High Flux andTemperature Measurement Workshop, DLR, Cologne, October 16th, 1996

SolarPACES TR-III-1/97 - W. Meinecke, M. Becker, M. Böhmer (editors), Proceedingsof the Ninth Task III-Meeting within IEA SolarPACES on "Solar Technology andApplications", CNRS-IMP, Odeillo, April 8th and 9th, 1997

SolarPACES TR-III-2/97 - A. Neumann, U. Groer (editors), Proceedings of the 4th HighFlux and Temperature Measurement Workshop, Odeillo, April 11, 1997

SolarPACES TR-III-3/97 - A. Roy (chief editor), W. Meinecke and M. Blanco Muriel (co-editors), Introductory Guidelines for Preparing Reports on Solar Thermal PowerSystems, DLR, Cologne, July 1997

SolarPACES TR-III-4/97 - M. Böhmer (editor) SolarPACES Task III, Solar Technologyand Applications, Project Plans, September 1997

SolarPACES TR-III-5/97 - Klaus Hennecke (editor), Advanced Hybrid Plant Concepts,DLR, Cologne, 1997

SolarPACES TR-III-6/97 - M. Becker, K. Hennecke (editors) - Proceedings of the 10th

Task III Meeting within IEA SolarPACES on "Solar Technology and Applications",Sandia, Albuquerque, September 15, 1997

SolarPACES TR-III-1/98 - M. Becker, R. Pitz-Paal (editors) - Proceedings of the 11th

Task III Meeting within IEA SolarPACES on "Solar Technology and Applications",Aguadulce, March 4th, 1998

SolarPACES TR-III-2/98 - M. Böhmer (editor) SolarPACES Task III, Solar Technologyand Applications, Project Plans, October,1998

Page 33: Catalog of Solar Heliostats - fika.org

SolarPACES TR-III-3/98 - R. Pitz-Paal (editor), E. E. Shpilrain, O. S. Popel S. E. Frid,Advanced Solarized Cycles - A Hybrid Solar/Fossil Thermal Power Plant SimulationUsing the TRNSYS Software', IVTAN, October, 1998

SolarPACES TR-III-4/98 - R. Pitz-Paal, S. Jones, A TRNSYS Model Library for SolarThermal Electric Components (STEC) - A Reference Manual, Release 1.0, 10/15/1998,DLR, October, 1998.

SolarPACES TR-III-1/99 – M. Becker, R. Pitz-Paal, Proceedings of the 12th Task IIIMeeting within IEA SolarPACES on “Solar Technology and Applications”, Cuernavaca,Mexico, October 29th, 1998

SolarPACES TR-III-2/99 – M. Becker, J. Kaluza, Proceedings of the 13th Task IIIMeeting within IEA SolarPACES on “Solar Technology and Applications”, KibbutzShefayim, Israel, July 3rd, 1999

SolarPACES TR-III-1/00 – T. Mancini, Catalog of Solar Heliostats, June 2000

SolarPACES TR-III-2/00 – K. Hennecke, Proceedings of the 14th Task III Meeting withinIEA SolarPACES on “Solar Technology and Applications”, Sydney University, Australia,March, 1999

Page 34: Catalog of Solar Heliostats - fika.org

Distribution List

AUS St. Kaneff, ANU, CanberraK. Lovegrove, ANU, CanberraW. Meike, NTU, DarwinW. Stein, Pacific Power Service, Sydney

BRA R. Brito, National Dept. of Energy Development, BrasiliaE.S. Camêlo Cavalcanti, CEPEL, Rio de Janeiro

CH H. W. Fricker, RickenbachP. Haueter, PSI, VilligenP. Kesselring, UrdorfA. Steinfeld, PSI, Villigen

D M. Abele, DLR, StuttgartH. Bastek, KFA-BEO, JülichM. Becker, DLR, KölnR. Buck, DLR, StuttgartF.-D. Doenitz, Schott-Rohrglas, MitterteichG. Eisenbeiß, DLR, KölnTh. Fend, DLR, KölnK.-H. Funken, DLR, KölnM. Geyer, DLR, AlmeríaW. Grasse, SolarPACES, GifhornK. Hennecke, DLR, KölnP. Heller, DLR, AlmeríaB. Hoffschmidt, DLR, KölnJ. Kaluza, DLR, KölnR. Kistner, DLR, AlmeríaH. Müller-Steinhagen, DLR, StuttgartP. Nava, Flabeg Solar, KölnA. Neumann, DLR, KölnR. Pitz-Paal, DLR, KölnJ. Rheinländer, ZSW, StuttgartM. Schmitz-Goeb, Steinmüller, GummersbachR. Tamme, DLR, Stuttgart

E M. Blanco Muriel, PSA, AlmeríaM.-L. Delgado, CIEMAT-IER, MadridR. Monterreal Espinosa, PSA, AlmeriaR. Osuna, Inabensa, SevillaM. Romero Álvarez, CIEMAT-IER, MadridM. Sánchez González, CIEMAT-IER, MadridA. Valverde Cantón, PSA, AlmeríaE. Zarza Moya, PSA, Almería(PSA Reference Room (3 x) PSA, Almería (A. Sarre)

ET M. Abdel Rahman, NREA, CairoA. El-Zalabany, NREA, CairoA M. Fayek, NREA, CairoS. Zannoun, NREA, Cairo

EU M. Sánchez Jiménez, EU, BrusselsPh. Schild, EU, BrusselsL. Stathakis, EU, Brussels

Page 35: Catalog of Solar Heliostats - fika.org

- 2 -

F A. Ferrière, IMP-CNRS, OdeilloG. Flamant, IMP-CNRS, OdeilloG. Olalde, IMP-CNRS, OdeilloO. Suzanne, IMP-CNRS, Odeillo

IEA H.-J. Neef, IEA, ParisJ. Tilley, IEA, Paris

IL M. Epstein, WIS, RehovotD. Faiman, Ben-Gurion Univ., Beer-ShevaJ. Karni, WIS, RehovotA. Kribus, WIS, RehovotD. Liebermann, WIS, RehovotA. Roy, Ben-Gurion Univ., Beer-ShevaD. Sagie, ROTEM, Beer-ShevaA. Yogev WIS, Rehovot

MEX R. Almanza, UNAM, MexicoC. Estrada, Centro de Investigacion en Energia,

Temixco, MorelosM. Huacuz Villamar, Instituto de Investicaciones Electricas,

Cuernavaca, MorelesC. Ramos, Instituto de Investicaciones Electricas,

Cuernavaca, Moreles

RUS V.I. Iampolski, SPA Astrophysica, MoscowY. Loktionov, INPW, ObninskS. Malyshenko, IVTAN, MoscowO. Popel, IVTAN, MoscowE. Shpilrain, IVTAN, MoscowE. Tverianovich, VIESH, Moscow

UK A. Gaye, Solargen, CambridgeR. Judd, British Gas Technology, LeicestershireN. Ranzetta, British Gas Technology, Leicestershire

USA G. Burch, DOE, WashingtonR. Davenport, SAIC, San DiegoS.D. Frier, KJC, BoronS. Jones, Sandia, AlbuquerqueG. Jorgensen, NREL, DenverD. Kearney, Kearney and Associates, Del MarG. Kolb, Sandia, AlbuquerqueA. Lewandowski, NREL, DenverT. Mancini, Sandia, AlbuquerqueH. Price, NREL, DenverC. Tyner, Sandia, AlbuquerqueT.A. Williams, NREL, Denver

ZA L. van Heerden, ESKOM, South Africa