carbon isotopes in the in-medium ncsm - tobias mongellic h i [f m] 0+ 1 iground state energy,...

10
Carbon Isotopes in the In-Medium NCSM Tobias Mongelli Carbon Isotopes in the In-Medium NCSM Tobias Mongelli and Robert Roth In-Medium NCSM • "new" ab initio many-body methods for the description of ground and excited states in open-shell nuclei • No-Core Shell Model (NCSM) [1] limited by basis dimension, scaling with particle number, computational characteristics • In-Medium SRG [2, 3] basic formulation limited to ground states • idea: combine NCSM with IM-SRGIn-Medium NCSM[4] NCSM IM-SRG NCSM NCSM calculation in small model space defines reference state |Ψ= c|Φmulti-reference IM-SRG aims at decoupling the reference state|Ψfrom generalized ph excitations in a magnus expansion formalism d ds ˆ Ω(s)= Bk! ˆ Ω(s)η(s) compute the desired operators ˆ O(s) using the BCH series ˆ O(s)= 1 k! ˆ Ω(s)O(0) use IM-SRG-evolved operators ˆ O(s) as input for subsequent NCSM calculation • transformation of non-scalar operators for B(E2) transition strengths and electric quadrupole moments Uncertainty Estimation • full uncertainty estimation with order by order convergence and many-body uncertainties with the newest chiral two- plus three-nucleon interactions[5] δX=Q|X|, δX=max Q|X|,Q|ΔX| for i 2 • many-body uncertaintymaximum of the absolute difference between the observable at the two largest values of NandN12C-NmaxConvergence 12C - Order by Order Convergence & Correlation Carbon Isotopic Chain • ground state energy, spectra, B(E2) transitions, quadrupole moments and charge radii for carbon chain as a function of Afor N= 2 andN=4 Outlook • compare B(E2) transition to pure NCSM calculations interaction or truncation problem for C? • use other cutoffs and interaction families (LENPIC collaboration) • consistent freespace SRG for all operators (B(E2), Q, R) • compute B(M1) transitions for carbon chain • compute observables for other isotopic chains like fluorine or neon • flow evolution for C decoupling accelerates NCSM convergence • off-diagonal part becomes suppressed during the flow • with growingN, the energy at integration step zero decreases • interaction: NLO+NLO, α= 0.04 fm, ħ hΩ=20MeV, natural orbital basis • spectrum, B(E2) transitions and quadrupole moment for C • error bars indicate many-body uncertainties • excellent agreement with experimental values[6, 7] • EMN interaction performs well for these observables inC • spectrum, B(E2) transitions and quadrupole moment for C for N= 4 andΛ= 500 MeV • error bars indicate many-body uncertainties • error bands indicate interaction uncertainties • excellent agreement with experimental values also for NLO • uncertainty bands shrink with higher order • correlation between B(E2) transition and quadrupole moment with combined many-body and interaction uncertainties • strong correlation behaviour between these observables • rigid rotor model slightly misses the predicted correlation • Bohr Mottelson model matches well with data from In-Medium NCSM • value for Q(2) can be estimated by using the Bohr Mottelson model • error bands indicate combined many-body and interaction uncertainties • ground state energies agree with experimental values 2exictation energy in reasonable agreement with experiment • B(E2) transitions for C andC agree well with the experiment, but other isotopes show underestimation interaction problem or missing higher-body contributions • quadrupole moment for C agrees well with the experiment • charge radius for C is overestimated but fits well for C compared to the experiment, for others no experimental data available March 3, 2020 | Institut für Kernphysik, TU Darmstadt | Progress in Ab Initio Techniques in Nuclear Physics | Tobias Mongelli | 1

Upload: others

Post on 21-Oct-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

  • Carbon Isotopes in the In-Medium NCSMTobias Mongelli

    Carbon Isotopesin the In-Medium NCSMTobias Mongelli and Robert Roth

    In-Medium NCSM

    • "new" ab initio many-body methods for the description of ground and excited states inopen-shell nuclei

    • No-Core Shell Model (NCSM) [1]   limited by basis dimension, scaling with particlenumber, computational characteristics

    • In-Medium SRG [2, 3]   basic formulation limited to ground states• idea: combine NCSM with IM-SRG   In-Medium NCSM[4]

    NCSM

    IM-SRG

    NCSM

    • NCSM calculation in small model space defines reference state

    |Ψref〉=∑

    i

    ci |Φi〉

    • multi-reference IM-SRG aims at decoupling the reference state |Ψref〉 fromgeneralized ph excitations in a magnus expansion formalism

    ddsΩ̂(s) =

    ∞∑k=0

    Bkk!

    �Ω̂(s), η̂(s)

    �k

    • compute the desired operators Ô(s) using the BCH series

    Ô(s) =∞∑k=0

    1k!

    �Ω̂(s), Ô(0)

    �k

    • use IM-SRG-evolved operators Ô(s) as input for subsequent NCSMcalculation

    • transformation of non-scalar operators for B(E2) transition strengths and electricquadrupole moments

    Uncertainty Estimation

    • full uncertainty estimation with order by order convergence and many-bodyuncertainties with the newest chiral two- plus three-nucleon interactions[5]

    δX (0) =Q2|X (0)|, δX (i) = max2≤ j≤i

    �Qi+1|X (0)|,Qi+1− j|∆X ( j)|� for i ≥ 2

    • many-body uncertainty   maximum of the absolute difference between theobservable at the two largest values of Nmax and N

    refmax

    12C - Nmax Convergence

    12C - Order by Order Convergence & Correlation

    Carbon Isotopic Chain

    • ground state energy, spectra, B(E2) transitions, quadrupole moments and charge radiifor carbon chain as a function of A for N refmax = 2 and Nmax = 4

    Outlook

    • compare B(E2) transition to pure NCSM calculations   interaction or truncationproblem for 16C?

    • use other cutoffs and interaction families (LENPIC collaboration)

    • consistent freespace SRG for all operators (B(E2), Q, Rch)

    • compute B(M1) transitions for carbon chain

    • compute observables for other isotopic chains like fluorine or neon

    References:[1] R. Roth, Phys. Rev. C 79, 064324 (2009).[2] K. Tsukiyama, S. K. Bogner, and A. Schwenk, Phys. Rev.

    Lett. 106, 222502 (2011).

    [3] H. Hergert, S. K. Bogner, S. Binder, A. Calci, et al.,Phys. Rev. C 87, 034307 (2013).

    [4] E. Gebrerufael, K. Vobig, H. Hergert, and R. Roth, Phys.Rev. Lett. 118, 152503 (2017).

    [5] T. Hüther, K. Vobig, K. Hebeler, R. Machleidt, et al.,arXiv:1911.04955v1 (2019).

    [6] NNDC, ENSDF (https://www.nndc.bnl.gov/) (2019).[7] W. Vermeer et al., en, Phys. Lett. B 122, 23 (1983).

    0 20 40 60 80s

    90

    80

    70

    60

    50

    40

    E[M

    eV]

    12C

    0+1

    IMSRG-Flow Nrefmax = 2IM-SRGNmax = 2Nmax = 4Nmax = 6Nmax = 8

    Nmax = 2, s=0 Nmax = 2, s=90

    • flow evolution for 12C  decoupling accelerates NCSMconvergence

    • off-diagonal part becomessuppressed during the flow

    • with growing Nmax, the energyat integration step zerodecreases

    • interaction: N3LOEMN,500+N3LONL,500, α = 0.04 fm

    4, ħhΩ= 20 MeV,natural orbital basis

    0

    10

    20

    E* [M

    eV] 1+1

    2+1

    0+1

    2+212C

    Nrefmax = 0

    1+1

    2+1

    0+1

    2+212C

    Nrefmax = 2

    1+1

    2+10+1

    2+212C

    Nrefmax = 4

    0+1

    2+1

    1+1

    4+1

    2+2Exp

    0

    5

    10

    B(E2

    ) [e2

    fm4 ] 2+1 0+1

    12C2+1 0+1

    12C2+1 0+1

    12C2+1 0+1

    0 2 4Nmax

    4

    6

    8

    Q [e

    fm2 ]

    2+1

    12C

    2 4Nmax

    2+1

    12C

    4Nmax

    2+1

    12C

    2+1

    • spectrum, B(E2) transitionsand quadrupole moment for12C

    • error bars indicate many-bodyuncertainties

    • excellent agreement withexperimental values[6, 7]

    • EMN interaction performs wellfor these observables in 12C

    0

    5

    10

    15

    E* [M

    eV] 1+1

    2+1

    4+1

    0+1

    12CNrefmax = 0

    1+1

    2+1

    4+1

    0+1

    12CNrefmax = 2

    1+1

    2+1

    4+1

    0+1

    12CNrefmax = 4

    0+1

    2+1

    1+1

    4+1

    Exp

    0

    5

    10

    B(E2

    ) [e2

    fm4 ] 2+1 0+1

    12C2+1 0+1

    12C2+1 0+1

    12C2+1 0+1

    NLO N2LO N3LOChiral Order

    4

    6

    8

    Q [e

    fm2 ]

    2+1

    12C

    NLO N2LO N3LOChiral Order

    2+1

    12C

    NLO N2LO N3LOChiral Order

    2+1

    12C

    2+1

    • spectrum, B(E2) transitions andquadrupole moment for 12C forNmax = 4 and Λ = 500 MeV

    • error bars indicate many-bodyuncertainties

    • error bands indicate interactionuncertainties

    • excellent agreement withexperimental values also for N2LO

    • uncertainty bands shrink with higherorder

    3 4 5 6 7 8 9Q(2 +1 )[efm2]

    4

    5

    6

    7

    8

    9

    B (E2

    ,2+ 1

    0+ 1)[e

    2 fm

    4 ]

    450MeV500MeV550MeVN3LON2LOExperimentBohr MottelsonRigid Rotor

    • correlation between B(E2) transitionand quadrupole moment with combinedmany-body and interaction uncertainties

    • strong correlation behaviour betweenthese observables

    • rigid rotor model slightly misses thepredicted correlation

    • Bohr Mottelson model matches wellwith data from In-Medium NCSM

    • value for Q(2+) can be estimated byusing the Bohr Mottelson model

    125

    100

    75

    E [M

    eV]

    0+1

    N3LON2LO

    0

    5

    10

    E* [M

    eV]

    2+1

    0

    5

    B(E2

    ) [e2

    fm4 ]

    2+1 0+1

    0

    5

    Q [e

    fm2 ] 2

    +1

    C10 C12 C14 C16 C202.4

    2.6

    R ch [

    fm] 0+1

    • error bands indicate combinedmany-body and interactionuncertainties

    • ground state energies agree withexperimental values

    • 2+1 exictation energy in reasonableagreement with experiment

    • B(E2) transitions for 12C and 14Cagree well with the experiment, butother isotopes show underestimation  interaction problem or missinghigher-body contributions

    • quadrupole moment for 12C agreeswell with the experiment

    • charge radius for 12C is overestimatedbut fits well for 14C compared to theexperiment, for others noexperimental data available

    March 3, 2020 | Institut für Kernphysik, TU Darmstadt | Progress in Ab Initio Techniques in Nuclear Physics | Tobias Mongelli | 1

  • Motivation

    I "new" ab initio many-body methods for the description of groundand excited states in open-shell nuclei

    I No-Core Shell Model (NCSM) limited by basis dimension, scaling with particle number

    I In-Medium SRG basic formulation limited to ground states

    I idea: combine NCSM with IM-SRG In-Medium NCSM

    chiralinteraction

    Free-SpaceSRG In-Medium

    SRG

    many-bodymethods

    March 3, 2020 | Institut für Kernphysik, TU Darmstadt | Progress in Ab Initio Techniques in Nuclear Physics | Tobias Mongelli | 2

  • In-Medium No-Core Shell Model

    NCSM

    IM-SRG

    NCSM

    March 3, 2020 | Institut für Kernphysik, TU Darmstadt | Progress in Ab Initio Techniques in Nuclear Physics | Tobias Mongelli | 3

    I NCSM calculation in small model space defines reference state

    |Ψref〉 =∑i

    ci |Φi〉

  • In-Medium No-Core Shell Model

    NCSM

    IM-SRG

    NCSM

    March 3, 2020 | Institut für Kernphysik, TU Darmstadt | Progress in Ab Initio Techniques in Nuclear Physics | Tobias Mongelli | 3

    I NCSM calculation in small model space defines reference state

    |Ψref〉 =∑i

    ci |Φi〉

    I perform multi-reference IM-SRG aiming at decoupling referencestate from generalized ph-excitations in a magnus formalism

    d

    dsΩ̂(s) =

    ∞∑k=0

    Bk

    k!

    [Ω̂(s), η̂(s)

    ]k, Ô(s) =

    ∞∑k=0

    1

    k!

    [Ω̂(s), Ô(0)

    ]k

  • In-Medium No-Core Shell Model

    NCSM

    IM-SRG

    NCSM

    March 3, 2020 | Institut für Kernphysik, TU Darmstadt | Progress in Ab Initio Techniques in Nuclear Physics | Tobias Mongelli | 3

    I NCSM calculation in small model space defines reference state

    |Ψref〉 =∑i

    ci |Φi〉

    I perform multi-reference IM-SRG aiming at decoupling referencestate from generalized ph-excitations in a magnus formalism

    d

    dsΩ̂(s) =

    ∞∑k=0

    Bk

    k!

    [Ω̂(s), η̂(s)

    ]k, Ô(s) =

    ∞∑k=0

    1

    k!

    [Ω̂(s), Ô(0)

    ]k

    I use IM-SRG-evolved (non-scalar) operators Ô(s) as input forsubsequent NCSM calculation

    I convergence of NCSM calculation massively improved w.r.t. Nmax

  • Interaction Details

    I N3LOEMN,500 + N3LONL,500

    I order by order uncertainty quantification

    I interaction performs well for oxygen isotopes also for carbon isotopic chain?

    March 3, 2020 | Institut für Kernphysik, TU Darmstadt | Progress in Ab Initio Techniques in Nuclear Physics | Tobias Mongelli | 4

  • 12C Order-by-Order Convergence

    March 3, 2020 | Institut für Kernphysik, TU Darmstadt | Progress in Ab Initio Techniques in Nuclear Physics | Tobias Mongelli | 5

    0

    5

    10

    15

    E* [M

    eV] 1+1

    2+1

    4+1

    0+1

    12CNrefmax = 0

    1+1

    2+1

    4+1

    0+1

    12CNrefmax = 2

    1+1

    2+1

    4+1

    0+1

    12CNrefmax = 4

    0+1

    2+1

    1+1

    4+1

    Exp

    0

    5

    10

    B(E2

    ) [e2

    fm4 ] 2+1 0+1

    12C2+1 0+1

    12C2+1 0+1

    12C2+1 0+1

    NLO N2LO N3LOChiral Order

    4

    6

    8

    Q [e

    fm2 ]

    2+1

    12C

    NLO N2LO N3LOChiral Order

    2+1

    12C

    NLO N2LO N3LOChiral Order

    2+1

    12C

    2+1

    I spectrum, B(E2)transition strength andquadrupole moment vs.interaction order

    I error bars indicatemany-body uncertainties,error bands interactionuncertainties

    I excellent agreement withexperiment regardingcombined many-bodyand interactionuncertainties

  • Carbon Chain

    March 3, 2020 | Institut für Kernphysik, TU Darmstadt | Progress in Ab Initio Techniques in Nuclear Physics | Tobias Mongelli | 6

    125

    100

    75

    E [M

    eV]

    0+1

    N3LON2LO

    0

    5

    10

    E* [M

    eV]

    2+1

    0

    5

    B(E2

    ) [e2

    fm4 ]

    2+1 0+1

    0

    5

    Q [e

    fm2 ] 2

    +1

    C10 C12 C14 C16 C202.4

    2.6

    R ch [

    fm] 0+1

    I ground state energy, spectra, B(E2)transition strengths, quadrupole momentsand charge radii as function of A

    I combined many-body and interactionuncertainties

    I ground state energies agree well withexperimental data

    I underestimation of B(E2) transitionstrengths for 10C, 16C and 20C interaction or missing higher-bodycontributions

    I charge radius of 12C overestimated

  • Epilogue

    I Thanks to my groupI S. Alexa, T. Hüther, L. Mertes, J. Müller, M. Knöll,

    R. Roth, K. Vobig, T. Wolfgruber Institut für Kernphysik, TU Darmstadt

    I Special Thanks toI H. Hergert, R. Wirth Facility for Rare Isotope Beams, Michigan State University

    I A. Tichai Max-Planck-Institut für Kernphysik, Heidelberg

    I Thank you for your attention!LICHTENBERG

    COMPUTING TIME

    March 3, 2020 | Institut für Kernphysik, TU Darmstadt | Progress in Ab Initio Techniques in Nuclear Physics | Tobias Mongelli | 7

  • See you at the Poster

    Carbon Isotopesin the In-Medium NCSMTobias Mongelli and Robert Roth

    In-Medium NCSM

    • "new" ab initio many-body methods for the description of ground and excited states inopen-shell nuclei

    • No-Core Shell Model (NCSM) [1]   limited by basis dimension, scaling with particlenumber, computational characteristics

    • In-Medium SRG [2, 3]   basic formulation limited to ground states• idea: combine NCSM with IM-SRG   In-Medium NCSM[4]

    NCSM

    IM-SRG

    NCSM

    • NCSM calculation in small model space defines reference state

    |Ψref〉=∑

    i

    ci |Φi〉

    • multi-reference IM-SRG aims at decoupling the reference state |Ψref〉 fromgeneralized ph excitations in a magnus expansion formalism

    ddsΩ̂(s) =

    ∞∑k=0

    Bkk!

    �Ω̂(s), η̂(s)

    �k

    • compute the desired operators Ô(s) using the BCH series

    Ô(s) =∞∑k=0

    1k!

    �Ω̂(s), Ô(0)

    �k

    • use IM-SRG-evolved operators Ô(s) as input for subsequent NCSMcalculation

    • transformation of non-scalar operators for B(E2) transition strengths and electricquadrupole moments

    Uncertainty Estimation

    • full uncertainty estimation with order by order convergence and many-bodyuncertainties with the newest chiral two- plus three-nucleon interactions[5]

    δX (0) =Q2|X (0)|, δX (i) = max2≤ j≤i

    �Qi+1|X (0)|,Qi+1− j|∆X ( j)|� for i ≥ 2

    • many-body uncertainty   maximum of the absolute difference between theobservable at the two largest values of Nmax and N

    refmax

    12C - Nmax Convergence

    12C - Order by Order Convergence & Correlation

    Carbon Isotopic Chain

    • ground state energy, spectra, B(E2) transitions, quadrupole moments and charge radiifor carbon chain as a function of A for N refmax = 2 and Nmax = 4

    Outlook

    • compare B(E2) transition to pure NCSM calculations   interaction or truncationproblem for 16C?

    • use other cutoffs and interaction families (LENPIC collaboration)

    • consistent freespace SRG for all operators (B(E2), Q, Rch)

    • compute B(M1) transitions for carbon chain

    • compute observables for other isotopic chains like fluorine or neon

    References:[1] R. Roth, Phys. Rev. C 79, 064324 (2009).[2] K. Tsukiyama, S. K. Bogner, and A. Schwenk, Phys. Rev.

    Lett. 106, 222502 (2011).

    [3] H. Hergert, S. K. Bogner, S. Binder, A. Calci, et al.,Phys. Rev. C 87, 034307 (2013).

    [4] E. Gebrerufael, K. Vobig, H. Hergert, and R. Roth, Phys.Rev. Lett. 118, 152503 (2017).

    [5] T. Hüther, K. Vobig, K. Hebeler, R. Machleidt, et al.,arXiv:1911.04955v1 (2019).

    [6] NNDC, ENSDF (https://www.nndc.bnl.gov/) (2019).[7] W. Vermeer et al., en, Phys. Lett. B 122, 23 (1983).

    0 20 40 60 80s

    90

    80

    70

    60

    50

    40

    E[M

    eV]

    12C

    0+1

    IMSRG-Flow Nrefmax = 2IM-SRGNmax = 2Nmax = 4Nmax = 6Nmax = 8

    Nmax = 2, s=0 Nmax = 2, s=90

    • flow evolution for 12C  decoupling accelerates NCSMconvergence

    • off-diagonal part becomessuppressed during the flow

    • with growing Nmax, the energyat integration step zerodecreases

    • interaction: N3LOEMN,500+N3LONL,500, α = 0.04 fm

    4, ħhΩ= 20 MeV,natural orbital basis

    0

    10

    20

    E* [M

    eV] 1+1

    2+1

    0+1

    2+212C

    Nrefmax = 0

    1+1

    2+1

    0+1

    2+212C

    Nrefmax = 2

    1+1

    2+10+1

    2+212C

    Nrefmax = 4

    0+1

    2+1

    1+1

    4+1

    2+2Exp

    0

    5

    10

    B(E2

    ) [e2

    fm4 ] 2+1 0+1

    12C2+1 0+1

    12C2+1 0+1

    12C2+1 0+1

    0 2 4Nmax

    4

    6

    8

    Q [e

    fm2 ]

    2+1

    12C

    2 4Nmax

    2+1

    12C

    4Nmax

    2+1

    12C

    2+1

    • spectrum, B(E2) transitionsand quadrupole moment for12C

    • error bars indicate many-bodyuncertainties

    • excellent agreement withexperimental values[6, 7]

    • EMN interaction performs wellfor these observables in 12C

    0

    5

    10

    15

    E* [M

    eV] 1+1

    2+1

    4+1

    0+1

    12CNrefmax = 0

    1+1

    2+1

    4+1

    0+1

    12CNrefmax = 2

    1+1

    2+1

    4+1

    0+1

    12CNrefmax = 4

    0+1

    2+1

    1+1

    4+1

    Exp

    0

    5

    10

    B(E2

    ) [e2

    fm4 ] 2+1 0+1

    12C2+1 0+1

    12C2+1 0+1

    12C2+1 0+1

    NLO N2LO N3LOChiral Order

    4

    6

    8

    Q [e

    fm2 ]

    2+1

    12C

    NLO N2LO N3LOChiral Order

    2+1

    12C

    NLO N2LO N3LOChiral Order

    2+1

    12C

    2+1

    • spectrum, B(E2) transitions andquadrupole moment for 12C forNmax = 4 and Λ = 500 MeV

    • error bars indicate many-bodyuncertainties

    • error bands indicate interactionuncertainties

    • excellent agreement withexperimental values also for N2LO

    • uncertainty bands shrink with higherorder

    3 4 5 6 7 8 9Q(2 +1 )[efm2]

    4

    5

    6

    7

    8

    9

    B (E2

    ,2+ 1

    0+ 1)[e

    2 fm

    4 ]

    450MeV500MeV550MeVN3LON2LOExperimentBohr MottelsonRigid Rotor

    • correlation between B(E2) transitionand quadrupole moment with combinedmany-body and interaction uncertainties

    • strong correlation behaviour betweenthese observables

    • rigid rotor model slightly misses thepredicted correlation

    • Bohr Mottelson model matches wellwith data from In-Medium NCSM

    • value for Q(2+) can be estimated byusing the Bohr Mottelson model

    125

    100

    75

    E [M

    eV]

    0+1

    N3LON2LO

    0

    5

    10

    E* [M

    eV]

    2+1

    0

    5

    B(E2

    ) [e2

    fm4 ]

    2+1 0+1

    0

    5

    Q [e

    fm2 ] 2

    +1

    C10 C12 C14 C16 C202.4

    2.6

    R ch [

    fm] 0+1

    • error bands indicate combinedmany-body and interactionuncertainties

    • ground state energies agree withexperimental values

    • 2+1 exictation energy in reasonableagreement with experiment

    • B(E2) transitions for 12C and 14Cagree well with the experiment, butother isotopes show underestimation  interaction problem or missinghigher-body contributions

    • quadrupole moment for 12C agreeswell with the experiment

    • charge radius for 12C is overestimatedbut fits well for 14C compared to theexperiment, for others noexperimental data available

    March 3, 2020 | Institut für Kernphysik, TU Darmstadt | Progress in Ab Initio Techniques in Nuclear Physics | Tobias Mongelli | 8