carbonylation as a method for synthesizing organic ... · carbonylation as a method for...

43
Carbonylation as a Method for Synthesizing Organic Intermediates and Substrates from Epoxides and Aziridines Venkata A. Kallepalli Michigan State University Feb. 15 th , 2006

Upload: others

Post on 02-Feb-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

Carbonylation as a Method for Synthesizing Organic Intermediates and Substrates from Epoxides and Aziridines

Venkata A. KallepalliMichigan State University

Feb. 15th, 2006

Seminar Outline

• Introduction• Carbonylation of Epoxides• Carbonylation of Aziridines• Conclusion• Acknowledgments

� Early Examples

� Scope and Limitations

� Industrial Applications

RCo catalyst

CO / H2R

CHO +R

CHO

Oxo synthesis : Otto Roelen (1938)

Developed by Reppe, Heck, Tsuji

Carbonylation of methanol to acetic acid

CH3OH + CO CH3COOH H = -33kcal/molcatalyst

(Co, Rh, Ir, Ni)

Hohenshutz, H.; Kutepow,N.; Himmele, W. Hydrocarbon Process 1966, 45, 141

2HCo(CO)4 CH3C

O

Co(CO)3

CH3C

O

Co(CO)4

Co2(CO)8H2OCO

CO

CH3OHHI

-H2OCH3I

-CO2

Co(CO)4-H2

CH3Co(CO)4

I-

I-

CH3COI

H2O

CH3COOH

Scope of the Reaction

Carbonylation

Olefins

Alkynes

Dienes

Ketones, Aldehydes, Carboxylic acids,

Esters, Amino acids, Polyketones, Polycarbonates

Alcohols/ PhenolsCarboxylic acids

Organic carbonates

Organic halidesCarboxylic acids,

Keto acids

Esters, Keto esters

Nitro compounds

Isocyanates, Ureas

Carbamates

Amines

Isocyanates, Ureas

Carbamates

Scope of the Carbonylation Reaction

• Economical and Ecologically safe

• Tandem reactions

• Easy access to important precursors and intermediates

Cl

R

CN

R

COCl

R

COOR'

R

NaCN 1.H2O R'OH2. SOCl2

Cl

R

+ R'OH

COOR'

R

catCO

Cl + + CO + ROH COOR

Br

R

+ 2CO + R'2NH

NR'2

R

O

O

Phenyl acetic acid

Capric acid ester

Phenyl Pyruvic amide

Limitations

• High pressure

• High temperature

• Poor selectivity

• Large amount of byproducts

O

O

OH O

Co2(CO)8, CO (3500 psi)

CH3OH, 4 h, 130 oC, 20-40%

Carbonylation Reaction in Industrial Processes

Process Catalyst Company

Methanol to acetic acid Acetylene to acrylic acid Ethylene to propionic acid Butadiene to adipic acid Isobutylphenyl ethanol to Ibuprofen Propylene to methyl Methacrylate Ethylene copolymerization to polyketones

Co2(CO)8

[Rh(CO)I2]-

IrCl3-RuCl3 NiBr2-CuBr2 Ni(OCOC3H5)2 HCo(CO)4 PdCl2(PPh3)2 Pd-pyridyl Phosphine Pd(OAc)2/dppp TsOH

BASF Monsanto BP BASF BASF BASF Hoechst Celanese Shell Shell

Produces more than 8 million tons of carbonylation products

Lactic Acid via Alkoxycarbonylation

O

O

O

MeO OO

OH

OH

OPdCl2(PPh3)2, CO (1000psi)

MeOH, 100 oC, 44 h

81.6%dl - lactic acid

OCOCH3 HPdXL2

OCOCH3

OCOCH3

PdXL2H

CO

OCOCH3

H

PdXL2

O

MeOH

PdX2L2 [ROPdXL2]

[Pd(COOR)XL2] [HPdXL2]

ROH

-HXCO

ROH

(RO)2CO

O

MeO OO

Kiyoshi, K.; Yuiji, O.; Koichi, M.; Sadayuki, M.; Koichi, K.; Nobuyuki, S. Bull. Chem. Soc. Jpn. 1996, 69, 1337-1345

Vinyl acetate Methyl-2-acetoxy propionate

Seminar Outline

• Introduction• Carbonylation of Epoxides• Carbonylation of Aziridines• Conclusion• Acknowledgments

� Stoichiometric Reactions

� Catalytic Reactions

� Theoretical Study of -Lactone formation

� Dicarbonylation Reactions

Carbonylation of Cyclic Ethers

O OO

Co(OAc)2

CO / H2O200 oC, 250 atm 55%

O O O

Co(OAc)2

CO / H2

200 oC, 200 atm35-45%

O

O

OH O

Co2(CO)8, CO (3500 psi)

CH3OH, 4 h, 130 oC, 20-40%

OR

R

n

n = 1,2R = H, Me

R Co(CO)4

OH OR

nN(Cy)2Et

n=2, R=H OO

+

[(Cy)2NHEt]+ [Co(CO)4]-

HCo(CO)4

CO

Heck, R. F. J. Am. Chem. Soc. 1963, 85, 1460

Reppe, W.; Kroper,H.; Pistor, H. J.; Weissbarth, O. Justus Liebigs Ann Chem. 1953, 582, 87

Khumataveeporn, K.; Alper, H.; Acc. Chem. Res. 1995, 28, 414

Eisenmann, J. L.; Yamartino, R. L.; Howard, J. F. J. Org. Chem. 1961, 26, 2102

Carbonylation of Epoxides

• Why Epoxides?

O

R

O

O

O

R

R

O

CO, [M]

a

b

R = aryl, vinyl

R = alkyl, ether, ester, amide

• Efficient way to -Lactones

• Availability of the Epoxides

• Reactivity of the Epoxides

Tokunaga, M.; Larrow, J. F.; Kakiuchi, F.; Jacobsen, E. N. Science 1997, 277, 936-938

Why -Lactones?

OO

R' R

NHR2''

NaN3

(R = CH2R')

MgBr2

1.LDA2.R''I

R''2N R

O OH

R'

R'

R

+ CO2

LnM-OR

O

O

R'

R

n

HO N3

R'

RO

O

R''

R'R

O

OO

R' R'

Getzler, Y. D. Y. L.; Schmidt, J. A. R.; Coates, G. W. Journal of Chemical Education 2005, 82, 621-624

Natural -Lactones

OO

C6H13

OO

NHCHO

OO

C6H13

H2NO

O

O NHCOCH3

Lipstatin Esterastin

O

H

H

H

O

OCOCHCH2(CH3)2

O

O

O

O

O

O

Spongiolactone Guaiagrazielolide

Pommier, A.; Pons, J. M. Synthesis 1995, 729-744

Photocarbonylation of Epoxide

R12R

3R

R4

O

Fe O(CO)3

R12R

3R

R4

O

Fe O(CO)3

syn-isomer anti-isomer

Frohlich, K.; Ring, H.; Aumann, R. Angew. Chem. Int. Ed. Engl. 1974, 13, 275

Annis, G. D.; Ley, S. V. J. Chem. Soc. Chem. Commun, 1977, 581

Annis, G. D.; Ley, S. V.; Self, C. R.; Sivaramakrishnan, R. J. Chem. Soc., Perkin Trans. 1 1981, 270

O

C6H13 C4H9

OO

O

NHCHO

Valilactone

OC9H19

OH

O

Malyngolide

Isolated : Streptomyces albolongus

Esterase inhibitor

Isolated : Lyngbya majuscula

Antibacterial agent

O R12R

3R

R4

O R12R

3R

R4

Fe(CO)4

R12R

3R

R4

O

Fe O(CO)3

R12R

3R

R4

O

O

+O

O

R1

2R

3R

R4

Fe(CO)5

C6H6, hv, -CO

CeIV

Synthesis of Valilactone

Bates, R.W.; Fernandez-Moro.; Ley, S. V. Tetrahedron Lett1991, 32, 2651

Bates, R.W.; Fernandez-Moro.; Ley, S. V. Tetrahedron 1991, 47, 9929

C4H9 C5H11

OH

Zn/Cu/Ag, MeOH-H2O

50 oC. 90%

C4H9 C5H11

OH

VO(acac)2, tBuOOH

CH2Cl2, 0 oC to r.t., 73%

C4H9 C5H11

OHO

Fe2(CO)9, THF. 80%

C4H9 C5H11

OHO(OC)3Fe

O

C5H11

C4H9

OHO(OC)3Fe

+1..

4

O

C4H9 C5H11

OO

OH

CAN, EtOH,

r.t. 26%N-Cbz-L-valine, DCC,

CH2Cl2, 0 oC, then DMF,DMAP, r.t., 56%

H2/Pd/C, THF, then AcOCHO, CH2Cl2, 62%

O

C6H13 C4H9

OO

O

NHCHO

A

B

Synthesis of Malyngolide

Horton, A. M.; Ley, S. V. J. Organomet. Chem. 1985, 285, C17

OH

C9H19

O

O

Fe(CO)3

O

C9H19

OH

O OC9H19

OH

+O OC9H19

OH

O OC9H19

OH

O OC9H19

OH

OH

C9H19

BuOOH, VO(acac)2

benzene, 10 mins

COOMe

OH

C9H19

KHSO4, toluene, 48 h; then DBU, r.t., 24 h,

then LiAlH4 in ether added at 0 oC

Fe2(CO)9, THF

CO(300atm), 90 oC, 24 h

PtO2/H2, MeOHPtO2/H2, MeOH

LDA, -78 oC, H+ work-up

69% conversion

AB

Catalytic Carbonylation of Epoxides

O

Ph

OO

Ph2-3 mol% RhCl(CO)(PPh3)2

(67%)

CO (400psi)

Ph

CH2OMOM

(44%)

+

Aumann, R.; Ring, H.; Angew. Chem. Int. Ed. Engl. 1977, 16, 50

Kamiya, Y.; Kawato, K.; Ohta, H. Chem. Lett. 1980, 1549

Shimizu, I.; Maruyama, T.; Makuta, T.; Yamamoto, A. Tetrahedron Lett. 1993, 34, 2135

O

Ph CH2OMOM

OO

Ph CH2OMOM5 mol% Pd2(C4H7)2Cl2CO (30atm), EtOH, r.t.

i-Pr2NEt, NaBrmaleic anhydride

(14%)

O2 mol % [Rh(COD)Cl]2 O

O CO (150atm), CCl4, 70 oC, 50 h

(75%)

Carbonylation of Epoxides:

O+ CO

cat + LA2 - 4 mol%

80-110 oC, 24 - 48 h OO

cat

[PPN][Co(CO)4] BF3 . Et2O

[PPN][Co(CO)4] B(C6F5)3

LA

Drent, E.; Kragtwijk, E. Eur. Pat. Appl. EP 577206

Lee, J. T.; Thomas, P. J.; Alper, H. J. Org. Chem. 2001, 66, 5424-5426

(PPN = Ph3P N PPh3)

OO

O

Co2(CO)8, CO (60atm),

75 oC,6 h

N

OH

93% conversion90% selectivity

Substrate Scope of [PPN][Co(CO)4] Catalyst

Lee, J. T.; Thomas, P. J.; Alper, H. J. Org. Chem. 2001, 66, 5424-5426

substrate LA product (% isolated yield)

O

3

OO

O OO

Cl

O

Ph

O

HO

O

PrO

O

i

O

O

3

Cl

BF3 . Et2O

BF3 . Et2O

BF3 . Et2O

BF3 . Et2O

BF3 . Et2O

BF3 . Et2O

B(C6F5)3

B(C6F5)3

OO

OO

HO

- (no reaction)

PrOi

OO

O

OO

O

(66)

(83)

(63)

(57)

(86)

(20)

(24)

substrate LA product (% isolated yield)

(PPN = Ph3P N PPh3)

Salen Based Catalysts

Getzler, Y. D. Y. L.; Mahadevan, V.; Lobkovsky, E. B.; Coates, G. W. J. Am. Chem. Soc. 2002, 124, 1174

catalyst time yield(%)R1 R2

[PPN][Co(CO)4/BF3.Et2O

[nBu4N][Co(CO)4]

1

H

H

H

H

Me

Me

Me

Me

1 Me Me

24

16

16

1

1

77

0

6

95

83

[Na][Co(CO)4]

O O1-2 mol% catalyst,

CO (900psi)

50o - 80 oC

O

R1R2

R1R2

tBuO

NN

OButBu But

Al+t

Co(CO)4-

L=THFL

L

1

O O1mol% 1, CO (880psi)

50 oC, neat, 1h 95% (96% ee)

O

Stereochemistry of carbonylation

O+ CO

OO

1

racemic

O+ CO

OO

1

racemicracemic

1

tBuO

NN

OButBu But

Al+t

Co(CO)4-

L=THFL

L

tBuO

NN

OButBu But

Al+t

Co(CO)4-

L=THFL

L

2

Getzler, Y. D. Y. L.; Mahadevan, V.; Lobkovsky, E. B.; Coates, G. W. Pure Appl. Chem. 2004, 76, 557

O+ CO

OO

2

racemic

+O

O

Enantiomerically-enriched44 % ee

LA Promoted Carbonylation Mechanism

Getzler, Y. D. Y. L.; Mahadevan, V.; Lobkovsky, E. B.; Coates, G. W. J. Am. Chem. Soc. 2002, 124, 1174Molnar, F.; Luinstra, G. A.; Allmendinger, M.; Reiger, B. Chem. – Eur. J. 2003, 9, 1273-1280.Getzler, Y. D. Y. L.; Mahadevan, V.; Lobkovsky, E. B.; Coates, G. W. Pure Appl. Chem. 2004, 76, 557

O

M+Ln

Co(CO)4

O Co(CO)4LnM

O Co(CO)4

O

LnM

CO

[LnM][Co(CO)4]

OO

O

Theoretical Study of -Lactone Synthesis

• Single-Site Catalysts

• Multisite Catalysts

O O catalyst, CO O

� Co, Rh, Pd catalysts, Co[CO4-]

� No low energy pathway for ring opening� -allyl complex formation is a must

� [Lewis acid][Co(CO)4]

Molnar, F.; Luinstra, G. A.; Allmendinger, M.; Reiger, B. Chem. – Eur. J. 2003, 9, 1273-1280.

• Multisite Catalysts

� [Lewis acid][Co(CO)4]� Opens a low energy pathway for trans opening� Effect of Lewis acid (BF3, Me3Al,

Et2Al+. diglyme & Me3Al/Co2(CO)8)� CO insertion & uptake

Co R

OOC

LA

CO insertion

(CO)3

(OC)3Co

O

R

O

LA

(OC)4Co

O

R

O

LACO uptake

Porphyrin Based Catalyst

N

NN

N

Cr+

O

O

Ph

Ph

Ph

Ph

Co(CO)4-

3

tBuO

NN

OButBu But

Al+t

Co(CO)4-

L=THFL

L

1

O

R1 R2

O

R1 R2

Ocatalyst, CO (900 psi)

neat, 60 oC, 6 h

Schmidt, J.A.; Mahadevan, V.; Getzler, Y. D. Y. L.; Coates, G. W. Org. Lett. 2004, 6, 373

R1 R2

substrate:catalyst

yield (%)

H 350:1

H

H

H

CH3

CH3 75:1

>99 40

>99 0

>99 40

>99 30

>99 74

56 20

nBu

H2C=CH(CH2)2 250:1

tBu 800:1

TBDMSOCH2

trans-CH3

cis-CH3

400:1

75:1

3 1

Highly Active and Versatile Catalyst

N

NN

N

Cr+

O

O

Co(CO)4-

substrate substrate/4 product yield

O OO

3500 > 99%

O

3

O

3

O

4500 > 99%

O

9

10000O

9

O

> 99%

Bu

O

t5000

Bu

O

t

O

> 99%

O3500 O

O

> 99%

O450 O

O

88%

Schmidt, J. A.; Lobkovsky, E. B.; Coates, G. W. J. Am. Chem. Soc. 2005, 127, 11426

4

N

NN

N

Cr+

O

O

Ph

Ph

Ph

Ph

Co(CO)4-

3

Expanding the Range of Glycidyl Ethers

substrate substrate/4 product yield

MeO

O

BuMe2SiO

O

PhH2CO

O

O

O

O

O

t

O

750>99%

MeO

OO

2500

1800

250

250

BuMe2SiO

OO

t

PhH2CO

OO

O

O

O

O

O

O

O

>99%

>99%

>99%

88%

4

Schmidt, J. A.; Lobkovsky, E. B.; Coates, G. W. J. Am. Chem. Soc. 2005, 127, 11426

N

NN

N

Cr+

O

O

Co(CO)4-

Esters and Amides are Tolerated

Schmidt, J. A.; Lobkovsky, E. B.; Coates, G. W. J. Am. Chem. Soc. 2005, 127, 11426

substrate substrate/4 conditions product yield

O

O

O

30040 oC

6h O

O

OO

> 99%

Ph O

O

O

25040 oC

6h Ph O

O

OO

97%

Pr O

O

O

n

23500

60 oC6h Pr O

O

n

2

OO

> 99%

Pr0

O

O

n

150060 oC

6h Pr0

O

n

OO

> 99%

Me2N O

O

O7

75 60 oC6h Me2N O

O7

OO

> 99%

Rearrangement of -Lactone to -lactone

substrate substrate/4 conditions product yield

O

O

O

300 40 oC6h O

O

OO

> 99%

Ph O

O

O

25040 oC

6h Ph O

O

OO

97%

O

O

O

55060 oC24h

> 99%

Ph O

O

O

250 60 oC24h

> 99%

O

O O

O

Ph O

O O

O

Schmidt, J. A.; Lobkovsky, E. B.; Coates, G. W. J. Am. Chem. Soc. 2005, 127, 11426

Rearrangement of -Lactone to -lactone

PrO

OO

n

PrO

O

n O

O

4+

OO

O 4+

Pr

O

n

O

O

O4

OPrn +

OO

OPr

O

4+Co(CO)4-,

CO

Schmidt, J. A.; Lobkovsky, E. B.; Coates, G. W. J. Am. Chem. Soc. 2005, 127, 11426

N

NN

N

Cr+

O

O

4+

Bicyclic -Lactones

Schmidt, J. A.; Lobkovsky, E. B.; Coates, G. W. J. Am. Chem. Soc. 2005, 127, 11426

O

O

O

O

O

O

substrate substrate/catalyst product yield

O

O

O

> 99%

> 99%

> 99%

57%

100

250

100

100

O OO

Mechanism of Stereoretention(OEP)CrO

+

-Co(CO)4

(OEP)CrO Co(CO)4

OO

Co(CO)4(OEP)Cr

[(OEP)Cr][Co(CO)4]

CO

OO

O

(OEP)CrO Co(CO)4

Schmidt, J. A.; Lobkovsky, E. B.; Coates, G. W. J. Am. Chem. Soc. 2005, 127, 11426

OEP = octaethyl porphyrin

Dicarbonylation of Epoxides

O

Ph RO

O

HO

Ph R

HCo2(CO)8, CTAB, MeI

NaOH (0.5M), C6H6,r.t.., CO (1atm)

1 (R=H)

Alper, H.; Arzoumanian, H.; Petrignani, J.F.; Maldonado, M. S. J. Chem. Soc., Chem. Commun. 1985, 340

Mechanism of Dicarbonylation

PhO Me

O

O Co(CO)4

PhO Me

O

HO Co(CO)4

PhO Me

O

HO

O

Co(CO)4

Co(CO)4- MeI Co(CO)4 Co(CO)4Me Me

O

PhO Me

O

Co(CO)4

CO

CO 1

CO

O

O

HO

Ph

Dicarbonylation of Epoxides

O OO OO

O1 mol% 1, CO (880psi)

1 h, 50 oC, neat

O.45 mol% 1, CO (200psi)

24 h, 55 oC, toluene

99% ee

[LnAl]+[Co(CO)4]-

LnAlO Co(CO)4

O

LnAlO

O

Co(CO)4

O

OO

CO

OO O

Getzler, Y. D. Y. L.; Kundnani, V.; Lobkovsky, E. B.; Coates, G. W. J. Am. Chem. Soc. 2004, 126, 6842

Proposed Mechanism

Seminar Outline

• Introduction• Carbonylation of Epoxides• Carbonylation of Aziridines

• Inversion of Stereochemistry

• Effect of EWG groups

• Bimetallic catalysts

Carbonylation of Aziridines

N

R

R'

N

N

O

R

R

R'

O R'

CO, [M]

a

b

N

Pri

PhMe

NO

PhMe

Pri

[Rh(CO)2Cl]2

CO, 20atm90o, C6H6

N

Et H

CH2CH2PhN

Et H

OPhH2CH2C

Co2(CO)8 (8 mol%)

DME, CO (33 atm)100 oC, 24 h

Ph ON

Boc

Ph O

NBoc

Pd NO

OPh

Boc

Pd2(dba)3. CHCl3

PPh3, CO, 1 atmr.t., 3days

(51%)

CO

N

R

Pd(PPh3)4

N PdL2R

NOR

(55-83%)

CH2Cl2, RT, CO,1atm

CO

Hamel, N.; Alper, H. Tetrahedron Lett 1987, 28, 3237.Calet, S.; Urso, F.; Alper, H. J. Am. Chem. Soc. 1989, 111, 931.Spears, G. W.; Nakanishi, K.; Ohfune, Y. Synlett 1991, 91.Marcelo, E. P.; Alper, H. J. Am. Chem. Soc. 1996, 118, 111.

Inversion of stereochemistry

N

R2 R3

H H

R1

R2 H

H R3

OR1

Co2(CO)8 (8 mol%)or NaCo(CO)4

DME, CO (33 atm)100 oC, 24 h

PhCH2CH2 Et H 94

PhCH2 Et H 64

p-MeOPh t-Bu H 50

i-Pr H Ph 42

i-Pr Me Ph 94

R1 R2 R3

isolatedyield

Co(CO)4

N Co(CO)4

R2 R3

R1

N

R2 R3

R1

Co(CO)4

O

N

R2 R3

H H

R1

CO

N

R2 H

H R3

OR1Marcelo, E. P.; Alper, H. J. Am. Chem. Soc. 1996, 118, 111.

Effect of EWG Substituents

N

Me

N

Me

O

Co2(CO)8 (8 mol%)

DME, CO (33 atm)100 oC, 24 h

Ph PhO

O+

NO

Ph

O

Me

(55%) (37%)

SET Mechanism:

Marcelo, E. P.; Alper, H. J. Am. Chem. Soc. 1996, 118, 111.

Co(CO)4-

N

MePh

O

Co(CO)4 + N

MePh

O-

SETCo(CO)4

+Me

C NPh

O-H

H

MeC N

Ph

O-Co(CO)4

HMeC N

Ph

O-

H

Co(CO)4O

MeC N

H

Co(CO)4O

-

Ph

O

N

Me

H

O Ph

O

Substituents at 2-Position

N

RPh

Ph

N Ph

Ph R

O

Co2(CO)8 (8 mol%)

DME, CO (500 psi)100 oC, 14 h

cis

cis

cis

Aziridines

Stereochemistry

R ß-Lactams

Stereochemistry Yield(%)

COOCH3 - -

COCH3 - -

CHO - -

cis CH2OH trans 79

cis CH2OTBDMS trans 96

cis

cis

CH2OAc trans 86

CH2NH2 trans 68

trans

trans

CH2OH - -

CH2OTBDMS cis 40

Davoli, P.; Forni, A.; Moretti, I.; Torre, G.; Prati, F. Tetrahedron 2001, 57, 1801-1812.

Effect of Intramolecular H-Bonding

Davoli, P.; Forni, A.; Moretti, I.; Torre, G.; Prati, F. Tetrahedron 2001, 57, 1801-1812.

N

H3C

Ph

Co2(CO)8 (8mol%)

DME, CO (500psi)100 oC, 14h

OH

O

HN

Ph

O

Mechanism

CO

N

H3C

Ph

OH

N H

O(OC)4Co

PhO

HN

(OC)4Co

O

OO

HN

Ph

Ph

[Co(CO)4]

Bimetallic Catalysts

tBuO

NN

OButBu But

Al+t

Co(CO)4-

L=THFL

L

Ti+O

O[Co(CO)4]-

1

2

Mahadevan, V.; Getzler, Y. D. Y. L.; Coates, G. W. Angew. Chem. Int. Ed. 2002, 6, 2781

N

Ph

N

Ph

N

Ph

TBSO

+_

1

2N

O

Ph

90

50

1

2

NO

Ph

+_

80

<5

1

NO

Ph

TBSO

+_

TBSO

+_

Ph

O

19

..

1

95

Substrate Catalyst Product Yield[%]

Conclusions

• Mild and Efficient route to Lactones and Lactams

• Access to Bicyclic systems

• Mechanistic study helps in the design of new catalysts

Acknowledgement

• Dr. Smith• Dr. Wagner• Smith’s Group

Abbas, Aparajita, Edith, Sulagna, Washington

• Doug, Kapil, Sandeep, Nicki, Gwenn, Sue