carcinogen‐induced tumors in sfn‐transgenic mice harbor a...

11
Cancer Science. 2019;00:1–11. | 1 wileyonlinelibrary.com/journal/cas Received: 18 April 2019 | Revised: 16 May 2019 | Accepted: 28 May 2019 DOI: 10.1111/cas.14081 ORIGINAL ARTICLE Carcinogen‐induced tumors in SFN‐transgenic mice harbor a characteristic mutation spectrum of human lung adenocarcinoma Yunjung Kim 1 | Aya Shiba‐Ishii 1 | Karina Ramirez 2 | Masafumi Muratani 3 | Noriaki Sakamoto 1 | Tatsuo Iijima 4 | Masayuki Noguchi 1 This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. © 2019 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association. 1 Department of Pathology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan 2 Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan 3 Department of Genome Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan 4 Department of Pathology, Ibaraki Prefectural Central Hospital, Kasama, Japan Correspondence Aya Shiba-Ishii, Department of Pathology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan. Email: [email protected] Abstract The landscape of genetic alterations in disease models such as transgenic mice or mice with carcinogen-induced tumors has provided a huge amount of information that has shed light on the process of tumorigenesis in human non-small-cell lung can- cer (NSCLC). We have previously identified stratifin (SFN) as a potent oncogene, and generated SFN-transgenic (Tg-SPC-SFN +/− ) mice, which express human SFN (hSFN) only in the lung. Here, we have found that carcinogen nicotine-derived nitrosami- noketone (NNK)-induced tumors developing in Tg-SPC-SFN +/− mice show a similar histology to human lung adenocarcinoma and exhibit high hSFN expression. In order to compare the genetic characteristics of Tg-SPC-SFN +/− tumors and human lung ad- enocarcinoma, the former were subjected to whole-exome sequencing. Interestingly, Tg-SPC-SFN +/− tumors showed the distinct distribution of exonic mutations and high number of mutated genes and transversion. Moreover, Tg-SPC-SFN +/− tumors showed 73 genes that were commonly detected in more than 2 tumors, mutations of which were also found in human lung adenocarcinoma. The expression levels of some of these genes were significantly associated with the clinical outcome of lung adenocarcinoma patients. Additionally, mutated genes in Tg-SPC-SFN +/− tumors were closely associated with key canonical pathways such as PI3K/AKT signaling and apoptosis signaling. These results suggest that SFN overexpression is a universal abnormality in human lung adenocarcinogenesis and Tg-SPC-SFN +/− tumors recapit- ulate key features of major human lung adenocarcinoma. Therefore, Tg-SPC-SFN +/− mice provide a useful model for clarifying the molecular mechanism underlying lung adenocarcinogenesis. KEYWORDS lung adenocarcinoma, mutational signature, nicotine-derived nitrosaminoketone, stratifin, transgenic mice

Upload: others

Post on 26-Aug-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Carcinogen‐induced tumors in SFN‐transgenic mice harbor a ...diagnostic-pathology-tsukuba.jp/content/files/Kim... · immune checkpoint inhibitors.16 Transgenic mice or mice with

Cancer Science. 2019;00:1–11.  | 1wileyonlinelibrary.com/journal/cas

Received:18April2019  |  Revised:16May2019  |  Accepted:28May2019DOI: 10.1111/cas.14081

O R I G I N A L A R T I C L E

Carcinogen‐induced tumors in SFN‐transgenic mice harbor a characteristic mutation spectrum of human lung adenocarcinoma

Yunjung Kim1 | Aya Shiba‐Ishii1  | Karina Ramirez2 | Masafumi Muratani3 | Noriaki Sakamoto1 | Tatsuo Iijima4 | Masayuki Noguchi1

ThisisanopenaccessarticleunderthetermsoftheCreativeCommonsAttribution-NonCommercialLicense,whichpermitsuse,distributionandreproductioninanymedium,providedtheoriginalworkisproperlycitedandisnotusedforcommercialpurposes.©2019TheAuthors.Cancer SciencepublishedbyJohnWiley&SonsAustralia,LtdonbehalfofJapaneseCancerAssociation.

1DepartmentofPathology,FacultyofMedicine,UniversityofTsukuba,Tsukuba,Japan2Ph.D.PrograminHumanBiology,SchoolofIntegrativeandGlobalMajors,UniversityofTsukuba,Tsukuba,Japan3DepartmentofGenomeBiology,FacultyofMedicine,UniversityofTsukuba,Tsukuba,Japan4DepartmentofPathology,IbarakiPrefecturalCentralHospital,Kasama,Japan

CorrespondenceAyaShiba-Ishii,DepartmentofPathology,FacultyofMedicine,UniversityofTsukuba,1-1-1Tennodai,Tsukuba,Ibaraki305-8575,Japan.Email:[email protected]

AbstractThe landscapeofgeneticalterations indiseasemodels suchas transgenicmiceormicewithcarcinogen-induced tumorshasprovidedahugeamountof informationthathasshedlightontheprocessoftumorigenesisinhumannon-small-celllungcan-cer(NSCLC).Wehavepreviouslyidentifiedstratifin(SFN)asapotentoncogene,andgeneratedSFN-transgenic (Tg-SPC-SFN+/−)mice,whichexpresshumanSFN(hSFN)only in the lung.Here,wehave found thatcarcinogennicotine-derivednitrosami-noketone (NNK)-induced tumorsdeveloping inTg-SPC-SFN+/− mice show a similar histologytohumanlungadenocarcinomaandexhibithighhSFNexpression.InordertocomparethegeneticcharacteristicsofTg-SPC-SFN+/−tumorsandhumanlungad-enocarcinoma,theformerweresubjectedtowhole-exomesequencing.Interestingly,Tg-SPC-SFN+/− tumors showed the distinct distribution of exonic mutations andhighnumberofmutatedgenesandtransversion.Moreover,Tg-SPC-SFN+/−tumorsshowed73genesthatwerecommonlydetectedinmorethan2tumors,mutationsofwhichwerealsofoundinhumanlungadenocarcinoma.Theexpressionlevelsofsomeofthesegenesweresignificantlyassociatedwiththeclinicaloutcomeoflungadenocarcinoma patients. Additionally, mutated genes in Tg-SPC-SFN+/− tumorswere closely associatedwith key canonical pathways such as PI3K/AKT signalingandapoptosissignaling.TheseresultssuggestthatSFNoverexpressionisauniversalabnormalityinhumanlungadenocarcinogenesisandTg-SPC-SFN+/−tumorsrecapit-ulatekeyfeaturesofmajorhumanlungadenocarcinoma.Therefore,Tg-SPC-SFN+/− miceprovideausefulmodelforclarifyingthemolecularmechanismunderlyinglungadenocarcinogenesis.

K E Y W O R D S

lungadenocarcinoma,mutationalsignature,nicotine-derivednitrosaminoketone,stratifin,transgenicmice

Page 2: Carcinogen‐induced tumors in SFN‐transgenic mice harbor a ...diagnostic-pathology-tsukuba.jp/content/files/Kim... · immune checkpoint inhibitors.16 Transgenic mice or mice with

2  |     KIM et al.

1  | INTRODUC TION

Lungcanceristhemostfrequentcauseofcancer-relatedmortalityworldwide1,2duetoitsunsatisfactorycurerateandpoorprogno-sis,andisdividedinto2majorhistologicalsubtypes:small-celllungcancer and non-small-cell lung cancer (NSCLC).3 Lung adenocar-cinoma, the predominant type ofNSCLC, is considered to showamultistepprocessofcarcinogenesis.Atypicaladenomatoushy-perplasiaprogressestoadenocarcinomainsitu,andsubsequentlyto invasive adenocarcinoma with specific molecular alterationsthat are responsible for both the initiation and maintenance oftumorigenesis.4

Previously,we examined the gene expression profiles of earlystage lung adenocarcinomas5 and identified stratifin (SFN, 14-3-3sigma),whichshowedsignificantlyhigherexpressioninsmallbutin-vasivelungadenocarcinoma(tumorsizelessthan3cmindiameter)thaninadenocarcinomainsituornormallung.5,6OverexpressionofSFN isdue toDNAhypomethylation in itspromoter region7,8 and is associatedwithpoorpatientoutcome in lungadenocarcinoma.9 Wehave found that suppressionofSFN reduces cell proliferationinvitro9,10andtumorformationormetastasis invivo,11suggestingthatSFNfacilitatestumorprogression.Consistently,SFN-transgenicmice(Tg-SPC-SFN+/−),whichexpresshumanSFN(hSFN)onlyinthelungundercontroloftheSPCpromoter,alung-specificenhancer,de-veloplungtumorsspontaneously,11implyingthatSFNhasoncogenicpotential in thecontextof lungadenocarcinogenesis.Additionally,overexpressionofSFNdysregulatessignaltransductionassociatedwithcellularproliferation,thecellcycle,apoptosis,andproteintraf-fickingbyinteractingwithphosphorylatedserineorthreonineinthebindingpartnerproteins.9,10,12

Genetic imbalancesofDNAormRNAsequences inthecancergenometriggervariousgeneticalterationsduringtheprocessoftu-morigenesis.Unlikethesituationinearlystagelungadenocarcinoma,many studies have revealed comprehensive somatic mutations inadvanced lung adenocarcinomas using whole-exome sequencing(WES),13whichhashighaccuracy, high sensitivity, and cost effec-tivenessforidentifyingdrivermutations14,15andcanpredicttheef-ficacyof anticancer agents such asmolecular targetingdrugs andimmunecheckpoint inhibitors.16Transgenicmiceormicewithcar-cinogen-inducedtumorscanbeusedtoassesspotentialmolecularalterationsrelatedtohumantumorigenesis.Transgenicmousemod-els of oncogenetic activation show frequent aneuploidy and copynumber alteration, but few somatic single-nucleotide variants.17 However,carcinogenssuchasmethyl-nitrosoureaandnicotine-de-rivednitrosaminoketone (NNK) included in tobacco smoke initiatetumorigenesisthroughinductionofnumerousdeleteriousmutationsatthelociofoncogenessuchasKRAS17,18ortumorsuppressorgenessuch as TP53.19,20Inthisregard,wehavebeenabletorecapitulatetheearlystageofhumanlungadenocarcinomausingTg-SPC-SFN+/− mice treatedwithNNKto trigger tumorigenesis.ThishasclarifiedthegeneticprofileoflungtumorsdevelopinginTg-SPC-SFN+/−mice,thushelpingtoidentifythegenealterationscontributingtohumanlungadenocarcinogenesis.

In the present study, we investigated the genetic landscapeofNNK-induced lungadenocarcinomas inaTg-SPC-SFN+/−back-ground. Paired samples of tumor tissue and normal lung weresubjectedtoWES,andmutatedgenesassociatedwithSFNover-expression in lung adenocarcinoma were examined. Here, weemphasizetheimportanceofSFNoverexpressioninlungadeno-carcinogenesisandshowthatTg-SPC-SFN+/− mice provide a valu-ablemodel for clarifyingearlygeneticalterations inhuman lungadenocarcinoma.

2  | MATERIAL S AND METHODS

2.1 | SFN transgenic mouse model and pathological analysis

WegeneratedtheTg-SPC-SFN+/−strainfromICRmicethathadbeenpurchasedfrom(CharlesRiverLaboratories,Tsukuba,Japan),asde-scribed previously.11Wild-type(WT)andTg-SPC-SFN+/− mice were givenasinglei.p.doseof4mgNNK(TorontoResearchChemicals,NorthYork,ON,Canada) dissolved in saline to induce pulmonarytumors.Twentyweeks afterNNK treatment, all of themicewerekilled, and the induced tumorswere resected from the lungs.Theresected tumorswerepartially fixedwith formalin forhistologicalanalysis including hematoxylin and eosin (H&E) staining and im-munohistochemistry for hSFN, as describedpreviously,11 and also frozeninliquidnitrogenforWESandstoredat−80°CuntilDNAex-traction.AllanimalexperimentswereapprovedbytheInstitutionalAnimal Experiment Committee of the University of Tsukuba(Tsukuba,Japan).

2.2 | Library preparation and WES

TheWES librarieswerepreparedwith theNEBNextDNALibraryPrepMasterMixSet(NewEnglandBiolabs,Ipswich,MA,USA)andaSeqCapEZDeveloperLibrarykit(NimbleGen;Roche,Pleasanton,CA,USA)from0.5μgofgenomicDNA.ThequalityoftheDNAlibrarywasevaluatedusingAgilent2100Bioanalyzer(AgilentTechnologies,SantaClara,CA,USA).SequencingofthemultiplexedlibraryusingaNextSeq500sequencer (Illumina,SanDiego,CA,USA)wascar-riedoutandthedatawereimportedtoCLCGenomicsWorkbenchsoftware(version10.1.1;Qiagen,Hilden,Germany).Sequencesweremapped to the GRCm38/mm10 mouse reference and annotatedusingEnsemble,Hanava,orEnsembleandHanavamergedtranscriptdatabase.(http://www.ensembl.org/index.html)

Possible single-nucleotidepolymorphismsor possible ICRdriftmutationswere excluded from thedata as follows: (a) singlebasesubstitutions common to each normal lung samplewere removedfromdatasetsoftumorsamples,(b)singlebasesubstitutionsfoundinnormallungsamplesfromWTorTg-SPC-SFN+/−micetreatedwithsalinewerealsoremovedfromeachdataset.Inaddition,weunder-tookfilteringbasedonthefollowingcriteria:singlenucleotidevari-anttypewithnonsynonymousmutation;coverageofreads10%orhigher;frequency10%orhigher;variantatleast5basesawayfrom

Page 3: Carcinogen‐induced tumors in SFN‐transgenic mice harbor a ...diagnostic-pathology-tsukuba.jp/content/files/Kim... · immune checkpoint inhibitors.16 Transgenic mice or mice with

     |  3KIM et al.

theendof theread;andanaveragevariantqualityscoreof20ormore.

2.3 | Bioinformatics analysis

Mutationswerefirstcategorized into6typesaccordingtothese-quenceonthecodingstrand(C:G>A:T,C:G>G:C,C:G>T:A,T:A>A:T,T:A>C:G, or T:A>G:C). Here, we used pyrimidines to denote eachgroupsuchasC>A,C>G,C>T,T>A,T>C,andT>G,andcountedthenumber ofmutations detected in tumor samples fromWT or Tg-SPC-SFN+/−mice.Theywere then further subdivided into16pos-siblepairsof5′and3′nucleotideneighbors.ThetrinucleotidebaseswereverifiedusingtheUniversityofCaliforniaSantaCruzCancerGenomicsBrowser (https://genome.ucsc.edu/).Wecomparedmu-tationalsignaturesamongWT,Tg-SPC-SFN+/−,andalsohumancan-cers,whichweobtainedfromtheCatalogueofSomaticMutationsinCancer (COSMIC)database (https://cancer.sanger.ac.uk/cosmic).

Tocomparemutatedgenelistsamong4tumorsthathaddevelopedinTg-SPC-SFN+/−mice,4-wayVenndiagramswereproducedusingtheonlineVenndiagramplottingtool(http://bioinfogp.cnb.csic.es/tools/venny/),Venny2.1.0.ToidentifysignificantlymutatedgenesandcanonicalpathwaysinducedbyoverexpressionofhSFN,weusedIngenuity Pathway Analysis (IPA; Qiagen) or Kyoto Encyclopediaof Genes andGenomes (KEGG) pathway analysis throughDAVIDBioinformaticsResources6.8.(https://david.ncifcrf.gov/)

2.4 | Expression analysis of mutated genes in human lung adenocarcinoma

Mutation profiles, gene expression profiles, and clinical data for482casesoflungadenocarcinomafromTheCancerGenomeAtlas(TCGA) database (https://portal.gdc.cancer.gov/)were used to ex-ploremutationfrequencyand itscorrelationwithpatientsurvival.Thepercentageoflungadenocarcinomapatientshavingamutation

F I G U R E 1  HistologicalanalysisoftumorsthatdevelopedinTg-SPC-SFN+/− mice.A,Schematicoverviewforexperimentaldesignofnicotine-derivednitrosaminoketone(NNK)-inducedlungtumorigenesisinTg-SPC-SFN+/− and WT mice.At8wkafterbirth,allmiceweregivensalineorNNKbyi.p.injection.Themicewereobservedfor20wkafteradministrationwithNNKorsalineandkilledat28wkofagetocollectlungtumors.B,AlltumorsthatdevelopedinTg-SPC-SFN+/− or WT mice were subjectedtoH&Estainingtoexaminetheirhistology.Tg-SPC-SFN+/−tumorsweremoredifferentiatedadenomathanWTtumor,whichresemblesthehistologyofhumanlungadenocarcinoma.C,H&EandhumanSFN(hSFN)immunohistochemistry(IHC)imagesofrepresentativepairedsamplesofnormallungandtumortissueinTg-SPC-SFN+/− andWTmice.hSFNwashighlyexpressedintumors,typeIIalveolarepithelialcells,andbasalcellsinthebronchialepitheliumofthenormallunginTg-SPC-SFN+/− mice

Page 4: Carcinogen‐induced tumors in SFN‐transgenic mice harbor a ...diagnostic-pathology-tsukuba.jp/content/files/Kim... · immune checkpoint inhibitors.16 Transgenic mice or mice with

4  |     KIM et al.

ineachgenewascalculatedas:numberofcaseswhereeachgeneismutated/totalnumberofcasestestedforsimplesomaticmutations.SurvivalplotsforeachgenewereexaminedusingtheKaplan-MeiermethodthroughOncoLnc (http://www.oncolnc.org),awebtoolforinvestigatingtheassociationbetweenpatientoutcomeandmRNAexpressiondataforlungadenocarcinomaobtainedfromTCGA.21

2.5 | Statistical analysis

For the significant canonical pathways associated with mutatedgenes in WT or Tg-SPC-SFN+/− tumors, we used the Benjamini-HochbergmethodandadjustedtheFisherexactPvaluethresholdto<.05.Additionally,weusedthelog-rankPvalueforsignificanceofthesurvivalratebetweenlowandhighgeneexpression.

3  | RESULTS

3.1 | Histological examination of tumors attributed to NNK treatment in Tg‐SPC‐SFN+/− mice

ToinvestigatetheuniquefunctionofhSFNontumorigenesisspe-cificallyinthelung,wegeneratedtransgenicmice(Tg-SPC-SFN+/− mice)withoverexpressionofhSFNratherthanmouseSFN(mSFN).AshSFNandmSFNshow98%homologyinaminoacidsequences(FigureS1A),wesupposedthatoverexpressionofhSFNmightshownotoxicityagainstmice,andneededtodistinguishhSFNandmSFNtounderstandwhethertheresultingtumorigenesisisduetohSFNoverexpressionorendogenousmSFNexpression.11Toexaminetu-morigenicactivityofhSFN,wei.p.injectedNNKorsalineasacon-trol intoTg-SPC-SFN+/− andWTmice (Figure1A). Twentyweeksafterthetreatment,wekilledallmiceandcollectedthelungsanddeveloping tumors,whichwere divided into 2 parts: histologicalexaminationsandWES.First,weundertookH&Estainingtoexam-ine thehistologyof tumors thatdeveloped inTg-SPC-SFN+/− and WTmice. Although 10 tumors developed in Tg-SPC-SFN+/− mice

and we selected 4 tumors that were sufficient size to examineWES, most WT tumors were small and detected in the centralareaofthelungwhenweundertookhistologicalexaminations.WeobtainedfreshmaterialfromonlyoneWTtumortobeappliedtoWES. Interestingly,tumorsthatdevelopedinTg-SPC-SFN+/− mice showed papillary or lepidic differentiation, which are major his-tologic subtypes of human lung adenocarcinoma,whereas thoseinWTmice showed the tendency to have poorer differentiatedhistology (Figure 1B,C).Moreover, by immunohistochemistry,weconfirmedthattumorsdeveloping inTg-SPC-SFN+/− mice showed positivity for hSFN (Figure 1C). These results indicated that thetransgenicmicehadbeengeneratedsuccessfullywithappropriategenerecombination.AsoverexpressionofSFNisacommoneventfacilitating tumor progression inmost human invasive adenocar-cinomas,5,9we speculated that genetic alterations in tumors thatdevelopedinTg-SPC-SFN+/−micemightmimicthoseinhumanlungadenocarcinoma.

3.2 | Whole‐exome sequencing reveals exonic mutational signatures in Tg‐SPC‐SFN+/− tumors

We undertook WES using paired samples of normal lung andtumor tissuedescribed inTable1 to identifygeneticalterationsduetooverexpressionofhSFN(TablesS1andS2).Afterexclud-ing single-nucleotide polymorphisms, the mean number of so-maticmutationsin4samplesofTg-SPC-SFN+/−tumorswas373.8(FigureS1B).Amongnonsynonymoussomaticmutations,7.3%ofthem in averagewerenonsensemutations inTg-SPC-SFN+/− tu-mors, which included several tumor suppressor genes, such asBanp, Smarcc1, Epha3, Ccdc154,andIng5(FigureS1C).Therefore,weexpectthatthesetumorsuppressorgenesharboringnonsensemutationsmight produce incomplete forms and possibly inducetumorprogression.

Moreover, according to previous reports, frequent somaticmutation of T>C or T>G in mice is caused by spontaneous point

Sex Treatment Strain Tissue type Genotype

WT-CON Male Saline ICR Normal Wildtype

Tg-CON Male Saline ICR Normal Tg-SPC-SFN+/−

WT Male NNK ICR Normal Tg-SPC-SFN+/−

Adenoma

Tg1 Male NNK ICR Normal Tg-SPC-SFN+/−

Adenoma

Tg2 Male NNK ICR Normal Tg-SPC-SFN+/−

Adenoma

Tg3 Male NNK ICR Normal Tg-SPC-SFN+/−

Adenoma

Tg4 Female NNK ICR Normal Tg-SPC-SFN+/−

Adenoma

Abbreviations:CON,control;NNK,nicotine-derivednitrosaminoketone;Tg,SFN-transgenicmouse;WT,wild-typemouse

TA B L E 1  Detailsofsamplesusedforwhole-exomesequencinganalysis

Page 5: Carcinogen‐induced tumors in SFN‐transgenic mice harbor a ...diagnostic-pathology-tsukuba.jp/content/files/Kim... · immune checkpoint inhibitors.16 Transgenic mice or mice with

     |  5KIM et al.

mutations,unlikethesituationinhumans.22Consistently,asshowninFigure2A,WTtumorshowedahighfrequencyofT>CandT>G.However,Tg-SPC-SFN+/− tumors showedahigh frequencyofC>A(Figure2A),afeaturethatisknowntobeassociatedwithsmokinginhumans,23suggestingthatTg-SPC-SFN+/−tumorsmighthaveacloseresemblancetohumantumors.

Wealsoexamined themutational signaturesofTg-SPC-SFN+/− andWTtumor.OnthebasisoftheCOSMICdatabase,thesignaturesofTg-SPC-SFN+/−tumorsweresimilartotheCOSMICsignatures4and 24, which show a high frequency of C>A.24 Consistent withourresults,TCGAalsoindicatedthatsignatures4and24werefre-quentlyobservedinhumanlungadenocarcinomaandshowedahighfrequencyofC>AandC>Tsubstitutions(FigureS2A,B).TheTg-SPC-SFN+/−tumorstypicallyhadahighfrequencyoftrinucleotidevari-antssuchasACA,ACC,GCA,andGCCinC>AtypeandGCCinC>Ttype(Figure2B).However,GTCshowedthehighestpercentageofmutationsinT>G,bothinWTtumorandTg-SPC-SFN+/−tumors,in-dicatingthatGTCmightbeassociatedwithNNKtreatmentorspon-taneousmutationsinmice(Figure2B).

3.3 | Exonic mutational profiles of Tg‐SPC‐SFN+/− tumors

Next,weanalyzedassociationsbetweenthenumberofmutationsand SFNgeneexpressioninlungadenocarcinomapatientsinTCGAandlungcancercelllinesintheCOSMICdatabase.Thepatientswithhigh mutation number showed significantly higher expression ofSFN thanthosewith lowmutationnumber (FigureS3A).Similartolungadenocarcinomapatients, lungcancercell lineswithhighmu-tationnumber,suchasHCC827,A549,H1975,Calu-3,H1755,andH1573,hadsignificantlyhigherexpressionofSFN thanthosewithlowmutationnumber,suchasCOR-L105andCalu-6 (FigureS3B).Interestingly,thecell lineswithhighnumberofmutations,suchasA549,H1755,andH1573showedhighfrequencyofC>AandC>Tsubstitutions, a similar mutational signature of Tg-SPC-SFN+/− tu-mors(Figures2BandS3C).

Basedontheseresults,wehypothesizedthatTg-SPC-SFN+/−tu-morsmightbeassociatedwithhighmutationburden,whichisacrit-ical indicatorof theefficacyof immune checkpoint inhibitors.16,25

F I G U R E 2  DistributionofnucleotidealterationsinTg-SPC-SFN+/−tumorsandcomparisonwiththehumancancermutationalsignatureintheCOSMICdatabase.A,Sixclassesofsomaticsinglenucleotidemutationsareindicatedonthehorizontalaxisandthepercentagesofeachmutationtypearedisplayedontheverticalaxis.Thenumbersbelowthechartindicatethemutationnumbersdetectedineachtumor.B,Eachsignatureisdisplayedaccordingtothe96-substitutionclassificationdefinedbythesubstitutionclassandsequencecontextimmediately5′and3′tothemutatedbase.ThefrequencyofflankingbasepairsinTg-SPC-SFN+/−tumorsissimilartoCOSMICsignatures4and24,whicharecloselyassociatedwithsmokingandaflatoxininhumancancer,respectively

Page 6: Carcinogen‐induced tumors in SFN‐transgenic mice harbor a ...diagnostic-pathology-tsukuba.jp/content/files/Kim... · immune checkpoint inhibitors.16 Transgenic mice or mice with

6  |     KIM et al.

Similartothemutationburdeninhumanlungcancer,whichrangesfrom0.1to100nonsynonymousmutationsperMb,26bothTg-SPC-SFN+/−andWTtumorshowedapproximately7.8perMb(Figure3A).However, thenumberofmutatedgeneswashigher in all Tg-SPC-SFN+/−tumorsthanWTtumor,indicatingthattheformerhadmuta-tionsinvariousgeneswhereasWTtumortendedtohavemultipointmutationsinparticulargenes(Figure3B).Additionally,thetransitionto transversion (Ts/Tv) ratio isknowntobewidelyvariableacrosstumor types depending on the mutagens involved or the mech-anisms responsible forDNA repair.26As themeanTs/Tv ratio forTg-SPC-SFN+/−tumorswas0.34,beingsimilartothatforhumanlungadenocarcinoma(LUADTs/Tv=0.44),Tg-SPC-SFN+/−tumorsmighthavecharacteristicscomparabletothoseofhumanlungadenocarci-noma(Figures3CandS2C).

Next,weanalyzedthemutationfrequencyineachchromosome.TheTg-SPC-SFN+/−andWTtumorsshowedthehighestfrequencyofmutatedgenesinchromosome7,includingthelociofBlm, Herc2, Nlrp2,andSmg1inTg-SPC-SFN+/−tumors(Figure3DandTableS3).

3.4 | Frequently mutated genes in Tg‐SPC‐SFN+/− tumors

To identify commonmutated genes among 4 Tg-SPC-SFN+/− tu-mors,whichwerepredictedtobeassociatedwithtumorigenesis,wedrewVenndiagramsusingsingle-nucleotidevariantsdetectedbyWES(Figure4A).Wedetected73genesthatwerecommonly

detectedin2ormoresamplesofTg-SPC-SFN+/−tumorsbutnotinWTtumor(Figure4BandTableS4).Consistentwiththepreviousstudy,whichexaminedsomaticmutationsinNSCLC,18,27wefoundthat Blm, Brd4, Dnmt3b, Herc2, Nlrp2, and Smg1 were common mutated genes in 3 samples of Tg-SPC-SFN+/− tumors, whereas67othergenes, includingCdc20, Cdh23, Cul9, Fgf7, Itga6, Kmt2c, Mki67, Tbc1d9,andTsc2,werepresentintwosamplesofTg-SPC-SFN+/− tumors (Figure 4B).Notably, 8 genes contained identicalmutationsitesamongTg-SPC-SFN+/− tumors, includingG235E inBlm, I108V and R124C in Smg1, I92V inCtbs, S283G inCyb5r2,S153A in Fgf7, D665E/H in Kmt2c, H366R inOvch2, and L575Iin Tsc2 (Table S2). However, according to TCGA, thesemutatedgenesdonothavemutationalhotspotsinhumancancers.Similartothepreviousstudy,inwhichlungtumorswereinducedinmicebyexposuretocarcinogenssuchasurethane,17wedetectedKras mutation(Q61R)onlyinWTtumor,indicatingthatKrasmutationcouldworkasadrivermutationcontributingtoWTlungtumori-genesis(TableS2).

Moreover, Tg-SPC-SFN+/− tumors showed accumulation ofpassenger gene and tumor suppressor gene mutations such asBlm, Dnmt3b, Cyb5r2, Dapk1, Foxp3, Kmt2c,andTsc2 rather thanaspecificdriveroncogenemutation,suchasKrasmutationinWTtumor (Figure 4B and Table S2). From these results, we expectthatoverexpressionofSFNwouldbeenoughtoinducetumorini-tiationandprogressionwithoutanydrivermutations,suchasKras mutation.

F I G U R E 3  DistinctmutationalspectrumpatternsinTg-SPC-SFN+/− tumors.A,Exonicmutationfrequencieswerecalculatedasthenumberofmutationsdetectedpermillionbasessequenced,whichwereestimatedfromtheaveragecoverageandbasecoveragedatafromwhole-exomesequencing.B,MutatedgeneswerecountedineachTg-SPC-SFN+/−andWTtumor.C,Ratiosoftransitions(Ts;C>T,T>C)andtransversions(Tv;C>A,C>G,T>A,T>G)werecalculatedforTg-SPC-SFN+/− and WTtumors.D,MutationfrequencywascountedaccordingtothegenechromosomelocationineachTg-SPC-SFN+/−andWTtumor.Valuesindicatethepercentagenumberofmutatedgenesamongthetotalnumberofmutatedgenesdetectedintheeachchromosome

Page 7: Carcinogen‐induced tumors in SFN‐transgenic mice harbor a ...diagnostic-pathology-tsukuba.jp/content/files/Kim... · immune checkpoint inhibitors.16 Transgenic mice or mice with

     |  7KIM et al.

3.5 | Impact of mutated genes in mice and human lung adenocarcinoma

ToclarifydistinctsignalingpathwaysrelatedtotumorigenesisinTg-SPC-SFN+/−andWTmice,wecarriedoutpathwayanalysesforexonicmutationsusingtheKEGGpathwayandIPAsoftware.First,wese-lectedparticularsignalingpathwaysrelatedtocellgrowthorcancer,suchasPI3K/AKTsignaling,ERK/MAPKsignaling,STAT3signaling,theDNAdamageresponseandrepairsystem,cellcyclesignaling,p53signaling,PTENsignaling,and14-3-3-mediatedsignaling,andcountedthenumberofmutatedgenescategorizedintothosepathwaysineachtumorusingtheKEGGpathwayandIPAsoftware.ThisrevealedthatallTg-SPC-SFN+/−tumorshadahighpercentageofmutatedgenesre-latedtoPI3K/AKTsignaling,suchasFgf7, Itga6, Synj2,andTsc2 and theapoptosissignalingpathway(Figure5AandTableS5).

Wethencollectedallmutatedgenesin4Tg-SPC-SFN+/−tumorsand investigated pathways that were significantly enriched usingtheKEGGpathwayandIPAsoftware.TheKEGGpathwayanalysisrevealed that mutated genes in Tg-SPC-SFN+/− tumors were sig-nificantlyassociatedwithpathways incancer,ubiquitinatedprote-olysis,small-cell lungcancer, thePI3K-AKTsignalingpathway,andtranscriptionalmisregulation in cancer (Table S6). In contrast, IPAsoftware analysis indicated that Tg-SPC-SFN+/− tumors harboredgene mutations that were significantly correlated with canonicalpathways such as 14-3-3-mediated signaling, apoptosis signaling,PTEN signaling, and DNA double-strand break repair by homolo-gous recombination (Table S6). Taken together, overexpression ofSFNinthelungappearedtoinducegenemutationsmainlyinvolvedinPI3K/AKTsignalingandapoptosissignalingpathwaysfacilitatingtumorigenesis.

F I G U R E 4  FrequentlymutatedgenesidentifiedinTg-SPC-SFN+/−tumorsbywhole-exomesequencing.A,Venndiagramswereusedtoidentifycommonlymutatedgenesamong4Tg-SPC-SFN+/− tumors.NumbersineachregionindicatethenumbersofmutatedgenesdetectedinTg-SPC-SFN+/−tumors.Percentagesineachregionindicatethepercentagenumberofgenesamongthetotalnumberofmutatedgenesdetectedinthe4Tg-SPC-SFN+/−tumors.M,male;F,female;Tg,SFN-transgenicmouse.B,SomaticgenescommonlymutatedamongTg-SPC-SFN+/−tumorswereselected.ThecountednumberindicatesthemutationfrequencyofeachgenedetectedinTg-SPC-SFN+/−tumorsbywhole-exomesequencing.Eachcolumnrepresentsanindividualtumor,andeachrowdenotesagene.Allmutationswerenonsynonymousmissensemutations

Page 8: Carcinogen‐induced tumors in SFN‐transgenic mice harbor a ...diagnostic-pathology-tsukuba.jp/content/files/Kim... · immune checkpoint inhibitors.16 Transgenic mice or mice with

8  |     KIM et al.

Next, usingTCGA,we investigated themutation frequencyof73genesthatwerecommonlymutatedinTg-SPC-SFN+/−tumorsinhumanlungadenocarcinomas.Mostofthetop-rankedgeneswerenotwellknown,andlikelypassengermutationsthatdonotdirectlyconferaselectivetumorgrowthadvantage.Amongthem,titin(TTN),aso-calledgiantgenewith363codingexonsinthehumangenomeand tending to have frequentmutations becauseof randomDNArepairerror,28,29wasthetoprankedgene,harboredby314of487lungadenocarcinomapatients.Moreover,HERC2, SMG1,andNLRP2,whichweredetectedin3samplesofTg-SPC-SFN+/−tumors,alsohada high ranking formutation frequency in human lung adenocarci-noma(Figure5BandTableS7).

Inordertoclarifytheimpactofthesegenealterationsonprog-nosis,overallsurvivalwascomparedbetweenpatientsshowinghighexpressionandthoseshowinglowexpressionusingTCGA(TableS8).ThisrevealedthatpatientswithhighexpressionofBLM, DNMT3B, MKI67, ITGA6, orCDC20 had a significantly poorer outcome thanthosewithlowexpressionofthegenes(FigureS4A).Incontrast,pa-tientswithhighexpressionofNLRP2, CUL9, TBC1D9,orCDH23 had a significantlymore favorable outcome relative to thosewith lowexpressionofthesegenes(FigureS4B).

In summary, overexpression of SFN might frequently induce alargenumberofmutations,mostofwhichareinvolvedinPI3K/AKT

signaling and apoptosis signaling, and altered expression of thosegenesaffectspatientoutcome.

4  | DISCUSSION

Recently,thegenomicalterationsdrivinglungadenocarcinogenesishavebeeninvestigatedtoclarifythemolecularmechanismsinvolved,discovernoveldrugtargets,andscreencandidatepatientsforclini-caltrialsusingnext-generationsequencing.27,30Extensivemolecularanalysishasshownthatnormalcellsprogressivelyacquireavarietyofgeneticimbalancesthatleadtotumorigenesis.31Tumorigenesisismediatedbyacombinationofeventsincludingupregulationofon-cogenessustainingproliferativesignaling,downregulationoftumorsuppressorgenes,andalsoresistancetoapoptoticcelldeath,thusenablingreplicativeimmortality.32

Inthepresentstudy,byanalyzingtumorsthatdevelopedinTg-SPC-SFN+/−miceafterexposuretoNNK,weshowedthatSFN had po-tentoncogenicfunctionscausingdistinctgeneticalterationsduringtheprocessoftumorigenesis.AsTg-SPC-SFN+/−micewithoutNNKtreatmentdevelopedfewbuthistologicallysimilarlytumorstoNNK-induced tumors inTg-SPC-SFN+/−mice,11weconsider thatoverex-pressionofhSFNinthelunginICRmicerobustlyinducesinitiation

F I G U R E 5  PathwayanalysisformutatedgenesinTg-SPC-SFN+/−tumorsandfrequenciesofcommonlymutatedgenesinlungadenocarcinomapatients.A,IPAandKEGGpathwayanalysiswereusedtoinvestigatethemolecularfunctionsofeachofthemutatedgenesinTg-SPC-SFN+/−andWTtumors.TheheatmapindicatesthepercentagesofmutatedgenesamongthetotalnumberofmutatedgenesdetectedintheeachTg-SPC-SFN+/−andWTtumorandwasdrawnusingMorpheus,awebtool(https://software.broadinstitute.org/morpheus/).CommonlymutatedgenesamongTg-SPC-SFN+/−tumors,whichareincludedineachpathway,areindicatedintherightcolumn.B,PercentagesoflungadenocarcinomapatientsharboringeachmutationcommonlyfoundinTg-SPC-SFN+/−tumorsaredisplayedinthebargraph.TCGAwasusedforthisanalysis.Arrowsdenotecommonlymutatedgenesin3Tg-SPC-SFN+/−tumorsapartfromWTtumor

Page 9: Carcinogen‐induced tumors in SFN‐transgenic mice harbor a ...diagnostic-pathology-tsukuba.jp/content/files/Kim... · immune checkpoint inhibitors.16 Transgenic mice or mice with

     |  9KIM et al.

of tumor formation, similar toNNKexposure.Moreover, allNNK-inducedtumorsinTg-SPC-SFN+/−micehavehighsimilaritytomosthuman lung adenocarcinomas in terms of histology33 and geneticprofiles, includingahighfrequencyofpassengermutations,ahighfrequencyoftransversion,alargemutationburden,andsmoking-likesignatures (Figures 1-3, S2, and S3).Moreover, tumors that devel-oped inTg-SPC-SFN+/−micedidnotcontainKrasmutation,knownasadrivermutationformurinelungcancer.34Therefore,webelievethatthismousemodelcloselymimicsactualhumanadenocarcinoma.

WerevealedthatNNKinducedtumorformationaccompaniedbyfrequentC>TtransitionsubstitutioninbothTg-SPC-SFN+/− and WT mice(Figure2A),indicatingthatthehighfrequencyofthissubstitu-tioniscausedbyadefectiveDNArepairprocessattributedtoNNK.35 Consistentwithourresults,NNKisknowntobeastrongtobacco-de-rivedcarcinogenandundergoesmetabolismtoDNAadducts,whichthenbindtoDNA,resultinginmutationofKRAS and STK11,andthuslung tumor formation invariousanimalmodels.36,37Unlike tobaccosmoke,whichcontainsmorethan70carcinogeniccompoundssuchasbenzo[a]pyrene,whichpredominantlyinducesC>Atransversionmu-tation,treatmentofratswithNNKleadstofrequentC>TtransitionmutationcausedbyO6-mGua,whichisahighlypromutagenicadductinducedbyNNKandcanberemovedbyDNArepairproteinssuchasO-6-methylguanine-DNAmethyltransferase.35,38

Incontrast,mutatedgenesinTg-SPC-SFN+/−tumorshadahighfrequencyofC>Atransversion(Figure2B).Thissubstitutionmightbeduetofailureofthetranscription-couplednucleotideexcisionrepairmachinery,similartohumanmutationalsignaturesthatarecorrelatedwithsmokinghistory.39Suchmutationalsignaturescanindicate thecauseof somaticmutations suchasDNAreplicationinfidelity, defective DNA repair processes, and mutagen expo-sureoccurringthroughoutlife.40Among30mutationalsignaturesin theCOSMIC database, signature 4 is themost closely relatedto lung cancers associated with smoking,23,39 and signature 24is linked to liver cancer and exposure to aflatoxin, a carcinogenproduced by fungi in nature,39 both of which show similarity toTg-SPC-SFN+/−tumors.

Through interaction with the target proteins, 14-3-3 proteinsincludingSFNalter theactivity,modifications,and intracellular lo-calizationofligands.41-43Inparticular,SFNregulatesDNArepairfac-torssuchasDNA-PKcs,whenDNAisdamagedbychemotherapyorradiotherapyinhumancancer.44Basedonthepreviousreport,weassume that thehighnumberofgenemutations inTg-SPC-SFN+/− tumorsmight be due to bindingwith unknown factor(s), which isassociatedwiththeDNArepairsystem.SFNmightinhibitDNAre-pair-relatedfactors,resultingintheaccumulationofnumerousgenemutations. Indeed,we found somemutatedgenes involved in theDNAdamageresponseandrepairsystemsuchasBlm, Brd4, Herc2, Brca1, Pole, Ddb1, Msh6, and Xrcc1 only in Tg-SPC-SFN+/− tumors(Table S5), suggesting that these alterations could also indirectlyaccelerate dysfunction of the DNA repair system and thus thesemutatedgenesmightcauseadditionalmutationagain.Hightumormutationburdenisknowntoinducehighneoantigenexpression,45 whichenhancestumorgrowth,invasion,andmetastasisbyevasion

fromimmuneattack.46ItimpliesthatTg-SPC-SFN+/−mightserveasausefultooltoevaluatetheefficacyofimmunecheckpointinhibitors.

Additionally,ourpreviouspull-downassayandLC-MS/MSanaly-sishasidentifiedSFNbindingproteinsinlungadenocarcinomacellsincluding cell cycle-relatedproteins such as S-phase kinase tumorprogression(SKP1),10andproliferationrelatedproteinssuchasser-ine/threonine-proteinkinaseA-Raf(ARAF)47andubiquitin-specificprotein8 (USP8),whichparticularlyenhancesstabilityof receptortyrosinekinasesuchasepidermalgrowthfactorreceptorandMET.9 Wespeculatethat,asSFNcontrolsthoseproteins,tumorcellsmightpass through the cell cycle checkpoint even though they recog-nizea largenumberofmutationsduetoinsufficientDNArepair.48 Consequently,SFNmightinducealargenumberofmutations,whicharepredominantlyinvolvedinPI3K-AKTsignalingandapoptosissig-naling(Figure5A),andthosemutationsmightboostcanonicalsignal-ingforadenocarcinogenesis.

Moreover,werevealedthatTg-SPC-SFN+/−tumorsharboredmu-tationsofBlm, Dnmt3b, Mki67, Itga6, Cdc20, Nlrp2, Cul9, Tbc1d9,andCdh23 thatwerealsodetectable in lungadenocarcinomapatients,andthattheexpressionofthesegeneswassignificantlycorrelatedwithoverallsurvival(FigureS4).However,themutationalhotspotsandoncogenicactivityofthesemutatedgenesinlungcancershavenotyetbeenclarified.Althoughthereisapossibilitythatthesemu-tatedgenesmightbeinvolvedinlungadenocarcinogenesistriggeredby SFN, further verification and functional analysis using humanlungadenocarcinomaspecimenswillbeneeded inordertounder-stand the overall molecularmechanisms involved. Additionally, asWEShaslimitationstodetectinparticulargeneticalterationssuchasmutations,deletions,andinsertions,weareplanningtoundertakewholegenomeamplification-sequencingorRNA-sequencingto in-vestigatetheamplificationorexpressionofgenesforfurtherstudy.

Furthermore,weexaminedthemutationallandscapeinbothTg-SPC-SFN+/−tumorsandWTtumor.ComparedtotheTg-SPC-SFN+/− tumors,WT tumor showed poorer differentiated histology, higherfrequencyofT>CandT>G,andcontainedalowernumberofmutatedgenes.Additionally,onlyWTtumorcontainedKrasmutation.ThesedifferencesbetweenTg-SPC-SFN+/−andWTtumorsarevery inter-esting.Unfortunately,inthecurrentstudy,wecouldexamineonlyoneWTtumor,asthetumorigenicfrequencyisverylowinICRmicebyNNKtreatment.Large-scaleexaminationsshouldbeplanned inthefuturetomakeclearthecharacteristicsofTg-SPC-SFN+/−tumors.

Insummary,wecharacterizedtumorsthatdevelopedinTg-SPC-SFN+/−miceandfounddistinctexonicalterations,remarkablymim-ickingthefeaturesofhumanlungadenocarcinoma.WebelievethatSFNoverexpression is critical tohuman lungadenocarcinogenesisandthatourmousemodel,createdbybothgeneticengineeringandcarcinogen exposure,would be a valuable resource for preclinicalexaminationsoftherapyforlungadenocarcinoma.

DISCLOSURE

The authors have no financial conflicts of interest related to thismanuscript.

Page 10: Carcinogen‐induced tumors in SFN‐transgenic mice harbor a ...diagnostic-pathology-tsukuba.jp/content/files/Kim... · immune checkpoint inhibitors.16 Transgenic mice or mice with

10  |     KIM et al.

ORCID

Aya Shiba‐Ishii https://orcid.org/0000-0001-6639-4135

R E FE R E N C E S

1. McGuireS.World Cancer Report 2014.Geneva,Switzerland:WorldHealthOrganization,InternationalAgencyforResearchonCancer,WHOPress,2015.Adv Nutr.2016;7:418-419.

2. SiegelRL,MillerKD,JemalA.Cancerstatistics,2018.CA Cancer J Clin.2018;68:7-30.

3. TravisWD,BrambillaE,NicholsonAG,etal.The2015worldhealthorganizationclassificationoflungtumors:impactofgenetic,clini-calandradiologicadvancessincethe2004classification.J Thorac Oncol.2015;10:1243-1260.

4. Noguchi M. Stepwise progression of pulmonary adenocarci-noma–clinical and molecular implications. Cancer Metastasis Rev. 2010;29:15-21.

5. Shiba-IshiiA,Kano J,MorishitaY, SatoY,MinamiY,NoguchiM.High expressionof stratifin is a universal abnormality during thecourse of malignant progression of early-stage lung adenocarci-noma. Int J Cancer.2011;129:2445-2453.

6. Qi W, Liu X, Qiao D, Martinez JD. Isoform-specific expressionof 14-3-3 proteins in human lung cancer tissues. Int J Cancer. 2005;113:359-363.

7. Shiba-IshiiA,NoguchiM.Aberrantstratifinoverexpressionisreg-ulatedbytumor-associatedCpGdemethylationinlungadenocarci-noma. Am J Pathol.2012;180:1653-1662.

8. Husni RE, Shiba-Ishii A, Nakagawa T, et al. DNA hypomethyla-tion-related overexpression of SFN, GORASP2 and ZYG11A is anovelprognosticbiomarker forearly stage lungadenocarcinoma.Oncotarget.2019;10:1625-1636.

9. Kim Y, Shiba-Ishii A, Nakagawa T, et al. Stratifin regulates sta-bilization of receptor tyrosine kinases via interaction with ubiq-uitin-specific protease 8 in lung adenocarcinoma. Oncogene. 2018;40:5387-5402.

10. Shiba-Ishii A, Hong J, Hirokawa T, et al. Stratifin inhibitsSCFFBW7 formation and blocks ubiquitination of oncoproteinsduring the course of lung adenocarcinogenesis. Clin Cancer Res. 2019;25:2809-2820.

11. Shiba-Ishii A, Kim Y, Shiozawa T, et al. Stratifin accelerates pro-gression of lung adenocarcinoma at an early stage.Mol Cancer. 2015;14:142.

12. Li Z, Liu JY, Zhang JT. 14-3-3sigma, the double-edged sword ofhuman cancers. Am J Transl Res.2009;1:326-340.

13. Comprehensive molecular profiling of lung adenocarcinoma.Nature.2014;511:543-550.

14. RabbaniB,TekinM,MahdiehN.Thepromiseofwhole-exomese-quencinginmedicalgenetics.J Hum Genet.2014;59:5-15.

15. Schwarze K, Buchanan J, Taylor JC, Wordsworth S. Are whole-exomeandwhole-genomesequencingapproachescost-effective?Asystematicreviewoftheliterature.Genet Med.2018;20:1122-1130.

16. Rizvi NA, Hellmann MD, Snyder A, et al. Cancer immunology.Mutational landscape determines sensitivity to PD-1 blockade innon-smallcelllungcancer.Science.2015;348:124-128.

17. WestcottPM,HalliwillKD,ToMD,etal.ThemutationallandscapesofgeneticandchemicalmodelsofKras-drivenlungcancer.Nature. 2015;517:489-492.

18. McFadden DG, Politi K, Bhutkar A, et al. Mutational land-scape of EGFR-, MYC-, and Kras-driven genetically engineeredmouse models of lung adenocarcinoma. Proc Natl Acad Sci USA. 2016;113:E6409-e17.

19. ShenY,ZhangS,HuangX,ChenK,ShenJ,WangZ. Involvementof p53 mutation and mismatch repair proteins dysregulation in

NNK-inducedmalignanttransformationofhumanbronchialepithe-lial cells. Biomed Res Int.2014;2014:920275.

20. Pfeifer GP, Denissenko MF, Olivier M, Tretyakova N, Hecht SS,HainautP.Tobaccosmokecarcinogens,DNAdamageandp53muta-tionsinsmoking-associatedcancers.Oncogene.2002;21:7435-7451.

21. AnayaJ.OncoLnc:linkingTCGAsurvivaldatatomRNAs,miRNAs,andIncRNAs.PeerJ Comput Sci.2016;2:e67.

22. MilhollandB,DongX,ZhangL,HaoX,SuhY,Vijg J.Differencesbetweengermlineandsomaticmutationratesinhumansandmice.Nat Commun.2017;8:15183.

23. Govindan R, Ding L, Griffith M, et al. Genomic landscape ofnon-small cell lung cancer in smokers and never-smokers. Cell. 2012;150:1121-1134.

24. Alexandrov LB, Ju YS, Haase K, et al. Mutational signaturesassociated with tobacco smoking in human cancer. Science. 2016;354:618-622.

25. HellmannMD,NathansonT,RizviH,etal.Genomicfeaturesofre-sponsetocombinationimmunotherapyinpatientswithadvancednon-small-celllungcancer.Cancer Cell.2018;33:843-852.e4.

26. LawrenceMS,StojanovP,PolakP,etal.Mutationalheterogeneityincancerandthesearchfornewcancer-associatedgenes.Nature. 2013;499:214-218.

27. WangD,PhamNA,TongJ,etal.Molecularheterogeneityofnon-smallcelllungcarcinomapatient-derivedxenograftscloselyreflecttheirprimarytumors.Int J Cancer.2017;140:662-673.

28. Tan H, Bao J, Zhou X. Genome-wide mutational spectra anal-ysis reveals significant cancer-specific heterogeneity. Sci Rep. 2015;5:12566.

29. SavareseM,SarparantaJ,ViholaA,UddB,HackmanP.Increasingroleof titinmutations inneuromusculardisorders. J Neuromuscul Dis.2016;3:293-308.

30. DevarakondaS,MorgenszternD,GovindanR.Genomicalterationsinlungadenocarcinoma.Lancet Oncol.2015;16:e342-e351.

31. Kadara H, Scheet P, Wistuba II, Spira AE. Early events in themolecular pathogenesis of lung cancer. Cancer Prev Res (Phila). 2016;9:518-527.

32. HanahanD,WeinbergRA.Hallmarksofcancer: thenextgenera-tion.Cell.2011;144:646-674.

33. TravisWD,BrambillaE,NoguchiM,etal.Internationalassociationfor thestudyof lungcancer/American thoracic society/Europeanrespiratory society internationalmultidisciplinary classificationoflungadenocarcinoma.J Thorac Oncol.2011;6:244-285.

34. KadotaK,YehYC,D'AngeloSP, et al.Associationsbetweenmu-tations andhistologicpatternsofmucin in lungadenocarcinoma:invasivemucinouspatternandextracellularmucinareassociatedwithKRASmutation.Am J Surg Pathol.2014;38:1118-1127.

35. XueJ,YangS,SengS.Mechanismsofcancerinductionbytobacco-specificNNKandNNN.Cancers (Basel).2014;6:1138-1156.

36. GeGZ,XuTR,ChenC.TobaccocarcinogenNNK-inducedlungcan-cer animalmodels andassociatedcarcinogenicmechanisms.Acta Biochim Biophys Sin (Shanghai).2015;47:477-487.

37. DingL,GetzG,WheelerDA,etal.Somaticmutationsaffectkeypathwaysinlungadenocarcinoma.Nature.2008;455:1069-1075.

38. JansenJG,deGrootAJ,vanTeijlingenCM,TatesAD,VrielingH,vanZeelandAA.InductionofhprtgenemutationsinsplenicT-lym-phocytesfromtheratexposedinvivotoDNAmethylatingagentsiscorrelatedwithformationofO6-methylguanineinbonemarrowandnotinthespleen.Carcinogenesis.1996;17:2183-2191.

39. AlexandrovLB,Nik-ZainalS,WedgeDC,etal.Signaturesofmuta-tionalprocessesinhumancancer.Nature.2013;500:415-421.

40. AlexandrovLB,StrattonMR.Mutationalsignatures:thepatternsofsomaticmutationshiddenincancergenomes.Curr Opin Genet Dev. 2014;24:52-60.

41. PenningtonKL,ChanTY,TorresMP,AndersenJL.Thedynamicandstress-adaptive signalinghubof14-3-3: emergingmechanismsof

Page 11: Carcinogen‐induced tumors in SFN‐transgenic mice harbor a ...diagnostic-pathology-tsukuba.jp/content/files/Kim... · immune checkpoint inhibitors.16 Transgenic mice or mice with

     |  11KIM et al.

regulation and context-dependent protein-protein interactions.Oncogene.2018;37:5587-5604.

42. AghazadehY,PapadopoulosV.Theroleofthe14-3-3proteinfam-ily in health, disease, and drug development.Drug Discov Today. 2016;21:278-287.

43. DoughertyMK,MorrisonDK.Unlockingthecodeof14-3-3.J Cell Sci.2004;117:1875-1884.

44. ChenY,LiZ,DongZ,etal.14-3-3sigmacontributestoradioresis-tancebyregulatingDNArepairandcellcycleviaPARP1andCHK2.Mol Cancer Res.2017;15:418-428.

45. MillerA,AsmannY,CattaneoL,etal.Highsomaticmutationandneoantigenburdenarecorrelatedwithdecreasedprogression-freesurvivalinmultiplemyeloma.Blood Cancer J.2017;7:e612.

46. LeeCH,YelenskyR,JoossK,ChanTA.Updateontumorneoanti-gensandtheirutility:whyitisgoodtobedifferent.Trends Immunol. 2018;39:536-548.

47. MoozJ,Oberoi-KhanujaTK,HarmsGS,etal.Dimerizationoftheki-naseARAFpromotesMAPKpathwayactivationandcellmigration.Sci Signal.2014;7:ra73.

48. Jeggo PA, LobrichM. Contribution of DNA repair and cell cyclecheckpoint arrest to the maintenance of genomic stability.DNA Repair (Amst).2006;5:1192-1198.

SUPPORTING INFORMATION

Additional supporting information may be found online in theSupportingInformationsectionattheendofthearticle.

How to cite this article:KimY,Shiba-IshiiA,RamirezK,etal.Carcinogen-inducedtumorsinSFN-transgenicmiceharboracharacteristicmutationspectrumofhumanlungadenocarcinoma. Cancer Sci. 2019; 00: 1–11. https://doi.org/10.1111/cas.14081