carbon and coal based materials of high added value - research at … dworak.pdf · 2019. 2. 8. ·...

26
Carbon and coal based materials of high added value - research at CMPW PAN Andrzej Dworak

Upload: others

Post on 22-Oct-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

  • Carbon and coal based materials of high added value

    - research at CMPW PAN

    Andrzej Dworak

  • CMPW PAN (previously Institute of Coal Chemistry PAS)

    Structure and properties of coals and basic methods of their processing

    1986-2002- Brown coals- Hard coals

    1997- 2008- Anthracites- Cokes- Pyrolysed vascular plants

    Development of the basis of technology for obtaining carbon materials with specific properties

    2006 – currently

    – non-energetic application of natural carbon materials(carbon fillers of polymer composites, catalyst carriers, sorbents)

    – synthetic carbon materials from various precursors (natural and others) preparation and application

    Two-phase model of coal structure

    /A. Marzec, 1985/

    Cross-links

    Acceptor-donor

    bonds

    Molecular

    phase

  • Anthracite

    Semi-graphite Graphite

    Diamond

    Natural carbon materials

    High rank bituminous coal

    Turbostratic structure

    Graphite-like and graphitic structure

    http://www.google.pl/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&docid=Q_uVrb08ylmgMM&tbnid=tQ0hPKuthdC7TM:&ved=0CAUQjRw&url=http%3A%2F%2Fpl.wikinews.org%2Fwiki%2F2009-08-14%3A_Naukowcy_odkryli_now%25C4%2585_odmian%25C4%2599_w%25C4%2599gla&ei=FGfPU4fAHsnFPZn8gdAF&bvm=bv.71667212,d.ZWU&psig=AFQjCNF_u7_SJQU2Z_EOTt5izYgFOvZ7zg&ust=1406187643409531http://www.google.pl/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&docid=Q_uVrb08ylmgMM&tbnid=tQ0hPKuthdC7TM:&ved=0CAUQjRw&url=http%3A%2F%2Fpl.wikinews.org%2Fwiki%2F2009-08-14%3A_Naukowcy_odkryli_now%25C4%2585_odmian%25C4%2599_w%25C4%2599gla&ei=FGfPU4fAHsnFPZn8gdAF&bvm=bv.71667212,d.ZWU&psig=AFQjCNF_u7_SJQU2Z_EOTt5izYgFOvZ7zg&ust=1406187643409531

  • HTT 2000oC

    5 mm

    Raw anthracite

    • Increase of XY dimensions of carbon planes

    • Decrease of interlayer spacing

    • Increase of true density

    • Appearance of electrical conductivity

    5 mm3 mm

    C~83%

    C~93% C~95,5%

    HTT, graphite-like anthracite

    Increasing structural order

    Bituminous coal

    Natural carbon materials

    S. Pusz et al. Fuel Proc. Tech., (2002) 77-78, 173-180

    M. Krzesinska et al. Energy Fuels (2005) 19, 1962-1970

    M. Krzesinska et al. Energy Fuels (2006) 20, 1103-1111

    M. Krzesinska et al. IJCG (2009) 77, 350-355

    S. Pusz et al. IJCG (2014), 131, pp. 147-161

  • OH

    O

    OO

    O

    HO

    OH

    OOH

    O

    O

    OH

    OHO

    OH

    O

    HO

    OH

    O

    OH

    HO

    OH

    O

    O

    O

    HOO

    OH

    OHOH

    NCH3

    N

    OH

    OH

    CH3

    OH

    N

    CH3

    O

    OH

    O

    HO

    O

    Thermalreduction

    Reduced anthraciteoxide

    Anthracite oxide

    HTT anthracite

    Functionalizedanthracite

    NanoplateletsXY: 10-20 mm (AFM)

    Z: 6-30 nm

    NanoplateletsXY: < 200 nm (AFM)

    Z: 2-3 nm

    Functionalization of anthracite

    B. Kumanek, et al. Fullerenes, Nanotubes and Carbon Nanostructures, 2018, DOI: 1-.1080/1536383X.2018.1441827

  • Polymer/carbon composites

    Potential benefits of application of carbonfillers to polimer composites:

    • better stiffness

    • better thermal resistance

    • better chemical resistance

    • better mechnical strength

    • low density

    Polymer/carbon composites = polymer matrix + different kinds of carbon fillers

    Hybrid polimer composite withtwo different carbon fillers

    Matrices:

    Thermosetting polymers

    Termoplastic polymers

    Elastomers

    Fillers:

    Carbon fibresCarbon blackGraphite

    Carbon nanotubesGrapheneFulerenes

    Other carbon materials

    Carbon nanofillers

  • 5 mm

    + bituminous coal (BC) + raw anthracite (RA) + HTT anthracite (A2000) Epoxy Matrix EP/TETA

    20% mas.

    + reduced anthraciteoxide (AF1)

    0,5% mas.

    10 mm

    + HTT anthraciteafter cycloaddition (AF2)

    Microcomposites

    0

    20

    40

    60

    80

    100

    120

    EP WK Awyj A2000 AF1 AF2

    Me

    chan

    ical

    stre

    ngt

    h[M

    Pa]

    Functionalized fillers

    0,5%

    Epoxy composites with natural carbon fillers

    Raw fillersFunctionalized fillers

    BC RA A2000

    Ma

    trix

    U. Szeluga et al. Journal of Thermal Analysis and Calorimetry, 92 (2008) 813

    U. Szeluga et al. Polymer Bulletin 60 (2008) 555

    S. Pusz et al. Polymer Composites, (2015), 36, pp. 336-347

  • Synthetic carbon

    materials

  • Carbon foam Glassy carbon

    Carbon nanotubesGraphene sheets

    and multi-layered nanoplatellets

    Graphene sheet variously arranged

    Weakly ordered or amorphous structure, nongraphitized

    Carbon black

    Fulerenes

    Synthetic carbon materials

    Heterogeneous structure, partly graphitized

    Synthetic graphite

    http://www.google.pl/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwie9L-80fnVAhXBQpoKHX7ZDIUQjRwIBw&url=http%3A%2F%2Fwww.graphenomenon.com%2F&psig=AFQjCNFZsqDM7Lh8rhr5JhVl5o5ewTN8jw&ust=1503999604424087http://www.google.pl/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwie9L-80fnVAhXBQpoKHX7ZDIUQjRwIBw&url=http%3A%2F%2Fwww.graphenomenon.com%2F&psig=AFQjCNFZsqDM7Lh8rhr5JhVl5o5ewTN8jw&ust=1503999604424087http://www.google.pl/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiT7qSq1fnVAhXMCpoKHbzQCToQjRwIBw&url=http%3A%2F%2Fwww.wiw.pl%2Fnowinki%2Ffizyka%2F200010%2F20001027-001.asp&psig=AFQjCNFcHr9s6kQepEA6Dq25HYkke8VbVQ&ust=1503999555480202http://www.google.pl/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiT7qSq1fnVAhXMCpoKHbzQCToQjRwIBw&url=http%3A%2F%2Fwww.wiw.pl%2Fnowinki%2Ffizyka%2F200010%2F20001027-001.asp&psig=AFQjCNFcHr9s6kQepEA6Dq25HYkke8VbVQ&ust=1503999555480202http://www.google.pl/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&docid=Q_uVrb08ylmgMM&tbnid=tQ0hPKuthdC7TM:&ved=0CAUQjRw&url=http%3A%2F%2Fpl.wikinews.org%2Fwiki%2F2009-08-14%3A_Naukowcy_odkryli_now%25C4%2585_odmian%25C4%2599_w%25C4%2599gla&ei=FGfPU4fAHsnFPZn8gdAF&bvm=bv.71667212,d.ZWU&psig=AFQjCNF_u7_SJQU2Z_EOTt5izYgFOvZ7zg&ust=1406187643409531http://www.google.pl/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&docid=Q_uVrb08ylmgMM&tbnid=tQ0hPKuthdC7TM:&ved=0CAUQjRw&url=http%3A%2F%2Fpl.wikinews.org%2Fwiki%2F2009-08-14%3A_Naukowcy_odkryli_now%25C4%2585_odmian%25C4%2599_w%25C4%2599gla&ei=FGfPU4fAHsnFPZn8gdAF&bvm=bv.71667212,d.ZWU&psig=AFQjCNF_u7_SJQU2Z_EOTt5izYgFOvZ7zg&ust=1406187643409531

  • Pyrolysis of phenol-formaldehyde resin to 1000 °C, heating rate 0.5 °C/h.

    Structural model

    Functional groups

    Structural order

    Morphology

    ID/IG= 1,4

    Glassy carbon

    T – tetrahedral domains sp3

    G – graphitic domains sp2

    XPS

    IR

    GC: content C – 92%, O – 7%; true density – 1.45 g/cm3; electrical resistance – 4.2 x 10 -6 Ω mm

    Inte

    nsi

    ty[a

    .u.]

    Tran

    smit

    ance

    [a.u

    .]

    Inte

    nsi

    ty[a

    .u.]

    Wavenumber [cm-1]

    Binding energy [eV]

    Raman shift [cm-1]

  • 3 mm

    Binary cmposite with GC Hybrid composites with GC and MWCNT

    Properties of hybrid composites:

    • Good dispersion of GC i MWCNT

    • Perfect adhesion of GC to matrix

    • Good mechanical strength

    • Good electrical conductivity

    • Big hardness and wear-resistance

    • Thermal resistance

    • Density comparable to pure epoxy matrix

    Epoxy MatrixEP/TETA

    Epoxy composites with glassy carbon

    COMPOSITE sy Ef sf r (Ω cm)

    EP47.18 MPa 2.77 GPa 72.92 MPa 4.82 x 10

    14

    EP-MWCNT (0.25%) +5% -8% -11% 4.05 x 104

    EP-GC (10%) +29% +16% +30% 3.02 x 107

    EP-GC10-MWCNT +32% +19% +33% 1.68 x 103

    C H A N G ES

    U. Szeluga et al. Composites Science and Technology, (2016) 134, 72-80

  • • Percolation threshold of a segregated system much lower than for randomly distributed

    • High local concentration of filler in a segregated system

    in segregated system

    Segregated vs random anthracite compositesCollaboration with IMC

    National Academy of Sciences

    of Ukraine

    Percolation treshold of electricalconductivity for composites with anthracite filler

    segregated system

    randomly distributedsystem

    O.V. Maruzhenko et al. Polymer Journal (Ukraine) (2018) 39, 219-226

    Filler distribution

    randomly oriented

    Matrix: UHMWPE; Filler: HTT Antracite

  • - carbon materials (pitch, tar, coals)

    - thermosetting and thermoplastic

    polymers

    - by-products in production of polymers and polymer

    waste

    Precursors:

    Carbon foams

    Carbon content: 70 - > 95%

    Bulk density: 0.02 – 0.5 g/cm3

    True (helium) density: 1.5 – 2 g/cm3

    Porosity: 82 – 95 %

    Young modulus: 30 - 100 MPa

    Compression strength: ~4 MPa

    Electric conductivity: 2×10-3 [S cm]

    Properties:

    Preparation:

    Pyrolysis at 900 oC, 2 oC/min

    Graphitization > 2000 oC

    Thermal stability of carbon foams

    Collaboration with IOCBulgarian Academy of Sciences

    Carbon foam

    Polymerprecursor

    „Carbon foams are porous carbon products containing regularly shaped, homogeneously dispersed cells, which

    interact to form a three-dimensional array throughout a continuum material of carbon, predominantly in the non-

    graphitic state.” /J. Klett, 2005/

    B. Tsyntsarski et al. Carbon, (2010) 48 3523–3530

    B. Nagel et al. Journal of Materials Sciences, (2014) 49 (1), 1-17

    U. Szeluga et al. Journal of Thermal Analysis and Calorimetry, (2015) 122, 271-279

    Temperature [oC]

    Mas

    s [m

    g]

  • 100 mm

    + epoxy

    CF particles (

  • Graphene studies at CMPW PAN

    • 2D graphene structures

    • Control of graphene layers order

    • Graphene as a suport for 2D metalic layers

    • 3D graphene structures

    • Graphene in batteries

  • Graphene synthesis in 2D form

    Chemical vapor deposition (CVD)

    Metallic substrates(Cu, Ni)

    Oxide substrates(SixOy, MgO, Al2O3, SrO)

    Methane, Ethanol, Acetylene

    SEM AFM TEMLM and Raman

    Collaboration with IFW Dresden

  • ACS Nano, 2012, 6 (10), pp 9110–9117

    Scheme of the graphene growth mechanism over Cu substrate

    Important parameters

    • Precursors

    • Substrates, catalysts

    • Temperature

    • Reaction time

    • Large area

    • High quality

    • Homogenous

    • Stacking controllable

    • Low cost, simple

    Graphene synthesis in 2D form

    Scheme of an APCVD system for graphene synthesis

  • Huy Q. Ta, et al. Nano Letters 2016, 16, 6403-6410.

    Seed

    2L

    40s

    1L

    Volmer – Weber(VW) growth

    2L3L 1L

    60s

    3L 1L

    5s

    2L2L3L 1L

    3s

    Stranski – Krastanov(SK) growth AB- stacked bilayer

    • Thermal CVD synthesis• Stacking control through optimized CH4:H2• Two growth modes• Homogeneous over large areas

    • Twisted Bi-layer: - for chemical reactivity enhancement

    • AB stacked Bi-layer :- for transistor applications etc.

    Twisted bilayer

    SK

    VW

    Stacking order control of graphene layers

  • Zhao, Science, 343 (2014) 1228

    In situ freestanding Fe membrane formation

    A variety of e-beam reactions between graphene and Fe atoms can be explored in situ

  • All scale bars = 1nm

    Huy Q. Ta et al., ACS Nano, 2015, 9 (11), 11408–11413

    Electron beam driven in situ chemistry over graphene

    Formation of mono-layer ZnO in graphene pore under electron beam irradiation

  • • Electron irradiation leads to Cr atom diffusion at graphene edges

    • New graphene forms after Cr atom movement (always growth)

    • Synthesis at room temperature

    Cr

    SYNTHESIS:• Cr from decomposing chromium (III)

    acetylacetonate

    • Electron irradiation Cr atoms

    Electron beam driven in situ chemistry over graphene

    Single Cr atom catalytic synthesis of graphene

  • 22

    Graphene coated oxide nanoparticles:a) alumina, b) titania, c) magnesia,d) carbon shells after magnesia removal

    Bachmatiuk, et al., ACS Nano, 7 (2013) 10552

    Potential use of graphene coated oxide nanoparticles: - batteries, - functionalization, - bioapplications

    3D graphene synthesis over oxides via CVD

  • 3D graphene potential for electrochemical storage

    Batteries studies using carbon materials

    Racks for coin batteries cycling

    Collaboration with IFW Dresden

    Equipment for coin cells preparation

    Graphene coated nanoparticles

    Cycling rates studies

  • Carbon and coal based materials of high added value

    - research at CMPW PAN

    For closer data, see our papers in

    Science, ACS Nano, Nano Letters,

    Composites, Carbon, J. Material Science,

    other

  • Carbon and coal based materials of high added value

    - research at CMPW PAN

    Contributions from CMPW PAN:

    Prof. Barbara Trzebicka, head of the

    laboratory

    Composites

    Prof. Sławomira Pusz

    Dr. Urszula Szeluga

    Dr. Bogumiła Kumanek

    Graphene structures

    Prof. Mark Rummeli

    Prof. Alicja Bachmatiuk

    Ph.D. students

  • Carbon and coal based materials of high added value

    - research at CMPW PAN

    Cooperation:

    • Quang-Zhou University, China

    • Leibniz-Institute for Solid State Research and

    Material Studies

    • Institute of Macromolecular Chemistry, National

    Academy of Science of Ukraina

    • Institute of Organic Chemistry, Bulgarian

    Academy of Sciences