carbonates 2 to organic - royal society of chemistry files1 aluminium salabza complexes for fixation...

26
S1 Aluminium salabza complexes for fixation of CO 2 to organic carbonates Supplementary Information L. Cuesta-Aluja, * J. Castilla and A. M. Masdeu-Bultó * Department of Physical and Inorganic Chemistry. University Rovira i Virgili. Marcel·lí Domingo, s/n. 43007 Tarragona (Spain). Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2016

Upload: phamtu

Post on 11-Mar-2018

218 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: carbonates 2 to organic - Royal Society of Chemistry fileS1 Aluminium salabza complexes for fixation of CO2 to organic carbonates Supplementary Information L. Cuesta-Aluja,* J. Castilla

S1

Aluminium salabza complexes for fixation of CO2 to organic carbonates

Supplementary Information

L. Cuesta-Aluja,* J. Castilla and A. M. Masdeu-Bultó*

Department of Physical and Inorganic Chemistry. University Rovira i Virgili. Marcel·lí

Domingo, s/n. 43007 Tarragona (Spain).

Electronic Supplementary Material (ESI) for Dalton Transactions.This journal is © The Royal Society of Chemistry 2016

Page 2: carbonates 2 to organic - Royal Society of Chemistry fileS1 Aluminium salabza complexes for fixation of CO2 to organic carbonates Supplementary Information L. Cuesta-Aluja,* J. Castilla

S2

Experimental section

General considerations

H2L was prepared following described procedures.1 All complexes were prepared using Schlenk technique under inert conditions. Epoxides were dried over CaH2, distilled and stored under inert atmosphere except 1,2-epoxyhexane, 1,2-epoxydodecane and 1-chloro-2,3-epoxypropane, which were purchased at Sigma-Aldrich and used as received. Solvents were purified by the system Braun MB SPS-800 and stored under nitrogen atmosphere. Carbon dioxide (SCF Grade, 99.999 %, Air Products) was used introducing an oxygen/moisture trap in the line (Agilent). IR spectra were recorded on a Midac Grams/386 spectrometer in ATR (range 4000-600) cm-1 or KBr range (4000- 400 cm-1). UV-visible spectra were recorded on a UV-3100PC spectrophotometer. NMR spectra were recorded at 400 MHz Varian, with peaks from solvent as references (1H NMR, 13C NMR) and aluminum nitrate (27Al NMR) as external reference. Electrospray ionization mass spectra (ESI-MS) were obtained with an Agilent Technologies mass spectrometer. Typically, a dilute solution of the compound in the indicated solvent (1:99) was delivered directly to the spectrometer source at 0.01 ml·min-1 with a Hamilton microsyringe controlled by a single-syringe infusion pump. The nebulizer tip operated at 3000–3500 V and 250 °C, and nitrogen was both the drying and a nebulizing gas. The cone voltage was 30 V. Quasi-molecular ion peaks [M-H]– (negative ion mode) or sodiated [M + Na]+ (positive ion mode) peaks were assigned on the basis of the m/z values. MALDI-TOF measurements of polymers were performed on a Voyager-DE-STR (Applied Biosystems) instrument equipped with a 337 nm nitrogen laser. All spectra were acquired in the positive ion reflector mode. Dithranol was used as matrix, which was dissolved in MeOH at a concentration of 10 mg·mL-1. The polymer (5 mg) was dissolved in 1 mL of CHCl3. 1μl of sample, 1μl of matrix and 1μl of potassium trifluoroacetate (KTFA) solution (1 mg of KTFA in 1ml of THF) were deposited consecutively on the stainless steel sample holder and allowed to dry before introduction into the mass spectrometer. Three independent measurements were made for each sample. For each spectrum 100 laser shots were accumulated. The molecular weights (Mw) of copolymers and the molecular weight distributions (Mw/Mn) were determined by gel permeation chromatography versus polystyrene standards. Measurements were made in THF on a Millipore-Waters 510 HPLC Pump device using three-serial column system (MZ-Gel 100Å, MZ-Gel 1000 Å, MZ-Gel 10000 Å linear columns) with UV-Detector (ERC-7215) and IR- Detector (ERC-7515a). The software used to get the data was NTeqGPC 5.1. Samples were prepared as follow: 5 mg of the copolymer were dissolved with 2 ml of tetrahydrofuran (HPLC grade) and using toluene (HPLC grade) as internal standard. Magnetic susceptibilities were measured on a Sherwood MSBmk1 magnetic susceptibility balance with KK105 as a calibration standard. Elemental analyses were performed at the Serveis Tècnics de Recerca from the Universitat de Girona (Spain). All catalytic tests were done by duplicate.

IR data:

1 H.-L. Chen, S. Dutta, P.-Y. Huang and C.-C. Lin, Organometallics, 2012, 31, 2016.

Page 3: carbonates 2 to organic - Royal Society of Chemistry fileS1 Aluminium salabza complexes for fixation of CO2 to organic carbonates Supplementary Information L. Cuesta-Aluja,* J. Castilla

S3

[N,N’-bis(3,5-di-tert-butylsalicylene)-2-aminobenzyl-amino]chloridoaluminium(III) (1): Selected IR bands (ATR, cm-1): 2952 m, 2904 m, 2868 m, 1615 (C=N) s, 1598 (C=N) m, 1554 m, 1540 s, 1387 m, 1360 m, 1257 (C-O) s, 1230 (C-O) m, 1202 m, 1174 s, 1037 m, 842 s, 787 m, 763 s.

[N,N’-bis(3,5-di-tert-butylsalicylene)-2-aminobenzyl-amino]chloridoiron(III) (2): Selected IR bands (ATR, cm-1): 2950 m, 2903 m, 2866 m, 1608 (C=N) s, 1592 (C=N) s, 1549 m, 1534 s, 1437 m, 1385 m, 1359 m, 1317 m, 1271 m, 1254 (C-O) s, 1226 (C-O) m, 1171 s, 855 m, 838 s, 785 m, 758 s.

(Acetato-2O,O)[N,N’-bis(3,5-di-tert-butylsalicylene)-2-aminobenzyl-amino]chloridocobalt (III) (3): Selected IR bands (ATR, cm-1): 2953 m, 2899 m, 2861 m, 1613 (C=N) s, 1602 (C=N) m, 1547 m, 1525 s, 1447 s, 1460 m, 1428 m, 1409 m, 1257 (C-O) m, 1200 m, 1166 s, 1024 m, 949 m, 781 m, 761 m, 686 m.

Aqua[N,N’-bis(3,5-di-tert-butylsalicylene)-2-aminobenzyl-amino]chloridochromium(III) (4): Selected IR bands (ATR, cm-1): 2952 m, 2904 m, 2868 m, 1611 (C=N) s, 1579, 1530 s, 1416 m, 1386 m, 1359 m, 1318 m, 1256 (C-O) s, 1225 (C-O) m, 1170 s, 1036 m, 837 s, 759 s.

Page 4: carbonates 2 to organic - Royal Society of Chemistry fileS1 Aluminium salabza complexes for fixation of CO2 to organic carbonates Supplementary Information L. Cuesta-Aluja,* J. Castilla

S4

1.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.5f1 (ppm)

9.13

8.74

7.96

7.95

1.09

1.04

1.00

0.95

0.95

1.60

1.07

1.03

1.04

0.96

1.03

CH=N

CH-3-phenol ArH

CH-5-phenol

*CDCl3

ArCH2N

tBu

Figure S1. 1H NMR spectrum of 1 in CDCl3.

30405060708090100110120130140150160170f1 (ppm)

29.5

029

.59

29.7

829

.82

31.0

431

.37

31.4

031

.56

34.0

934

.20

35.5

635

.67

62.6

3

118.

0811

9.25

123.

1512

6.78

127.

4112

7.57

128.

5113

0.08

131.

5713

2.95

138.

9613

9.55

140.

9414

1.44

148.

28

171.

58

C17b,b'

C17a,a'C18a,a'

C9

C2

C2'

C15

C16

C13

C6

C8-8'C7-7'

C12C3-3'

C5-5'

C4'

C10-4

C6'-14

Figure S2. 13C NMR spectrum of 1 in CDCl3.

16

1012

13

1415

9

NN8 8'

7 7'6

5

4 3

2 2'

3' 4'

5'

6'O O

18a

17a

18a'

17a'

Al

Cl

17b

17b

17b

17b'

17b'17b'

18b'18b'18b'18b 18b

18b

16

1012

13

1415

9

NN8 8'

7 7'6

5

4 3

2 2'

3' 4'

5'

6'O O

18a

17a

18a'

17a'

Al

Cl

17b

17b

17b

17b'

17b'17b'

18b'18b'18b'18b 18b

18b

Page 5: carbonates 2 to organic - Royal Society of Chemistry fileS1 Aluminium salabza complexes for fixation of CO2 to organic carbonates Supplementary Information L. Cuesta-Aluja,* J. Castilla

S5

1.52.02.53.03.54.04.55.05.56.06.57.07.58.08.5f2 (ppm)

2

3

4

5

6

7

8

f1 (

ppm

)

CH=N

CH-3-phenol ArH

CH-5-phenolArCH2N

*

*

CH=

N

CH-3

-phe

nol Ar

HCH

-5-p

heno

l ArCH

2N

**

Figure S3. 1H-1H COSY NMR spectrum of 1 in CDCl3.

1.52.02.53.03.54.04.55.05.56.06.57.07.58.08.5f2 (ppm)

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

f1 (

ppm

)

CH=N

CH-3-phenol ArH

CH-5-phenolArCH2N

*

*tBu

C17a,a'C18a,a'

C9

C2C2'

C15C16C13

C6

C8-8'

C7-7'

C12

C3-3'C5-5' C4'

C10-4C6'-14

C18b,b' C17b,b'

Figure S4. 1H-13C HSQC NMR spectra of 1 in CDCl3.

Page 6: carbonates 2 to organic - Royal Society of Chemistry fileS1 Aluminium salabza complexes for fixation of CO2 to organic carbonates Supplementary Information L. Cuesta-Aluja,* J. Castilla

S6

1.52.02.53.03.54.04.55.05.56.06.57.07.58.08.5f2 (ppm)

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

f1 (

ppm

)

CH=NCH-3-phenol ArH

CH-5-phenolArCH2N

*

* tBu

C17a,a'C18a,a'

C9

C2 C2'C15C16C13 C6

C8-8'

C12C3-3' C5-5' C4'

C10-4C6'-14

C18b,b'C17b,b'

C7-7'

Figure S5. 1H-13C HMBC NMR spectra of 1 in CDCl3.

Figure S6. IR spectrum of 1 in ATR (4000-600 cm-1).

Page 7: carbonates 2 to organic - Royal Society of Chemistry fileS1 Aluminium salabza complexes for fixation of CO2 to organic carbonates Supplementary Information L. Cuesta-Aluja,* J. Castilla

S7

Figure S7. HRMS (ESI) spectrum of 1.

Page 8: carbonates 2 to organic - Royal Society of Chemistry fileS1 Aluminium salabza complexes for fixation of CO2 to organic carbonates Supplementary Information L. Cuesta-Aluja,* J. Castilla

S8

Figure S8. UV-visible spectrum of 1 in CH3CN (2.5·10-5 M).

Figure S9. IR spectrum of 2 in ATR (4000-600 cm-1).

Page 9: carbonates 2 to organic - Royal Society of Chemistry fileS1 Aluminium salabza complexes for fixation of CO2 to organic carbonates Supplementary Information L. Cuesta-Aluja,* J. Castilla

S9

Figure S10. HRMS (ESI) spectrum of 2.

Page 10: carbonates 2 to organic - Royal Society of Chemistry fileS1 Aluminium salabza complexes for fixation of CO2 to organic carbonates Supplementary Information L. Cuesta-Aluja,* J. Castilla

S10

Figure S11. UV-visible spectrum of 2 in CH3CN (2.5·10-5 M).

1.01.52.02.53.03.54.04.55.05.56.06.57.07.58.0f1 (ppm)

8.54

8.48

8.99

8.31

11.2

32.

80

1.15

1.09

1.18

1.03

1.04

2.12

1.08

0.91

1.00

* CDCl3

CH=NArH

ArCH2N

CH3-OAc

tBu

tBu

tBu

Figure S12. 1H NMR spectrum of 3 in CDCl3.

Page 11: carbonates 2 to organic - Royal Society of Chemistry fileS1 Aluminium salabza complexes for fixation of CO2 to organic carbonates Supplementary Information L. Cuesta-Aluja,* J. Castilla

S11

Figure S13. IR spectrum of 3 in ATR (4000-600 cm-1)

5x10

0

0.5

1

1.5

2

2.5

3

Counts vs. Mass-to-Charge (m/z)200 400 600 800 1000 1200 1400 1600 1800 2000

+ESI Scan (0.115-0.605 min, 30 scans) Frag=80.0V LC_141024b1.d Subtract

611.3060

1267.6041

Figure S14. HRMS (ESI) spectrum of 3.

Figure S15. UV-visible spectrum of 3 in CH3CN (2.5·10-5 M).

Page 12: carbonates 2 to organic - Royal Society of Chemistry fileS1 Aluminium salabza complexes for fixation of CO2 to organic carbonates Supplementary Information L. Cuesta-Aluja,* J. Castilla

S12

Figure S16. IR spectrum of 4 in ATR (4000-600 cm-1).

5x10

0

0.5

1

1.5

2

2.5

3

Counts vs. Mass-to-Charge (m/z)100 200 300 400 500 600 700 800 900 1000 1100

+ESI Scan (0.057-0.175 min, 8 scans) Frag=120.0V LC130515e.d Subtract (2)

604.3206M*+

101.0036 726.4052

Figure S17. HRMS (ESI) spectrum of 4.

Page 13: carbonates 2 to organic - Royal Society of Chemistry fileS1 Aluminium salabza complexes for fixation of CO2 to organic carbonates Supplementary Information L. Cuesta-Aluja,* J. Castilla

S13

Table S1. Crystallographic data and details of structure refinement for compounds 2-4

2 3 4Molecular formula C78H106Cl2Fe2N4O5 C39H51CoN2O4 C43H62ClCrN2O4.50Molecular weight 1362.26 670.74 766.39Crystal system Monoclinic Monoclinic MonoclinicSpace group C2/c P2(1)/n C2/cTemp. (K) 100(2) 100(2) 100(2)Radiation (λ, Å) Mo Kα (=0.71073 Å) Mo Kα (=0.7107 Å) Mo Kα (=0.7107 Å)a (Å) 19.0813(14 13.1775(8) 30.732(5)b (Å) 19.8561(16) 23.4462(15) 12.284(2)c (Å) 20.3191(13) 13.3026(8) 26.514(4)α (º) 90 90 90β (º) 101.408(3) 117.093(2) 120.596(4)γ (º) 90 90 90Volume (Å3) 7546.4(10) 3659.0(4) 8616(2)Z 4 4 8Dx (Mg·m-3) 1.199 1.218 1.182F (000) 2912 1432 3288Crystal dimensions (mm) 0.03 x 0.02 x 0.01 0.40 x 0.30 x 0.30 0.10 x 0.10 x 0.02

µ (Mo Kα) (mm-1) 1.686 1.737 1.661θmax (º) 27.930 25.421 25.042Reflections collected 28962 - 24685Unique reflections 8355 6677 7609Rint. 0.0479 0.0492 0.1115Parameters 524 756 562R1 [I >2σ(I)] 0.0477 0.0731 0.0920

wR2 0.1009 0.1982 0.1730Δρ (e/ Å3) 0.517, -0.534 0.462, -0.510 0.459, -0.509

Page 14: carbonates 2 to organic - Royal Society of Chemistry fileS1 Aluminium salabza complexes for fixation of CO2 to organic carbonates Supplementary Information L. Cuesta-Aluja,* J. Castilla

S14

1.01.52.02.53.03.54.04.55.05.56.06.57.07.5f1 (ppm)

2.45

2.45

2.46

2.47

2.73

2.74

2.74

2.75

2.89

2.89

2.90

2.90

2.91

2.91

4.04

4.04

4.04

4.05

4.06

4.06

4.07

4.08

4.08

4.49

4.49

4.49

4.51

4.51

4.53

4.53

4.54

4.67

4.69

4.69

4.71

OHa

Hb'

Hb

CH3

O

O

O

Ha'

Hc'Hc

CH3

Ha'

HbHb'Ha

HcHc'

EH CEH

Mesitylene

Mesitylene

* CDCl3

Figure S18.1H NMR spectrum in CDCl3 of reaction crude using 1/TBAB (entry 1, Table 2).

1.21.41.61.82.02.22.42.62.83.03.23.43.63.84.04.24.44.64.85.05.25.45.65.86.06.26.46.66.87.07.27.47.6f1 (ppm)

2.24

2.24

2.24

2.38

2.39

2.40

2.40

2.71

2.71

2.71

2.94

2.94

2.95

2.95

2.95

2.96

2.96

2.97

3.97

3.99

3.99

4.01

4.50

4.52

4.52

4.54

4.80

4.80

4.81

4.81

4.81

4.83

4.83

4.83

4.85

PO PPC

O

CH3

Ha

Hb'

Hb CH3

Ha'

Hc'

HcO

O

O

Ha'

HcHc'

Ha Hb Hb'

Mesitylene

Mesitylene

* CDCl3

Figure S19.1H NMR spectrum in CDCl3 of reaction crude using 1/TBAB for the cycloaddition of CO2 to propylene oxide (Figure 5).

Page 15: carbonates 2 to organic - Royal Society of Chemistry fileS1 Aluminium salabza complexes for fixation of CO2 to organic carbonates Supplementary Information L. Cuesta-Aluja,* J. Castilla

S15

2.22.42.62.83.03.23.43.63.84.04.24.44.64.85.05.25.45.65.86.06.26.46.66.87.07.27.4f1 (ppm)

2.65

2.65

2.66

2.66

2.85

2.86

2.86

2.86

3.18

3.19

3.19

3.19

3.20

3.20

3.20

3.21

3.21

3.21

3.21

3.22

3.22

4.34

4.36

4.36

4.38

4.53

4.55

4.55

4.57

4.94

4.94

4.95

4.95

4.96

4.96

4.97

OHa

Hb'

Hb

Cl

O

O

O

Ha'

Hc'Hc

Cl

ECH ECHC

Ha'

Hc Hc'

Ha

Hb Hb'Mesitylene

Mesitylene

* CDCl3

Figure S20.1H NMR spectrum in CDCl3 of reaction crude using 1/TBAB for the cycloaddition of CO2 to 1-chloro-2,3-epoxypropane (Figure 5).

1.01.52.02.53.03.54.04.55.05.56.06.57.07.5f1 (ppm)

2.47

2.48

2.49

2.49

2.75

2.76

2.77

2.78

2.91

2.92

2.92

2.92

2.93

2.93

2.93

2.94

2.94

2.94

4.03

4.05

4.05

4.07

4.48

4.50

4.52

4.66

4.68

4.68

Mesitylene

Mesitylene

* CDCl3

ETD CETD

OHa

Hb'Hb

CH3

Ha'

Hc'Hc

O

O

O

CH3

Ha' Hc Hc'

Ha

HbHb'

Figure S21.1H NMR spectrum in CDCl3 of reaction crude using 1/TBAB for the cycloaddition of CO2 to 1,2-epoxyteradecane (Figure 5).

Page 16: carbonates 2 to organic - Royal Society of Chemistry fileS1 Aluminium salabza complexes for fixation of CO2 to organic carbonates Supplementary Information L. Cuesta-Aluja,* J. Castilla

S16

2.22.42.62.83.03.23.43.63.84.04.24.44.64.85.05.25.45.65.86.06.26.46.66.87.07.27.47.6f1 (ppm)

2.81

2.82

2.82

2.83

3.15

3.16

3.16

3.17

3.87

3.88

3.88

3.89

4.32

4.34

4.36

4.77

4.79

4.81

5.65

5.67

5.69

7.29

7.31

7.31

7.32

7.34

7.34

7.35

7.37

7.37

Hb

Hc' HcHd

O

Ha

Ha'Hb

Hc

Hc'Hd OO

O

Ha'Ha

Styrene oxide Styrene carbonate

Mesitylene

Mesitylene

Figure S22.1H NMR spectrum in CDCl3 of reaction crude using 1/TBAB for the cycloaddition of CO2 to styrene oxide (Figure 5).

2.02.22.42.62.83.03.23.43.63.84.04.24.44.64.85.05.25.45.65.86.06.26.46.66.87.07.27.47.6f1 (ppm)

2.62

2.63

2.64

2.64

2.72

2.73

2.74

2.75

3.07

3.08

3.08

3.08

3.09

4.33

4.35

4.35

4.37

4.44

4.46

4.48

4.73

4.73

4.73

4.74

4.75

4.75

4.75

4.75

4.76

4.76

4.76

4.77

4.77

Hb

Hc'

Hc

Hd

Ha'

HaMesitylene

Mesitylene

O

OH

Hb

Ha

Ha'

OH

Hd

Hc

Hc'OO

O

glycidol Glycidol carbonate

Figure S23. 1H NMR spectrum in CDCl3 of reaction crude using 1/TBAB for the cycloaddition of CO2 to glycidol (Figure 5).

Page 17: carbonates 2 to organic - Royal Society of Chemistry fileS1 Aluminium salabza complexes for fixation of CO2 to organic carbonates Supplementary Information L. Cuesta-Aluja,* J. Castilla

S17

1.01.41.82.22.63.03.43.84.24.65.05.45.86.26.67.07.27.4f1 (ppm)

CisTrans

MEO

Mesitylene

Mesitylene

Figure S24.1H NMR spectrum in CDCl3 of reaction crude using 1/TBAB for the cycloaddition of CO2 to methyl epoxioleate (Figure 5).

OO

O

O

O

7 7

O

O

7 7

O

OO

O

O

O

7 7

Cis

Trans

MEO

Page 18: carbonates 2 to organic - Royal Society of Chemistry fileS1 Aluminium salabza complexes for fixation of CO2 to organic carbonates Supplementary Information L. Cuesta-Aluja,* J. Castilla

S18

1.01.21.41.61.82.02.22.42.62.83.03.23.43.63.84.04.24.44.64.85.0f1 (ppm)

2.63

0.08

4.44

cis-CHC

trans-CHC

CHO

PCHC

Mesitylene

Figure S25.1H NMR spectrum in CDCl3 of reaction crude using 1/PPNCl for the coupling of CO2 to cyclohexene oxide (entry 2, Table 3).

1.11.31.51.71.92.12.32.52.72.93.13.33.53.73.94.14.34.54.74.9f1 (ppm)

0.04

1.00

Ha/Ha'

Hb Hc

Figure S26.1H NMR spectrum in CDCl3 of pure polycarbonate obtained using 1/PPNCl from CO2 and cyclohexene oxide (entry 2, Table 3).

Page 19: carbonates 2 to organic - Royal Society of Chemistry fileS1 Aluminium salabza complexes for fixation of CO2 to organic carbonates Supplementary Information L. Cuesta-Aluja,* J. Castilla

S19

Figure S27. GPC chromatogram of PCHC obtained using 1/PPNCl (entry 3, Table 3).

Page 20: carbonates 2 to organic - Royal Society of Chemistry fileS1 Aluminium salabza complexes for fixation of CO2 to organic carbonates Supplementary Information L. Cuesta-Aluja,* J. Castilla

S20

Kinetic studies

0 200 400 6000

20

40

60

80

100

120

140

160

Time (min)

SO r

emai

ning

(mm

ol)

(a)

0 200 400 600 8000

1

2

3

4

5

6

Time (min)

ln [S

O]

(b)

Fig. S28 (a) Styrene oxide conversion for 1/TBAB catalytic system as a function of time. (b) Pseudo-first order kinetic plot of styrene oxide concentration against time for the 1/TBAB catalytic system. Reaction conditions: T = 80 ºC, PCO2 = 10 bar, TBAB 0.2 mol %, catalyst 0.2 mol %.

Page 21: carbonates 2 to organic - Royal Society of Chemistry fileS1 Aluminium salabza complexes for fixation of CO2 to organic carbonates Supplementary Information L. Cuesta-Aluja,* J. Castilla

S21

0 100 200 300 400 500 600 7000

50

100

150

200

0.1 mol % 0.2 mol % 0.3 mol %0.4 mol %

Time (min)

SO r

emai

ning

(mm

ol)

Figure S29. Styrene oxide conversion using 1/TBAB catalytic system as a function of time at four different concentrations of 1. Reaction conditions: T = 80 ºC, PCO2 = 10 bar, TBAB 0.2 mol %, catalyst 0.1-0.4 mol%.

0 100 200 300 400 500 600 7002.9

3.4

3.9

4.4

4.9

5.40.1 mol%0.2 mol%0.3 mol%0.4 mol%

Time (min)

ln [S

O]

(a)

Figure S30. Logarithm of styrene oxide conversion using 1/TBAB catalytic system as a function of time at four different concentrations of 1. Reaction conditions: T = 80 ºC, PCO2 = 10 bar, TBAB 0.2 mol %, catalyst 0.1-0.4 mol%.

Page 22: carbonates 2 to organic - Royal Society of Chemistry fileS1 Aluminium salabza complexes for fixation of CO2 to organic carbonates Supplementary Information L. Cuesta-Aluja,* J. Castilla

S22

-2.4 -2.2 -2 -1.8 -1.6 -1.4 -1.2 -1 -0.8-6.6

-6.4

-6.2

-6

-5.8

-5.6

-5.4

ln [cat]

ln (k

obs)

Figure S31. Double logarithm plot of ln (kobs) respect to ln [1] at for different concentrations of 1 (0.1-0.4 mol %). Reaction conditions: T = 80 ºC, PCO2 = 10 bar, TBAB 0.2 mol %, catalyst 0.1-0.4 mol%.

0 100 200 300 400 500 600 7000

50

100

150

200

0,4 mol% 0.2 mol % 1,0 mol% 0,7 mol%

Time (min)

SO r

emai

ning

(mm

ol)

Figure S32. Styrene oxide conversion for the 1/TBAB catalytic system as a function of time at four different concentrations of TBAB. Reaction conditions: T = 80 ºC, PCO2 = 10 bar, catalyst 0.2 mol %, TBAB 0.2-1.0 mol %.

Page 23: carbonates 2 to organic - Royal Society of Chemistry fileS1 Aluminium salabza complexes for fixation of CO2 to organic carbonates Supplementary Information L. Cuesta-Aluja,* J. Castilla

S23

0 100 200 300 400 500 600 7002.8

3.3

3.8

4.3

4.8

5.3

0.2 mol% TBAB0.4 mol% TBAB0.7 mol% TBAB1.0 mol% TBAB

Time (min)

ln [S

O]

(a)

Figure S33. Logarithm of styrene oxide conversion for the 1/TBAB catalytic system as a function of time at four different concentrations of TBAB. Reaction conditions: T = 80 ºC, PCO2

= 10 bar, catalyst 0.2 mol %, TBAB 0.2-1.0 mol %.

-1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2-6.5

-6

-5.5

-5

-4.5

-4

ln [TBAB]

ln [k

obs]

Figure S34. Double logarithm plot of ln (kobs) respect to ln [TBAB] at four different concentrations of TBAB (0.2-1.0 mol %). Reaction conditions: T = 80 ºC, PCO2 = 10 bar, catalyst 0.2 mol %, TBAB 0.2-1.0 mol %.

Page 24: carbonates 2 to organic - Royal Society of Chemistry fileS1 Aluminium salabza complexes for fixation of CO2 to organic carbonates Supplementary Information L. Cuesta-Aluja,* J. Castilla

S24

0 100 200 300 400 500 600 7002

22

42

62

82

102

122

142

162

40 bar 10 bar 30 bar 20 bar

Time (min)

SO r

emai

ning

(mm

ol)

Figure S35. Styrene oxide conversion for the 1/TBAB catalytic system as a function of time at four different CO2 pressures. Reaction conditions: T = 80 ºC, catalyst 0.2 mol %, TBAB 0.2 mol %.

0 100 200 300 400 500 600 7002

2.5

3

3.5

4

4.5

5

5.510 bar20 bar30 bar40 bar

Time (min)

ln [S

O]

Figure S36. Logarithm of styrene oxide conversion for the 1/TBAB catalytic system as a function of time at four different CO2 pressures. Reaction conditions: T = 80 ºC, catalyst 0.2 mol %, TBAB 0.2 mol %.

Page 25: carbonates 2 to organic - Royal Society of Chemistry fileS1 Aluminium salabza complexes for fixation of CO2 to organic carbonates Supplementary Information L. Cuesta-Aluja,* J. Castilla

S25

0 100 200 300 400 500 600 7000

20406080

100120140160180

45 ºC 60 ºC 80 ºC 100 ºC

Time (min)

SO r

emai

ning

(mm

ol)

Figure S37. Styrene oxide conversion for the 1/TBAB catalytic system as a function of time at four different temperatures. Reaction conditions: PCO2: 10 bar, catalyst 0.2 mol %, TBAB 0.2 mol %.

0 100 200 300 400 500 600 7002.7

3.2

3.7

4.2

4.7

5.2

45 ºC60 ºC80 ºC100 ºC

Time (min)

ln [S

O]

Figure S38. Logarithm of the styrene oxide concentration using 1/TBAB catalytic system as a function of time at four different temperatures. Reaction conditions: PCO2: 10 bar, catalyst 0.2 mol %, TBAB 0.2 mol %.

Page 26: carbonates 2 to organic - Royal Society of Chemistry fileS1 Aluminium salabza complexes for fixation of CO2 to organic carbonates Supplementary Information L. Cuesta-Aluja,* J. Castilla

S26

0.0026 0.0028 0.003 0.0032 0.0034-8

-7.5

-7

-6.5

-6

-5.5

-5

1/T [1/K]

ln k

Ea=38.0

Figure S39. Arrehnius plot of the reaction of styrene oxide with CO2 using 1/TBAB as catalytic system. Reaction conditions: PCO2: 10 bar, catalyst 0.2 mol %, TBAB 0.2 mol %.