carbohydrate ingestion can completely suppress endogenous glucose production during exercise

Upload: giannidiet

Post on 03-Apr-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/28/2019 Carbohydrate Ingestion Can Completely Suppress Endogenous Glucose Production During Exercise

    1/13

    276:672-683, 1999.Am J Physiol Endocrinol MetabGijsen, Fred Brouns and Wim H.M. SarisAsker E. Jeukendrup, Anton J.M. Wagenmakers, Jos H.C.H. Stegen, Annemie P.

    You might find this additional information useful...

    47 articles, 27 of which you can access free at:This article cites

    http://ajpendo.physiology.org/cgi/content/full/276/4/E672#BIBL

    27 other HighWire hosted articles, the first 5 are:This article has been cited by

    [PDF][Full Text][Abstract]

    , March 1,2006; 100(3): 807-816.J Appl PhysiolR. L. P. G. Jentjens, K. Underwood, J. Achten, K. Currell, C. H. Mann and A. E. Jeukendrupfructose during exercise in the heatExogenous carbohydrate oxidation rates are elevated after combined ingestion of glucose and

    [PDF][Full Text][Abstract], April 1,2006; 290(4): E708-E715.Am J Physiol Endocrinol Metab

    G. A. Wallis, R. Dawson, J. Achten, J. Webber and A. E. JeukendrupMetabolic response to carbohydrate ingestion during exercise in males and females

    [PDF][Full Text][Abstract], April 1,2006; 100(4): 1134-1141.J Appl Physiol

    A. E. Jeukendrup, L. Moseley, G. I. Mainwaring, S. Samuels, S. Perry and C. H. MannExogenous carbohydrate oxidation during ultraendurance exercise

    [PDF][Full Text][Abstract], May 1,2007; 102(5): 1773-1779.J Appl Physiol

    C. R. Harvey, R. Frew, D. Massicotte, F. Peronnet and N. J. Rehrercomparison with changes in muscle glycogen contentMuscle glycogen oxidation during prolonged exercise measured with oral [13C]glucose:

    [PDF][Full Text][Abstract], June 1,2008; 104(6): 1709-1719.J Appl Physiol

    D. S. Rowlands, M. S. Thorburn, R. M. Thorp, S. Broadbent and X. Shi13C-glucose oxidation efficiency and high-intensity cycling performanceEffect of graded fructose coingestion with maltodextrin on exogenous 14C-fructose and

    on the following topics:http://highwire.stanford.edu/lists/artbytopic.dtlcan be found atMedline items on this article's topics

    Medicine .. ExercisePhysiology .. ExertionBiochemistry .. GlycogenBiochemistry .. Carbohydrates

    including high-resolution figures, can be found at:Updated information and services

    http://ajpendo.physiology.org/cgi/content/full/276/4/E672

    can be found at:AJP - Endocrinology and MetabolismaboutAdditional material and information

    http://www.the-aps.org/publications/ajpendo

    This information is current as of December 1, 2009 .

    http://www.the-aps.org/.20814-3991. Copyright 2005 by the American Physiological Society. ISSN: 0193-1849, ESSN: 1522-1555. Visit our website atorganization. It is published 12 times a year (monthly) by the American Physiological Society, 9650 Rockville Pike, Bethesda MD

    publishes results of original studies about endocrine and metabolic systems on any level ofAJP - Endocrinology and Metabolism

    http://ajpendo.physiology.org/cgi/content/full/276/4/E672#BIBLhttp://jap.physiology.org/cgi/reprint/100/3/807http://jap.physiology.org/cgi/content/full/100/3/807http://jap.physiology.org/cgi/content/full/100/3/807http://jap.physiology.org/cgi/content/abstract/100/3/807http://ajpendo.physiology.org/cgi/reprint/290/4/E708http://ajpendo.physiology.org/cgi/content/full/290/4/E708http://ajpendo.physiology.org/cgi/content/full/290/4/E708http://ajpendo.physiology.org/cgi/content/abstract/290/4/E708http://jap.physiology.org/cgi/reprint/100/4/1134http://jap.physiology.org/cgi/content/full/100/4/1134http://jap.physiology.org/cgi/content/full/100/4/1134http://jap.physiology.org/cgi/content/abstract/100/4/1134http://jap.physiology.org/cgi/content/full/100/4/1134http://jap.physiology.org/cgi/reprint/100/4/1134http://jap.physiology.org/cgi/content/abstract/100/4/1134http://jap.physiology.org/cgi/content/full/100/4/1134http://jap.physiology.org/cgi/reprint/102/5/1773http://jap.physiology.org/cgi/content/full/102/5/1773http://jap.physiology.org/cgi/content/full/102/5/1773http://jap.physiology.org/cgi/content/abstract/102/5/1773http://jap.physiology.org/cgi/content/full/102/5/1773http://jap.physiology.org/cgi/reprint/102/5/1773http://jap.physiology.org/cgi/content/abstract/102/5/1773http://jap.physiology.org/cgi/content/full/102/5/1773http://jap.physiology.org/cgi/reprint/104/6/1709http://jap.physiology.org/cgi/content/full/104/6/1709http://jap.physiology.org/cgi/content/full/104/6/1709http://jap.physiology.org/cgi/content/abstract/104/6/1709http://jap.physiology.org/cgi/content/full/104/6/1709http://jap.physiology.org/cgi/reprint/104/6/1709http://jap.physiology.org/cgi/content/abstract/104/6/1709http://jap.physiology.org/cgi/content/full/104/6/1709http://highwire.stanford.edu/lists/artbytopic.dtlhttp://highwire.stanford.edu/lists/artbytopic.dtlhttp://ajpendo.physiology.org/cgi/content/full/276/4/E672http://www.the-aps.org/publications/ajpendohttp://www.the-aps.org/http://www.the-aps.org/http://www.the-aps.org/http://www.the-aps.org/publications/ajpendohttp://ajpendo.physiology.org/cgi/content/full/276/4/E672http://highwire.stanford.edu/lists/artbytopic.dtlhttp://jap.physiology.org/cgi/reprint/100/3/807http://jap.physiology.org/cgi/content/full/100/3/807http://jap.physiology.org/cgi/content/abstract/100/3/807http://ajpendo.physiology.org/cgi/reprint/290/4/E708http://ajpendo.physiology.org/cgi/content/full/290/4/E708http://ajpendo.physiology.org/cgi/content/abstract/290/4/E708http://jap.physiology.org/cgi/reprint/100/4/1134http://jap.physiology.org/cgi/content/full/100/4/1134http://jap.physiology.org/cgi/content/abstract/100/4/1134http://jap.physiology.org/cgi/reprint/102/5/1773http://jap.physiology.org/cgi/content/full/102/5/1773http://jap.physiology.org/cgi/content/abstract/102/5/1773http://jap.physiology.org/cgi/reprint/104/6/1709http://jap.physiology.org/cgi/content/full/104/6/1709http://jap.physiology.org/cgi/content/abstract/104/6/1709http://ajpendo.physiology.org/cgi/content/full/276/4/E672#BIBL
  • 7/28/2019 Carbohydrate Ingestion Can Completely Suppress Endogenous Glucose Production During Exercise

    2/13

    Ca rbohydr a t e ingestion ca n complet ely suppress

    endogenous glucose production during exercise

    AS K E R E. J EU K EN D RUP, AN TON J . M . WAG EN M AK ERS , J OS H. C. H. S TEG EN ,

    A N N EM I E P. G I J S EN , F RED B ROUN S , A N D WI M H. M . S A RI S

    Departm ent of H um an Bi ology, N utr i t ion Research Centr e,

    M a a str i ch t U n i ver s i ty, 6 2 00 M D M a a str i ch t , T h e N eth er l a n d s

    J eukendrup,Asker E.,AntonJ .M.Wagenmakers,J osH. C. H. Stegen, Annemie P. Gijsen, Fred Brouns, andWim H. M. Saris. Ca rbohydra t e ingest ion ca n complet elysuppress endogenous glucose production dur ing exercise. Am .J. Physiol. 276 (End ocri nol. Metab. 39): E672E683, 1999.The purposes of this st udy were 1) to investigat e the effect ofcarbohydra te (CHO) ingestion on endogenous glucose produc-tion (EGP) during prolonged exercise, 2) t o s t u d y w h e t h erglucose a ppea ra n ce in t he circula t ion could be a l imit ingfa ct or for exogenous CHO oxida t ion, a nd 3) t o inves t iga t ew het her la rge C HO feedings ca n reduce mus cle glycogenoxidation during exercise. Six well-trained subjects exercisedt hree t imes for 120 min a t 50% ma ximum w orkloa d w hileingesting water (FAST), a 4%glucose solution (LO-Glc), or a22%glucose solution (HI-Glc). A primed continuous intrave-nous [6,6-2H 2]glucos e infus ion w a s given, a nd t he inges t edglucose was enriched with [U-13C]glucose. Glucose ingestions ignifica nt ly eleva t ed CHO oxida t ion a s w ell a s t he ra t es ofappearance (R a ) a nd dis a ppea ra n ce. R a glucose equa led R a ofglucose in gut (R a g u t ) d ur i n g H I -G l c , w h e r ea s E G P w a scomplet ely s uppres s ed. D uring L O-G lc, E GP w a s pa rt ia l lysuppressed, wherea s R a gut provided most of the total glucoseR a . We conclude t ha t 1) h i g h r a t e s o f C H O i n g e s t i o n c a ncompletely block EG P, 2) R a gut ma y be a l imit ing fa ct or forexogenous CHO oxidation, and 3) muscle glycogen oxidationwa s not reduced by large glucose feedings.

    stable isotopes; glucose kinetics; glycogen; endogenous glu-cose output; glucose metabolism; sport nutrition

    B L O O D G L U C O S E is an im porta n t su b strat e d u rin g exer-cise. Whole body glucose turnover is enhanced duringexercise because of increases in muscle glucose uptakeand endogenous glucose production (EGP, i.e., in liveran d k idn e y) (5). Re gu lat io n o f E G P is com p le x a n din volves b oth fee d forwa rd (m e d iat e d b y th e cen tra lnervous system) and feedback mechanisms (responseto decreas ed plas ma glucose levels) (for review see Ref.55). I ncreased glucose upta ke during exercise ma y becau sed b y act ivat io n o f p at h wa ys re spon sible for g lu -cose disposal, increased capillary blood flow, and in-

    cr ea s e d m em b r a n e g lu cos e t r a n s p or t i n t h e a c t i vem u scle . I n p re vio u s stu d ie s, m ak in g u se o f th e h ig hn a t u r a l 13C a b u n d a n ce of ca r b oh y d r a t e s (C H O ), w eh ave sh o wn th at CHO in g e stio n d u rin g e xe rcise re -duces the oxidation of endogenous CHO (28, 30). Inthese studies, however, it was not possible to investi-g ate wh e th e r m u scle g lyco g e n o xid atio n o r th e EG P

    wa s reduced. Therefore, the fi rst purpose of this st udyw a s t o e x a m i n e t h e e f f e c t o f s m a l l a n d l a r g e C H Ofeedings during exercise on E G P.

    Th e sou rce of th e b lood g lu cose oxidiz ed d u rin gex er ci se m a y b e f r om t h e l iv er , o r, w h e n C H O a r eingested, glucose may be absorbed from the gast rointes-tina l syst em. The oxidat ion of ingested CHO ha s beenintensively investigat ed w ith sta ble-isotope techniquesinvolving the ingestion of naturally labeled [13C]glucose(32, 33, 38, 43, 54). Fr om th ese studies, it a ppears th a texogenous CHO oxidation is limited to 1 g /mi n (22,54). Even ingestion rates 2 g/min did not result in

    o xid atio n rate s 1 g/min (54). Rehrer et a l. (43) in-crea sed the ra te of CHO ingestion fourfold, but t he ra teo f o xid atio n in cre ase d o n ly two fo ld . T h e fate o f th ere m ain in g CHO w as n ot id en tifi e d . I t h as b ee n sh ownt h a t m o s t o f t h e i n g e s t e d C H O i s e m p t i e d f r o m t h es t o m a c h a n d t h a t g a s t r i c e m p t y i n g i s n o t t h e r a t e -limiting step for exogenous CHO oxidation (43). I t ispossible that part of the ingested CHO still remains inth e intest ines or tha t it is stored in tissues like liver andinactive muscles. Therefore, a second purpose of t hiss t u d y w a s t o i n v es t i ga t e w h e t h er t h e r a t e o f a p pe a r -an ce (R a ) of glucose into the systemic circulation is alimiting fa ctor of exogenous CH O oxida tion.

    Although ma ny studies ha ve shown th a t th e ingestion

    of CHO during prolonged exercise enhances enduranceperformance (5, 6, 10), the underlying mechanisms arestill incompletely understood. The experimental evi-dence collected during the past 15 years suggests twopossible physiological-meta bolic mecha nisms th a t couldbe responsible for t he ergogenic effect of CH O ingest ionduring prolonged subma xima l exercise. The fi rst mech-an ism explains t he improved performance by the ma in-tenance of high blood glucose levels, especially late inexercise when the muscle glycogen concentr a tions a rereduced. The second m echa nism could be a reducedra te of muscle glycogen ut ilizat ion, w hich would delayth e depletion of the glycogen st ores an d hence the onsetof fatigue.

    Evidence for t he fir st m echa nism stems from a seriesof studies by Coyle and colleagues (6, 10), who observedth a t g lycog e n b reak d o wn w as n ot re d u ce d wh e n CH Owere ingested during cycling exercise at 70%ma ximalO2 consum ption (VO2 m a x). I n s t ea d , d u r in g t h e l a t e rsta ges of exercise, CHO ing estion prevented hypoglyce-m ia an d im proved e xe rcise p erform a n ce m a rk ed ly.These authors therefore concluded that CHO ingestionduring exercise maintains blood glucose levels in theeu g ly ce mi c r a n g e a n d en s u r es h i gh C H O ox id a t i onrates during the late phase of exercise when glycogensto res ar e n e arly d e plete d . Th e se fi n d in gs h ave b ee n

    The costs of publication of this article were defrayed in part by thep a y m e n t of p a g e c h a r g es . Th e a r t ic le m u s t t h e r ef or e b e h e r e bymarked advertisement in accordan ce with 18 U.S.C. Sect ion 1734solely to indicate this fact.

    0193-1849/99 $5.00 Cop yr igh t 1999 the American Physiological SocietyE672

  • 7/28/2019 Carbohydrate Ingestion Can Completely Suppress Endogenous Glucose Production During Exercise

    3/13

    con fi rm e d b y se ve ral oth e r re sear che rs. I n con tra stwith th e se fi n d in g s, oth e r stu d ie s su gg e ste d th a t CHOingestion ma y improve endura nce performa nce by slow-ing the rate of muscle glycogen degradation (2, 19, 52,53). For example, Tsintza s a nd collea gues (52, 53)showed tha t net muscle glycogen brea kdown a fter CH Oin g estion d u rin g ru n n in g a t 70% VO2 m a x wa s re d u ce d ,a nd t his glycogen spa ringoccurr ed alm ost exclusivelyin ty pe I muscle fibers.

    Severa l explana tions ha ve been given for th ese a ppar-ently contradictory findings. There may be fundamen-ta l d i f fe ren ces in m e tab o lism b e twe e n r u n n in g a n dcycling (51). Second, caution must be exercised whendra wing conclusions a bout muscle glycogen ut iliza tionfrom the analysis of glycogen concentrations in localmixed muscle samples in studies involving CHO inges-tion a nd prolonged exercise (51). Afa irly la rge va ria tionin muscle glycogen cont ent ca n be found w hen repeat edbiopsies are taken from the same muscle. Furthermore,during CHO ingestion, glycogen breakdown may con-tin u e at th e sam e h ig h rate in so m e m u scle s, m ay b e

    reduced in other muscles, a nd in some muscles glyco-gen synt hesis ma y even occur especia lly a t low exerciseintensities. The third a im of this study therefore wa s touse the indirect sta ble-isotope tr a cer a pproach to get a ne stim ate of m u scle g lycog e n o xid at ion at th e wh o lebody level and to investigate the effect of CHO inges-tion during prolonged exercise on muscle glycogenoxidation.

    In summa ry, the a ims of the present study w ere 1) t oe xam in e th e e f fe ct o f sm all an d larg e CHO fe e d in g sdurin g exercise on EG P, 2) to study wheth er entr a nce ofg lu cose in th e syste m ic circulat io n is a ra te -l im itin gst ep for exogenous CH O oxida tion, an d 3) to in ve stigat ewhether high doses of CHO feedings during exercise

    can r educe th e ra te of muscle glycogen oxidat ion.To st udy t he aforement ioned quest ions, well-tr a ined

    cyclists ingested 13C-labeled CHO during 2 h of exer-cise, and at the same time, a primed continuous infu-sion of [6,6-2H 2]g lucose wa s g ive n . F ro m th e [6,6-2H 2]g lu cos e t r a c er t h e t ot a l R a of glucose could bed e t e r m i n e d , w h e r e a s t h e [13C]g lu cose e n ab led u s toc a l c u l a t e t h e R a g lucose fro m th e g u t (R a g u t ) . B ysu b tractin g R a gut from tota l Ra of glucose, an estimateof EG P wa s ob tain e d .

    MATERI ALS AND METHODS

    Subjects. Six highly tr ained cyclists aged 21.8 0.2 yr a nd

    wit h a w eight of 72.8 2.6 kg volunt eered for th is stu dy. Afterthe na ture a nd the risks of the experimenta l procedures wereexplained t o the subjects, their writ ten informed consent w asobt a ined. The s t udy w a s s ubmit t ed for a pprova l t o t he loca lMedical Ethical Committee.

    Pretesting. The VO2 m a x of the subjects was measured on anelectromagnetically braked cycle ergometer (Lode ExcaliburSport , G roningen, The Net herla nds ) during a n increment a lexhaust ive exercise test (31) 1 wk before th e fi rst experimen-t a l t r i a l a n d a v e r a g ed 7 7 2 m l k g1 m i n1. The ma xima lw orkloa d a t t a ined w a s 434 15 W. The results of this testw e r e u s e d t o d e t e r m i n e t h e 5 0 % VO2 m a x w o r kl oa d of t h eexperimental trials.

    Exper i ment al t r ia ls . Each subject performed three exerciset r i a l s, e a c h s e pa r a t e d b y a t l ea s t 7 d a y s . Th e o r d er of t h et r ia ls w a s det ermined by count erba la ncing. Ea ch t r ia l con-sisted of 120 min of cycling at 50%VO2 m a x. S ubjects ingesteddrinks conta ining no glucose (FAST), a 4% glucose solution(LO-G lc), or a 22% glucose solution (HI -G lc). S ubjects wereins t ruct ed not t o cons ume a ny product s w it h a high na t ura labundance of 13C d uring t he entire experimenta l period. This

    i s t o m i n im i z e a s h if t i n b a c kg r ou n d e n r ic hm e n t d u e t ocha nges in endogenous s ubs t ra t e ut i l iza t ion (54). Furt her-more, subjects were instr ucted to keep their diet a s consta ntas possible the da ys before the tria ls. All subjects performedan ad ditional test for correction for exercise-induced changesin background enrichment w ith sta nda rd procedures (2729,54).

    Protocol. Subject s report ed t o t he la bora t ory a t 8: 00 A Maft er an overnight fast . A Teflon catheter (Ba xter Quick Cat hD u P o n t , U d en , Th e N et h er la n d s ) w a s i ns er t ed i nt o a nan tecubital vein, and at 8:30 AM, a resting blood sample of 10ml w a s dra w n. R es t ing brea t h s a mples w ere collect ed (Oxy-con , M ijn h a r d t , M a n n h ei m , G e r m a n y ), a n d v a cu t a i n e rt ubes w ere fi lled direct ly from t he mixing cha mber t o det er-mine t he 13C-to-12C ra tio in expired CO2. At 8:50 AM, su bjects

    sta rted a wa rm-up of 5 min at 100 W. At 8:55 AM, a sodiumbicarbonat e prime wa s g iven (5.5 mol/kg NaH 13C O3; C a m -bridge I s ot ope L a bora t ories , Andover, M A), follow ed by a[6,6-2H 2]glucose (Cambridge Isotope Laboratories)prime. Thedoses of the prime were equa l to th e amount of isotope infusedduring 1 h. After the glucose pool was primed, a continuousinfusion of sterile pyrogen-free [6,6-2H 2]glucose w a s s t a r t edvia a calibrated IVAC 560 pump (Ivac, San Diego, CA). Theconcentration of isotopes in the infusate was determined forea ch experiment t o ca lcula t e t he exa ct infusion ra t e. Theinfusion rates were 0.526 0.009, 0.775 0.014, and 1.310 0.041 mol kg1 m i n1 for FAST, LO-G lc, an d HI -G lc, respec-tively.

    At 9:00 AM, the w orkload wa s increased t o 50%VO2 m a x for120 min. During t he fi rs t minut es , s ubject s dra nk a n init ia l

    bolus (8 ml/kg) of one of the glucose solutions. Thereaft er,every 15 min, a beverage volume of 2 ml/kg w as provided.This feeding schedule has been shown to result in h igh ra tesof ga s t r ic empt ying (42). The a vera ge a mount of glucos eprovided during t he 120 min of exercis e w a s 7 0 g i n t h eLO-G lc trial a nd 350 g in the H I-G lc trial. Blood samples weredrawn at 15-min intervals until the end of exercise. Expira-t ory ga s es w ere collect ed every 15 min. R es ult s of s t a ble-is ot ope a na lys es w ill be pres ent ed for t he 45- t o 120-minperiod beca us e t hos e va lues gua ra nt eed a n is ot opic s t ea dystate (Fig. 1).

    Glu cose solu t i ons. The CHO ingest ed w a s corn-derivedglucose (Amylum, B elgium) of high na tura l 13C a bunda nce. As m a l l a m o u n t of [U -13C]glucose (99%, Ca mbridge IsotopeL a bora t ories ) w a s a dded t o t hes e CHO s olut ions . The exa ct

    enrichment of the ingested drink wa s measured (after drying)by on-line combust ion-isotope ra tio ma ss spectrometr y (Car lo-Erba -Finniga n MAT 252, B remen, Germ an y) an d wa s 131.69vs. P ee Dee B ellemnite (P DB ) for LO-Glc an d 10.92 vs . P D B for HI -G lc. S ubject s ingest ed 71 3 g /120 m in ofglucose during L O-Glc a nd 354 13 g/120 min of g lucoseduring H I-G lc. The calculated ra tes of CHO ingestion duringt he s econd hour w ere 33 1 g/60 min during LO-G lc a nd164 5 g /6 0 m i n d u r in g H I -G l c . Th e a m o u nt of w a t e ringes t ed w a s s imila r in a l l t r ia ls a nd a vera ged 1, 602 56ml /120 m in .

    Analysis . B lood sa mples (10 ml) were collected int o ED TAt u b e s a n d w e r e i m m e d i a t e l y c e n t r i f u g e d f o r 4 m i n a t 4 C

    E673CH O I N G ES T I O N CA N CO M P L ET EL Y S U P P R ES S EG P

  • 7/28/2019 Carbohydrate Ingestion Can Completely Suppress Endogenous Glucose Production During Exercise

    4/13

    (1,000 g). Aliquot s of pla s ma w ere immedia t ely frozen inliquid nit rogen a nd s t ored a t 40C until analysis of glucose(Roche, U ni Kit III , 0710970), free fat ty acids (FFA; WakoNEFA-C test kit, Wako Chemicals, Neuss, Germany), glycerol(Sigma, GPO trinder 337), and triacylglycerols (plus mono-a nd dia cylglycerols ) (Sigma , G P O t r inder 337), w hich w ereperformed w it h t he COB AS B I O s emia ut oma t ic a na lyzer (L aRoche, Basel, Switzerland). Insulin was analyzed by radioim-munoa s s a y (Nuclila b U lt ra s ens it ive Huma n I n s ulin R I A kit ).

    B rea t h s a mples w ere a na lyzed for 13C-to-12C r a t i o b y g a schromatogra phy continuous fl ow isotope rat io mass spectrom-etry (Finnigan MAT252, Bremen, Germany). For determina-

    t ion of 13C-to-12C r a t i os of p la s m a g l uc os e, g l ucos e w a sderiva t ized t o i t s pent a a cet a t e deriva t ive w it h previous lydes cribed procedures (57). Therea ft er, t he deriva t ive w a smea s ured by ga s chroma t ogra phy-is ot ope ra t io ma s s s pec-trometry (Finnigan MAT 252). By establishing the relation-ship between the enrichment of a series of glucose stan da rdsof va ria ble enrichment a nd t he enrichment of t he glucos epentaa cetate derivat ive of these stand ar ds, the enrichment of

    plasma glucose samples wa s determined. This procedure wa sdescribed previously (29).P l a s m a [2H]glucose enrichment w a s det ermined by ga s

    chroma t ogra phy-ma s s s pect romet ry a na lys is of t he glucosep e n t a a c e t a t e d e r i v a t i v e s o n a n I N C O S ( F i n n i g a n I N C O S -XL). For [2H]glucose enrichment , ion ma sses of 200 and 202were selectively m onitored.

    From indirect calorimetry [respirat ory quotient; O2 upt a keVO2] a nd s t a ble-is ot ope mea s urement s (13C /12C ; 2H enrich-ment ), t ot a l energy expendit ure a nd oxida t ion ra t es of t ot a lfat , total C HO, a nd exogenous glucose were calculated a s wella s R a an d ra te of disappeara nce (R d ) of glucose.

    Calculat ions. F r o m C O2 production (VC O2) a n d VO2 t ot a l ,CH O and fat oxidat ion ra tes were calculat ed with the nonpro-tein respiratory quotient (36).

    From t he [2H]glucose tracer, the tota l Ra

    a n d Rd

    of glucosewere calculated with the single-pool non-steady-state equa-tions of Steele (50) as modified for use with stable isotopes(57). Tota l R a glucose represents the splanchnic R a glucosefrom inges t ed CHO a nd l iver a nd pot ent ia lly s ome kidneyglycogenolysis and gluconeogenesis.

    The [U-13C]glucose tracer in the drinks was used to calcu-l a t e t h e R a of glucose from the gut and oxidation rates. The13C isotopic enrichment in breath and plasma was expresseda s t he delt a per t hous a nd dif ference bet w een t he 13C-to-12Cra t io of t he s a mple a nd a know n la bora t ory reference s t a n-da rd a ccording t o t he formula of Cra ig (12). The 13C w a srela t ed t o t he int erna t iona l s t a nda rd P DB (P D B -1).

    The R a glucose into the plasma of the ingested [13C]glucose(g u t R a ) w a s d et e rm i ne d b y t r a n s pos it i on of t h e S t e el ee qu a t i on a n d t h e k n ow n 13C e n r ic hm e n t o f t h e i n g es t e dglucose (41) and w as ad apted for use with sta ble isotopes

    F 2 R a

    [(E pl2 E pl 1)/2 (C 2 C 1)/2 (E pl2 E pl 1)/(t2 t1)V ](1)

    w h e r e F 2 i s t h e R a of [13C]glucos e in t he blood; R a i s t h e

    previously determined t otal R a of glucose (E q. 3); E pl1 a n d E pl 2a r e t h e 13C enrichment s of pla s ma glucose a t t ime point s t1a n d t2, respectively; an d C 1 a n d C 2 ar e glucose concentra tionsa t t1 a nd t2, respectively, and V is volume of distribution.

    K n ow i n g t h e R a of [13C]glucose in t he blood, one ca n

    det ermine t he a bs orpt ion ra t e of glucos e from t he gut fromthe known enrichment of the ingested glucose

    R a gut F 2 /E ing (2)

    w here R a gut is t he R a of gut-derived glucose a nd E in g is t he13C enrichment of the ingested glucose.

    The ra t e of EG P w a s ca lcula t ed a s t he dif ference bet w eent ot a l R a a nd t he R a from the gut

    E G P R a t o t a l R a gut (3)

    The 13C O2 production (V13C O2) from t he t ra cer inges t ionw a s ca lcula t ed a s

    V13C O2 (molkg1 m i n1) (E CO 2 E bkg ) VC O2 (4)

    Fig. 1. Isotopic enrichments in brea th a nd plasma during exercisewit hout ingestion of glucose (FAST; open circles), w ith ingestion ofm od er a t e a m ou n t s of g lu c os e (L O -G lc ; s h a d e d c ir c le s ), or w i t hingestion of large amounts of glucose (HI-Glc; filled circles). Isotopicsteady state was achieved in all conditions during 45-to 120-min timein t e r v a l . P D B , P e e D e e B e l le m n it e ; b k g , b a c k g r ou n d ; A P E, a t ompercent excess; pm , .

    E674 CH O I N G ES T I O N CA N CO M P L ET EL Y S U P P R ES S EG P

  • 7/28/2019 Carbohydrate Ingestion Can Completely Suppress Endogenous Glucose Production During Exercise

    5/13

    w here E CO 2 is t he brea t h13C-to-12C ra t io a t a given t ime a nd

    E bk g is t he ba ckground brea t h 13C-to-12C ra t io a t res t beforeglucose tr acer ing estion. The conversion factor is 1 mol C O2equa ls 22.4 liters.

    Plasma glucose oxidation was calculated as

    plasma glucose oxidat ion

    5V13C O2 /[(E pl2

    E pl1

    )/2 E bkg ]6 (1/k)(5)

    w h e r e k 0.7467 liters C O2/g glucose, wh ich is th e am ount ofC O2 (in lit ers) produced by t he oxida tion of 1 g of glucose.

    Muscle glycogen oxidation w as ca lculated a s the differencebetw een tota l CHO oxidation and pla sma glucose oxidat ion.

    Exogenous CHO oxida t ion w a s ca lcula t ed w it h t he know nenrichment of t he inges t ed glucos e a nd t he 13C O2-to-

    12C O2ra t io in brea t h

    exogenous glucose oxidation

    VC O2 (E CO 2 E bkg )/(E ing E bkg )(1/k)(6)

    w here E bkg is t he13C enrichment of expired air a t rest , before

    glucose ingestion, E CO2

    is the 13C enrichment of breat h during

    exercis e a t different t ime point s , a nd E in g i s t h e 13C enrich-ment of the ingested glucose.

    From t ot a l CHO oxida t ion a nd exogenous glucos e oxida -tion, endogenous CHO oxidat ion can be calculat ed.

    B ecause the endogenous glucose oxidat ion is derived fromeither muscle glycogen or liver (and kidney) glucose duringexercise, endogenous glucose oxidat ion w as calculated a s th edifference bet w een endogenous CHO oxida t ion a nd mus cleglycogen oxidation.

    The metabolic clearance rate (MCR) was calculated as theR d of glucose divided by the average glucose concentrationover th at t ime period

    M CR (mlkg1 m i n1) R d/[(C 1 C 2)/2] (7)

    The percentage of glucose disappearing from the plasmathat is oxidized was calculated as

    %R d oxidized (pla sma glucose oxida tion/R d) 1 00% (8)

    Statist ics. Throughout t his s t udy glucose kinet ics w ereca lcula t ed bet w een t w o dif ferent t ime point s (t1 a nd t2); inFigs . 18 a nd Ta bles 1 a nd 2, how ever, t hes e va lues w erepres ent ed a s t2. For ins t a nce, R a a t t 60 in rea li t y is R abetw een 45 and 60 min.

    A t w o-w a y (t rea t ment t i m e) a n a l y s is of v a r i a n ce f orrepeated mea sures wa s performed to study differences amongt he t hree condit ions. A B onferroni-Dunn pos t hoc t es t w a sapplied in case of a signifi cant (P 0.05) F ra t io t o loca t e t hedifferences.

    RESULTS

    Plasma glucose, in suli n, fr ee fatt y acids, glycer ol, andtriacylglycerol. In the FAST tria l, plasma glucose con-centra tions w ere in the ra nge of 4.24.6 mmol/l a t r esta nd t hroughout th e exercise bout (Fig. 2). With glucoseingestion in the HI-Glc trial, plasma glucose concentra-tions peaked within the first 15 min of exercise at 6.0 0.2 mmol/l. P la sma glucose concentr a tions w ere higherthr oughout exercise with HI -G lc compa red w ith FAST(and LO-Glc), but this only reached statistical signifi-can ce a t 15, 105, and 120 min (P 0.05).

    Plasm a in su lin was lo w at re st an d d u rin g e xe rcisew hen s ubjects w ere fa st ed (i.e., 5 7 U /ml) (Fig . 2) butwas significantly elevated by glucose ingestion duringe xe rcise (F ig . 2). Th e h ig h est in su lin valu e s we reobserved a fter 15 min (8 2 U /ml w ith LO-G lc a nd11 4 U /ml w ith H I-G lc). P la sma insulin decrea sed inal l tr ials b u t r e m ain ed e levat e d in th e HI -G lc tr ia ls incom p arison with F AS T. A t 60 m in , in su lin wa s alsosignificantly higher during HI-Glc compared with LO-Glc. In all conditions, plasma insulin decreased to orbelow the resting fasting level at the end of the trials.During FAST and LO-Glc, insulin levels were very low(i.e., 2 3 U /ml) tow a rd t he end of exercise.

    Re stin g p lasm a F F A con ce n trat ion s we re b etw e en337 an d 420 mol/l. Dur ing t he FAST tr ia l, plasm a FFAcon cen tra t ion in i t ial ly d e cre ase d d u rin g th e fi rst 10min an d thereaft er gradua lly increased during exerciseto about three times basal level (854 104 mol/l a t120 min; Fig. 3). P la sma FFA in both glucose condit ionsfol lowe d a s im ilar p att e rn a n d w as su pp ressed d u rin gLO-Glc (to 623 70 mol/l a t 120 min) compa red w it hFAST a nd even more durin g HI -G lc (to 382 70 mol/la t 120 min; P 0.05). Fr om 30 to 120 min, pla sma FFAwas sig n ifi can tly lo we r d u rin g HI - G lc co m p are d withFAS T.

    Fig. 2. Plasma glucose and insulin concentrat ions during exercisewit hout ingestion of glucose (FAST; open circles), w ith ingestion ofm ode r a t e a m ou n t s of g lu cose (L O -G lc ; s h a d e d c ir c le s), or w i t hingestion of lar ge am ounts of glucose (HI -G lc; filled circles). a S ig n ifi -c a n t (P 0.001) difference betw een H I-Glc a nd FAST; c significant(P 0.001) difference between HI -G lc an d L O-G lc.

    E675CH O I N G ES T I O N CA N CO M P L ET EL Y S U P P R ES S EG P

  • 7/28/2019 Carbohydrate Ingestion Can Completely Suppress Endogenous Glucose Production During Exercise

    6/13

    Plasma glycerol concentrations were increased dur-ing exercise from resting va lues in the r a nge of 5872

    to 474 48 mol/l a t 120 min dur ing FAST, 310 39mol/l durin g LO-G lc, a nd 203 42 mol/l dur ingH I-G lc (Fig. 3; P 0.05).

    The pla sma tria cylglycerol concentr a tion at rest w a s0.5 0.1, 0.4 0.1, and 0.4 0.1 mm ol/l for FAST,LO-Glc, and HI-Glc, respectively, and did not changedurin g exercise (Fig. 3). After 120 min of exercise, t heva lues were 0.3 0.1, 0.3 0.1, and 0.4 0.1 mm ol/l,respectively. No differences were observed in tr ia cylglyc-erol concentr a tion between t ria ls.

    Whole body CH O and fat oxidati on. VO2 w a s s i m il a rduring each exercise session (3738 mlkg1 m i n1)

    and elicited 49 2%VO2 m a x (Ta ble 1). The r espira t oryexcha nge ra tio decreased in the FAST trial (P 0.05)an d re m ain e d sta b le with G lc in g e stion . Th e re sp ira-tory exchange rat io wa s slightly higher with t he HI-G lcfee d in g (Tab le 1). CH O oxid at ion d e cre ase d d u rin gFAST, decrea sed less with L O-G lc, a nd rema ined sta blewith HI-Glc (Fig. 4). After 120 min of exercise, totalCH O oxidat ion ra tes w ere 100 5 (1.31 0.07 g/m in ),118 5 (1.55 0.07 g/min ), a nd 153 9 mol kg1 m in1 (2.00 0.12 g/min) for FAST, LO-G lc, a ndH I-Glc, respectiv ely (Fig. 4; Ta ble 1). Tota l fa t oxida tionwas markedly suppressed by the Glc feedings (Fig. 4;P 0.05). After 120 min of exercise, tota l fa t oxida tionrat e s we re 48 2 (0.63 0.01 g /m in ), 41 1 (0.54 0.01 g/mi n), a nd 33 2 mol kg1 m i n1 (0.43 0.01g/min ) for FAST, LO -G lc, a nd H I-Glc, r espectively (P0.05).

    Stabl e-isotope m easur em ent s. G l u cos e i n g es t i o nraised 13C O2-to-

    12C O2 breat h ra tios from va lues a round26.6 vs. P DB to va lues betw een 8 a n d 21 vs. PDB during LO-Glc and HI-Glc, respectively. The

    b r ea t h r a t i os d u ri ng t h e ex pe ri m en t a l t r i a ls w i t h[U -13C] g lu co se trace r in g e stio n are sh o wn in F ig . 1 .Glucose 13C enrichment w a s elevat ed by the [U -13C]glu-co se trace r in g e stio n an d was stab le b e twe e n 45 an d120 min. Plasma glucose 2H e n rich m e n t was b e twe e n1.7 an d 2.0%, a n d th e re w as also a n isoto pic ste ad ysta te betw een 45 and 120 min.

    Ra a n d R d of plasma glucose and MCR. B o th R a a n dR d glucose w ere ma rkedly elevat ed w ith glucose inges-tion (45% wit h LO-G lc a nd 143% wit h HI -G lc; P 0.001; Tab le 2; F ig . 5). D u rin g th e se con d h ou r ofexercise, no changes in R a or R d glucose w ere observedover time, although during HI-Glc, R a a n d R d glucoseha d a tendency to increase t owa rd t he end of exercise.

    This however did not reach st a tist ica l significa nce.M C R w a s 7 1 m l k g1 m i n1 d u rin g FAS T a n d wa ssignificantly higher during LO-Glc (10 1 m l k g1 m in1; P 0.001) and even higher during HI -G lc (151 ml k g1 m i n1; Ta ble 2; P 0.001).

    Glucose Ra f r om t h e gu t a n d E G P . The R a g u t w a s3132 molkg1 m i n1 (0.410.42 g/min ) dur ing th esecond hour of the LO-G lc tria ls a nd 7379 mol kg1 m in1 (0.961.04 g/min ) dur ing t he H I-Glc t ria l (Fig. 5;Ta ble 2). This d ifference wa s highly signifi cant (P 0.0001). E G P wa s 3032 mol kg1 m i n1 (0.400.42g/min) during FAST a nd w a s suppressed by th e LO-G lcfeedings to 1213 mol kg1 m i n1 (0.16 0.17 g/mi n).Ingestion of large amounts of glucose during exercise

    (HI-Glc) resulted in increased R a gut and completelysuppressed E G P (Fig. 5; Ta ble 2). The effects of CH Ofeedings on the R a of glucose are summarized in Fig. 6.With FAST, a ll glucose a ppearing in t he circulat ion isfrom the liver; during LO-Glc, EGP is suppressed andg lu co se is d e rive d b o th fro m l ive r an d g u t . With th eingestion of lar ge a mounts of glucose (HI -G lc), t he R aglucose is increa sed even th ough EG P is completelyblocked.

    Oxidation of plasma glucose. Plasma glucose oxida-tio n was b e twe e n 22 an d 26 m o l k g1 m i n1 (0.310.34 g /m in ) d u rin g L O-G lc an d b etw e en 58 a n d 72

    Fig. 3. Plasma free fa t ty acids (FFA), glycerol, and triacylglycerolconcentra tions du ring exercise without ingestion of glucose (FAST;open circles), wit h ingest ion of moderat e am ounts of glucose (LO-Glc;sha ded circles), or with ingestion of large a mounts of glucose (HI -G lc;fi lled circles). a S ig n ifi c a n t (P 0.001) difference between HI -G lc an dFAS T; b s ig n ifi c a n t (P 0.001) differen ce betw een LO-Gl c an d FAST.

    E676 CH O I N G ES T I O N CA N CO M P L ET EL Y S U P P R ES S EG P

  • 7/28/2019 Carbohydrate Ingestion Can Completely Suppress Endogenous Glucose Production During Exercise

    7/13

    molkg1 m i n1 (0.760.94 g/min ) dur ing H I-Glc (Fig.6; Ta ble 1). At a ll times, pla sma glucose oxida tion w a ssignificant ly higher during HI-G lc (P 0.0001). Plasmaglucose oxida tion w a s not mea sured dur ing FAST, butw e a s s um ed t h a t i t w a s 96 99% of R d g lu cose asobserved in a previous study (29). P lasma oxidat ionwas not significantly different from R d glucose, and thep e rce n tag e o f R d o xid iz e d was b e twe e n 92 an d 95%during t he las t 30 min of exercise.

    M uscle glycogen oxid ati on. Muscle glycogen oxida -tion (tota l CH O oxidat ion plasma glucose oxidation)did not change as a function of CHO ingestion duringL O- G lc an d HI - G lc an d re m ain e d b e twe e n 77 an d 89molkg1 m i n1 (1.011.17 g/min) during the lasthour of exercise (Fig. 7; Table 1). This represented69%of tota l CH O oxida tion dur ing LO-G lc and 56%oftota l CHO oxidation during HI-G lc.

    Exogenous CH O oxidati on. O x i d a t i o n r a t e s o f t h ein g e ste d CHO we re also re lat ive ly stab le d u rin g th esecond hour of exercise (Fig . 7, Ta ble 1). D ur ing L O-G lc,exogenous glucose oxidat ion ra tes w ere betw een 22 and26 mol kg1 m i n1 (0.310.34 g/min), a nd th is w a sincreas ed to 5872 mol kg1 m i n1 (0.76 0.94 g/m in )during HI-Glc. An overview of substrate oxidation is

    given in Fig. 8.

    DISCUSSION

    Effect of CHO ingestion on EGP. Ingestion of moder-a te a mounts of glucose (35 g/60 min) ma rkedly sup-p re sse d EG P. With th e in g e stio n o f larg e am o u n ts o fglucose (175 g/60 min), E G P w a s completely blockeda n d a l l g lu cos e a p pe a r i ng i n t h e p la s m a or i gi n a t e dfrom th e ingested C HO . With th e use of a [6-3H]glucoseand a [6,6-2H ]glucose t ra cer, McConell et a l. (34) founda 51% r e du ct i on i n E G P w h e n 200 g of C H O w e r e

    F i g. 4 . Wh ol e b od y ca r b oh y d r a t e (C H O ) a n d f a t o xi da t i onr a t e s d u r in g e xe r ci se w i t h ou t i n ge st i on of g lu cos e (F AS T;o pe n ci r cl es ), w i t h i n g es t i on o f m o de r a t e a m o u n t s o f g l uc os e(LO-Glc; sha ded circles), or w ith in gestion of larg e amoun ts of glucose(HI-Glc; filled circles). a S ig n ifi c a n t (P 0.001) difference betw eenHI-Glc and FAST; b significant (P 0.001) difference between LO-Glcand FAST; c s ig n i fi c a n t (P 0.001) difference between HI-Glc andLO-Glc.

    Ta ble 1. Oxygen u ptak e, respir atory exchange r ati o, CH O oxidat ion, pl asma glu cose oxid ati on, exogenous CH Ooxidation, and glycogen oxidation during exercisewithout CHO ingestion, with LO-Glc,or w it h in gesti on of HI -Glc

    TimeInt e r v a l ,

    mi nVO2 ,

    m l k g1 m i n1

    RespiratoryEx c ha ng e

    R a t i o

    Tota l CH OOxidation,

    molkg1 m i n1

    P l a s m aGlucose

    Oxidation,molkg1 m i n1

    ExogenousGlucose

    Oxidation,molkg1 m i n1

    GlycogenOxidation,

    molkg1 m i n1

    FAST75 90 371 0.8190.004 1104 303 00 81490 105 381 0.8180.007 1138 303 00 839

    105 120 381 0.8070.005 1005 313 00 694

    L O - G l c

    75 90 371 0.8320.004 1194 362 242 83590 105 371 0.8370.003 1205 411 262 786

    105 120 371 0.8310.004 1185 403 253 774

    H I - G l c

    75 90 371 0.8630.005* 1466* 684* 653* 80890 105 381 0.8650.005* 1527* 725* 703* 813

    105 120 381 0.8640.007* 1539* 726* 723* 823

    Values ar e means S E . VO2 , oxygen uptake; CHO, carbohydrates; LO-Glc, ingestion of moderate amounts of glucose; HI-Glc, ingestion oflar ge am ounts of glucose; FAST, ingestion of wa ter only. *Sign ifi cant difference betw een HI-Glc an d FAST; signifi cant difference betw een

    LO-Glc and FAST; signifi cant difference betw een HI-Glc and LO-G lc; P 0.001.

    E677CH O I N G ES T I O N CA N CO M P L ET EL Y S U P P R ES S EG P

  • 7/28/2019 Carbohydrate Ingestion Can Completely Suppress Endogenous Glucose Production During Exercise

    8/13

    ingested during 2 h of exercise at 69% VO2 m a x (100 g

    CH O/h ). S im ilar ly, B o sch e t a l . (3) re porte d a 70%re d u ctio n in EG P wh e n 150 g o f CHO we re in g e ste d

    durin g 3 h of exercise a t 70%VO2 m a x (50 g C H O/h).Th e se resu lts a re com p ara b le with th e L O-G lc t r ial

    in th e p re se n t s tu d y. I n th e ir s tu d y (3) , th e e xe rcisei n t e n s i t y , a n d t h u s t h e a b s o l u t e r a t e s o f E G P , w e r ehigher t ha n in th e present stu dy. To our know ledge, nos t u d y h a s s h ow n p r ev iou s ly t h a t i n ge st i on of l a r g ea mounts of glucose ca n completely suppress E G P. Therema y be severa l rea sons for this suppression. Althoughthe present tracer method cannot distinguish betweenliver glycogenolysis a nd gluconeogenesis, i t is likelyth a t d u rin g L O-G lc b oth p rocesses we re in h ib i ted .During HI-Glc, both gluconeogenesis and glycogenoly-

    sis were blocked. We suspect that the effect of glucoseingestion is m a inly on glycogenolysis becau se gluconeo-g e n esis m ay b e n e g lig ible in th e p rese n t con d it ion s.P re viou sly, we u sed tw o d i f fe ren t isoto pic tra cers toestima te gluconeogenesis (glucose ca rbon r ecycling) inan id en tical e xp erim en ta l se tu p a s t h e p rese n t s tu d y(29), and it was concluded that gluconeogenesis wasnegligible in these conditions. I t has been suggestedth a t in cre ase s in p lasm a g lucose con ce n trat ion an dplasma insulin levels are major factors reducing EGPd u rin g e xercise . H owe ver, in th e p rese n t s tu d y, th eplasma glucose concentr a tion wa s only slightly higherduring HI -G lc compar ed w ith LO-G lc a nd FAST. Al-t h o u g h i t h a s b e e n s h o w n t h a t p l a s m a g l u c o s e m a y

    inhibit E G P d irectly (26, 46), plasm a glucose concent ra -tions were much higher in t hose studies compar ed wit hth e p re sen t s tu d y in w h ich con cen tra t ion s d u rin g th esecond hour of exercise were always between 4.5 and5.5 mmol/l. In crea sed insulin levels ma y be a morereasona ble explana tion for the reduced EGP a fter CHOi n ge st i on . I t h a s b ee n r e por t e d t h a t i n su li n or a nin cre ase d in su lin -to -g lucag on ra t io can in h ib i t EG P(55). Insulin levels were significantly elevated duringexercise wit h H I-G lc, an d it is possible tha t even sma llchanges in insulin have a potent effect on E G P. In thisstudy, we did not m easure glucagon or epinephrine or

    cortisol. McConell et a l . (34), however, showed tha t

    during the second hour of exercise, gluca gon an d epi-n e ph rin e levels w e re lowe r af te r CHO in g estion , a n dth e y su g g est th a t th e se factors m a y a lso h ave con trib -uted to the reduction in EGP. Recently, Hevener et al .(24) demonstra ted t ha t glucosensors in the porta l veinare largely responsible for the detection of the portalglucose concentration, which then results in a portal-sym p ath e tic g lu core g ulato ry re fle x (i .e ., re d u ce d orincreased hepatic glucose production). Whatever them e ch an ism , th e p re se n t s tu d y su g g e sts s tro n g fe e d -b a c k r e g u l a t i o n o f E G P t h a t h e l p s m a i n t a i n p l a s m aglucose concentr a tion in a na rrow r a nge.

    Glucose uptake and MCR are markedly increased byglu cose i ngestion. A second importa nt factor t ha t helps

    m a i n t a i n p la s m a g lu cos e con cen t r a t i on w h e n l a r g eamounts of glucose are ingested is the increased glu-cose uptake. I t has been reported that at low exerciseintensities, glucose ingestion increases leg glucose up-take (1). Here, the R d glucose increa sed along w ith thet ot a l R a g lu co se (EG P an d R a gut). The mechanismsb e h in d th is in cre ase d g lu co se u p tak e are larg e ly u n -k n o wn b u t m ay, in p art , b e d u e to in cre ase d g lu co secon cen t r a t i on t h a t t h r ou g h m a s s a c t i on m a y d r iv eglucose int o th e cells (21).

    However, our observat ion t ha t MC R (Rd/pla sma glu-co se co n ce n trat io n ) was sig n ifi can tly in cre ase d withCHO fee din g s d o es n ot su p port th is n otion . Th e in -cr e a s ed M C R w i t h i n cr ea s i n g a m o un t s of i n ge st e d

    CHO su g g ests th a t p lasm a g lu cose a vai lab i li ty (i .e. ,con cen tra t ion ) is n ot th e sole d rivin g force for th eincrease in plasma glucose uptake and oxidation dur-in g e xe rcise with CHO in g e stio n . Plasm a in su lin washigher during exercise during H I-G lc, a nd contr a ctionsan d insulin have been shown t o have strong synergisticeffects on muscle glucose upt a ke during exercise inhumans (13, 56). Higher insulin levels and contractionboth stimula te G LU T-4 tra nslocat ion, but t hey a ppea rto activate different pools of transporters or differen-tially activate the same pool (39, 40). I t has also beensh own th a t h ig h er in su lin le vels d u rin g e xe rcise in

    Ta ble 2. Ra a n d R d of glucose, th e Ra gut, H GP, M CR, and per cent age of Rd glucoset hat was oxid ized

    TimeInt e r v a l , m i n

    R a Glucose,molkg1 m i n1

    R d Glucose,molkg1 m i n1

    R a G u t ,molkg1 m i n1

    H G P ,molkg1 m i n1

    M C R,m l k g1 m i n1

    %RdOxidized

    FAST

    75 90 313 313 00 313 7190 105 313 313 00 313 71

    105 120 323 323 00 323 81

    L O - G l c

    75 90 452 452 322 131 101 82690 105 442 442 312 121 101 946

    105 120 453 443 322 132 101 9210

    H I - G l c

    75 90 743* 743* 743* 00* 151* 93990 105 774* 774* 774* 00* 151* 9510

    105 120 794* 794* 794* 00* 161* 9211

    Values ar e means S E. R a a n d R d , ra tes of appearance a nd disappeara nce, respectively; Ra gut , ra te of appearance of glucose in gut ; H GP,hepat ic glucose production; MCR, meta bolic cleara nce rate. * Signifi cant d ifference between HI-Glc and FAST; signifi cant d ifference betweenLO-G lc and FAST; signifi cant difference betw een HI-Glc and LO-Glc; P 0.001.

    E678 CH O I N G ES T I O N CA N CO M P L ET EL Y S U P P R ES S EG P

  • 7/28/2019 Carbohydrate Ingestion Can Completely Suppress Endogenous Glucose Production During Exercise

    9/13

    com b in ation w ith lo we r fat t y a cid le vels m a y a ctivat ephosphofructokinase a nd pyruva te dehydrogenase; th isma y lead to lower glucose 6-phosphat e concentr a tion,which, in turn, will increase glucose uptake (17). An-other factor tha t ma y ha ve contributed to the increa sedg lu co se u p tak e an d M CR m ay b e th e lo we r fat ty acidlevels. CHO ingestion during low- to moderate-inten-si ty e xe rcise in h ib i ts l ip olysis (11, 25) an d th e re bya t t e n u a t e s t h e i n c r e a s e i n f a t t y a c i d c o n c e n t r a t i o n .Increases in plasma fat ty a cid levels ma y inhibit muscle

    glucose uptake directly by yet unknown mechanisms(20), although others did not find an effect of plasmafatty acid concentration on glucose uptake during exer-cise at 60%VO2 m a x (35).

    I t is u n lik ely, h o we ver, th at th e lo we r p lasm a fat t ya cid levels during H I-G lc w ere responsible for t he lar geincreases in MCR. On t he other ha nd, it is possible tha tthe lower fa tt y acid concentra tions may ha ve fa cilita ted

    t h e i n su li n a n d t h a t con t r a c t i on i n du ce d i n cr e a s edmuscle glucose upta ke.

    An a d d it ion al re m ark t h at can b e m ad e with r e gar dto the MCR in the present study is that the calculationof MCR overcorrects for the mass action effect glucosehas on stimulating its own disappearance. The reasoni s t h a t t h e cl ea r a n ce c a l cu la t i on a s s u m es a l in ea rr e la t i on s h ip b et w e en c on ce n t r a t i on a n d u p t a k e,wh e re as th e re lat ion sh ip is in fact curvi lin ear. Th u s,even if a t reat ment ha s no effect on the intrinsic abilityof t issues to ta ke up glucose, ca lculat ed glucose clea r-ance will tend to be lower when concentration is highera n d v ice v e r s a . Th er ef or e , t h e f a ct t h a t w e f ou n d ah i gh er M C R ev en t h ou g h t h e con ce nt r a t i on i s 1mmol/l higher d uring HI -G lc is all t he more impressive.

    Limitations of exogenous CHO oxidation. M a x i m a le xog en ou s CH O oxidat ion wa s 72 m ol k g1 m i n1

    (0.94 g/min) in th e present stu dy. This is in a greementwith several other studies that employed either radioac-tiv e (3, 23) or s t a ble isotopes (27, 28, 37, 54) to q ua nt ifyexogenous CHO oxidation during exercise. From thosestudies, it appeared that exogenous CHO oxidation islimited to 1 g/min a s review ed by H a w ley et a l. (22).E v en w h en l a r ge a m ou n t s of C H O w e r e i n ges t ed ,oxida t ion ra t es did n ot exceed 1 g/min (43, 54). H ere w ecalcula ted CH O ingestion t o be 2.15 g/min during thesecon d h ou r, b u t e xog e n ou s CH O oxidat ion d id n otexceed 0.94 g/mi n.

    D u rin g L O-G lc, R a g u t e q u a l e d t h e r a t e o f C H Oin g estion d u rin g th e se con d h ou r (32 1 v s. 33molkg1 m i n1). R a g u t a n d t h e r a t e o f i n g es t i onwe re 0.43 g/min during LO-G lc. This implies tha t

    Fig. 5. Total rat e of a ppeara nce of glucose (R a glucose), the R a ofg lu cose f r om t h e g u t (R a gut), and endogenous hepatic glucoseproduction (HGP ) during exercise wit hout in gestion of glucose (FAST;open circles), wit h ingest ion of moderat e am ounts of glucose (LO-Glc;sha ded circles) or w ith in gestion of large a mounts of glucose (HI -G lc;fi lled circles). a S ig n ifi c a n t (P 0.001) difference between HI -G lc an dFAS T; b significant (P 0.001) difference between LO-Glc and FAST;c significant (P 0.001) difference between H I-Glc an d L O-G lc.

    Fig. 6. R a of glucose from the gut (R a gut) or from endogenous sources(HGP) without ingestion of glucose (FAST), with ingestion of moder-at e amount s of glucose (LO-Glc), or with in gestion of large am ounts ofglucose (HI-Gl c).

    E679CH O I N G ES T I O N CA N CO M P L ET EL Y S U P P R ES S EG P

  • 7/28/2019 Carbohydrate Ingestion Can Completely Suppress Endogenous Glucose Production During Exercise

    10/13

    absorption was not limiting and the liver did not storeingested glucose, but instead all ingested glucose ap-pea red in the bloodstr eam a nd most of this glucose wa soxidized. When a lar ger dose of CHO w a s ingested, Ragut w as less tha n one-ha lf of the ra te of CHO ingestion(7379 vs. 164 molkg1 m i n1). R a g u t w a s 0 . 9 6 1.04 g /m in , wh e re as CH O w e re in ge ste d a t a ra te o f2.15 g/min durin g t he second hour of exercise dur ingHI -G lc. Th e se n u m be rs in d icat e th a t on ly p ar t of t h ein g este d CH O w il l en te r th e syst e m ic circu lat ion an d

    th a t a larg e par t o f th e Ra gut is oxidized. The fa ctor(s)limiting exogenous C HO oxidat ion m ust thus be proxi-mal from the liver. Most likely, R a g u t d u rin g HI - G lcw a s limited by t he ra te of digest ion and/or absorpt ion ofglucose, and a fair a mount remained in the gast rointes-t i n a l t r a c t . P r e vi ou s s t u d i es h a v e s u g g es t e d t h a t t h eabsorptive capacity of the intestine possesses a modestex ces s of n u t r i en t ca p a c it y ov er n u t r i en t i n t a k e i n

    resting conditions (47). During exercise, however, ar ed u ce d m e s en t e r ic b lood fl o w m a y r e su lt i n a d e-crea sed a bsorption of glucose a nd wa ter (4). Althoughthis will occur predomina ntly a t higher exercise inten-si t ies (4), d e cre ase d b lood flo w in th e in te st in e m ayhave contributed to a reduced absorption of water andglucose and thus to a low R a g u t re lat ive to th e ra te o fingestion. However, it cannot be excluded that the liverplays a n a ctive role a nd tha t glucose is ta ken up by theliver in the first pass.

    M uscle glycogen oxidati on is not reduced by CH Ofeedings. T h e th ird p u rp o se o f th is s tu d y was to se ew heth er ingest ion of 360 g of CH O durin g 2 h of cyclingexercise reduces muscle glycogen oxidat ion at th e wh olebody level. Muscle glycogen oxidation was similar withingestion of either 70 or 350 g of CHO during 2 h ofexercise. These findings corroborate findings from sev-eral st udies with direct measur ements of muscle glyco-gen in muscle biopsies (3, 10, 14, 15, 18) but are inco n trast with o th e r stu d ie s in wh ich CHO in g e stio nhad a glycogen-sparing effect (2, 19, 52, 53). In runners,it wa s sh own tha t CH O ingestion (4550 g/h) reducedt h e n et g ly cog en b r ea k d ow n i n t y p e I fi b e r s d u r i n gru n n in g at 72 76% VO2 m a x, an d th is m ig h t h ave b e e nresponsible for the observed improvements in endur-an ce cap acity (52, 53). Tsin tz as an d Will iam s (51)r ecen t l y a r g u ed t h a t t h e ob s er v ed eff ect s cou ld b esp e cifi c to ru n n in g . Co n tin u o u s cycl in g wo u ld cau se

    Fig. 7. P lasma glucose oxidat ion, muscle glycogen oxidat ion, a ndexogenous C HO oxidat ion during exercise w ithout ingest ion of glu-cose (FAST; open circles), with ingest ion of moderate amounts ofglucose (LO-Glc; shaded circles), or wit h ingest ion of large a mounts ofglucose (HI-G lc; fi lled circles). a S ig n ifi c a n t (P 0.001) differencebetween H I-Glc and FAST; b s ig n ifi c a n t (P 0.001) difference be-tw een LO-Glc an d FAST; c s ig n ifi c a n t (P 0.001) difference between

    HI-Glc and LO-Glc.

    F ig . 8 . S u b s t r a t e oxid a t ion d u r in g e x e r cis e w i t h ou t in g es t ion ofglucose (FAST), with ingest ion of moderate amounts of glucose(LO-Glc), or w ith ingestion of la rge a mount s of glucose (HI -G lc).

    E680 CH O I N G ES T I O N CA N CO M P L ET EL Y S U P P R ES S EG P

  • 7/28/2019 Carbohydrate Ingestion Can Completely Suppress Endogenous Glucose Production During Exercise

    11/13

    less marked changes in plasma glucose concentrationan d in su lin con cen tra t ion s com p are d with ru n n in g ,and these differences might play an important role inthe effect on glycogen utilization to be observed. How-ever, we observed a relat ively la rge insulin response tothe C HO feedings w hile pla sma glucose concentra tionwas also sl ig h tly in cre ase d . Ye t th is d id n o t re su lt inglycogen spa ring a s proposed by Tsint za s a nd William s.Th er e for e, t h e p r es en t s t u d y s u gg es t s t h a t f a ct or soth e r th a n in su lin ar e re sp on sible for th e d iscre pan tfi ndings in run ning ca pacity (52, 53) a nd cycling (3, 10,14, 15, 18).

    In t he present study, CHO feedings w ere provided asa la rge bolus at th e onset of exercise follow ed by sma llerfee d in g s e ve ry 15 m in . I t is p ossible, h owe ver, t h atdifferent feeding schedules would hav e produced slight lydifferent results. Glucose feedings in the hour beforeexercise may lead t o increased insulin concentr a tions,wh e re as fee d in g s late r in e xe rcise m a y com p le telyabolish an insulin response to the CHO feedings. Thepresent feeding schedule, however, will lead to high

    rates of gastric emptying (42) and will result in maxi-ma l exogenous CH O oxidat ion ra tes (22, 54).Percenta ge of Rd oxidized. Th e p ercen ta g es of R d

    glucose oxidized were high at the end of 2 h of exercise(92 95%), indica tin g th a t lit tle or no glucose is used fornonoxidat ive disposal under these conditions. Theseh ig h rat e s of oxidat ion a re in ag re e m en t w ith a s tu d yby C oggan et a l . (8), w ho found t ha t 93%of R d glucosewas oxidized during exercise at 70%VO2 m a x w h e n C H Ow ere ingested, a nd confirm our previous fi ndings (96100% R d oxidized) (29). Others have found lower per-ce nt a g e s of g lu cos e t a k e n u p a n d ox id iz ed d u r in gexercise at intensities compar able wit h th e intensity inthe present study (50%VO2 m a x) (9, 16, 44). The lower

    percent a ges of R d oxidized can most likely be explainedby th e fa ct the bica rbona te pool w a s not primed in thosestudies, which may ha ve led to the entra pment of a fa ira mount of 13C O2 in the bicarbona te pool. This ma y ha vecau se d a m ark e d u n d e re stim atio n o f th e tru e p lasm aglucose oxidation. Other studies in which a bicarbonatep rim e w as g ive n re p ort valu e s m o re com p ara b le witht hose in t he pres ent st udy (8894%) (7).

    I t h a s b een r epor t ed t h a t w i t h a 13C t r a c er f orstu d yin g fat t y a cid m e tab o lism , par t o f th e tra ce r m ayb e ( te m p o rari ly) trap p e d in e xch an g e re actio n s witht he tr icar boxylic acid (TCA) cycle (48, 49). For exa mple,some 13C m a y b e i n cor p or a t e d i n t o t h e g l u t a m a t e-gluta mine pool via -ketogluta ra te or into phosphoenol-

    pyruva te via oxaloaceta te. This label fixa tion results ina decreased r ecovery of la bel in the expired ga ses, andto correct for th is loss, t he a ceta te correction fa ctor h a sbeen proposed (49). The la bel loss is dependent on t hem e t a b ol ic r a t e , a n d a t h i gh ox y gen u pt a k es (37 38ml/kg in the present study ), less la bel is tr apped a ndrecovery of the [1-14C]a ceta te label wa s 8590% (49).B e sid es th a t , [U-13C]glucose has six labeled carbons ofwh ich tw o wil l ap p ear d irectly in 13C O2 and thereforedo not ent er t he TCA cycle. Only tw o-th irds (66%) of theglucose carbons a re subject t o label fi xa tion. Therefore,th e re covery of carb on s from [U-13C]glucose w ill be

    h ig h e r th an th e re co ve ry o f [ 1-13C]palmitate (49) or[U -13C]p alm itat e (48), e xp lain in g wh y we fi n d su chhigh percentages of R d oxidized. The small differencefrom 100%ma y be explained by the a ceta te correctionfactor, implying that all glucose molecules disappear-ing from the plasma might ha ve been oxidized in bothth e presence a nd a bsence of glucose ingestion.

    General overview of substrate uti l ization with CHOingestion. The results of the present study indica te th a tglucose ingestion during exercise lea ds t o decreased fa toxidation, partly because of an inhibition of lipolysis(25) a n d an in cre ase d CH O oxidat ion (F ig . 8). Th ei n cr e a s ed C H O ox id a t i on w a s e xp la i n ed b y a n i n -crea sed plasma glucose turnover. The a ppeara nce ofingested glucose in the bloodstream (R a gut) increasedwith the CHO feedings in a dose-dependent way. At thes a m e t i m e, E G P w a s s u pp r es s ed a n d w i t h l a r g e C H Ofeedings w as even completely blocked. This effect ispossibly insulin mediated. The oxidation of ingestedCH O increased t o 0.94 g/min w hen CH O were ingest edat a ra te of 2.15 g/min. Fa ctors t ha t limit exogenous

    CH O oxidat ion must be situat ed in the spla nchnic a rea,potentia lly a ga str ointestina l limita tion or retention oflabeled glucose in the splanchnic bed (34). The in-creased CHO oxidation with CHO ingestion was due toincreased glucose uptake and clearance. The increasedclearance may also be insulin mediated. The glucosetha t disa ppeared from the pla sma (and most likely wa stak e n u p b y act ive sk e le tal m u scle ) was larg e ly o xi-dized, a nd very litt le or no glucose wa s directed t owa rdg lycog en syn th e sis . P lasm a g lucose oxid at ion re pre -s en t e d 21% d u r in g L O -G l c a n d 47% of t o t a l C H Ooxidat ion d u rin g HI -G lc, con fi r m in g th a t p lasm a g lu-cos e c a n i n de ed b e a n i m por t a n t s u bs t r a t e d u r in gexercise, as shown by others (3, 10, 45). Muscle glyco-

    gen oxidation was not reduced by the glucose feedings.I n su m m ary, we co n clu d e th at sm all CHO fe e d in g s

    suppress EG P a nd tha t la rge CHO feedings completelyblock EG P, most likely beca use of increases in plasmain su lin an d p lasm a g lucose con cen tra t ion . Th e e n -trance of glucose into the systemic circulation seems tob e th e l im itin g facto r fo r e xo g e n o u s CHO o xid atio nb eca u s e a l a r g e p e rce nt a g e of R a g u t wa s oxidiz ed ,w herea s only a sm a ll percent a ge of th e ingested glucoseappeared in the bloodstream. Muscle glycogen oxida-tion at the whole body level was not reduced by glucoseingestion dur ing cycling exercise at 50%VO2 m a x.

    Address for reprint r equests a nd other correspondence: A. E .

    J eukendrup, S chool of S port and Exercise Sciences, U niv. of B ir-m in g h a m , Ed g b a s t on , B ir m in g h a m B 1 5 2 TT, U K (E-m a il : A .E.J eukendru p@bha m.a c.uk).

    Received 14 J uly 1998; accepted in fi na l form 1 December 1998.

    REFERENCES

    1. Ahlborg, G., and P. Felig. Influence of glucose ingest ion onfuel-hormone response during prolonged exercise. J . A p p l .Physiol. 41: 683688, 1976.

    2. Bjorkman, O., K. Sahlin, L. Hagenfeldt, and J . Wahren.Influence of glucose and fructose ingest ion on the capacity forlong term exercise in well trained men. Clin . Physiol . 4: 483494,1984.

    E681CH O I N G ES T I O N CA N CO M P L ET EL Y S U P P R ES S EG P

  • 7/28/2019 Carbohydrate Ingestion Can Completely Suppress Endogenous Glucose Production During Exercise

    12/13

    3. Bosch, A. N., S. C. Dennis, and T. D. Noakes. Influence ofcarbohydrate ingest ion on fuel substrat e turnover and oxidat ionduring prolonged exercise. J. Appl . Physiol . 76: 23642372, 1994.

    4. Brouns, F., and E. Beckers. I s t h e g u t a n a t h l e t i c o r g a n ?Digest ion, absorption and exercise. Sports Med. 15: 242257,1993.

    5. Coggan, A. R. Plasma glucose metabolism during exercise inh u m a n s . Sports M ed. 11: 102124, 1991.

    6. Coggan, A. R., and E. F. Coyle. R e v er s a l of f a t ig u e d u r in g

    prolonged exercise by carbohydrate infusion or ingest ion. J .Appl. Physiol. 63: 23882395, 1987.

    7. Coggan,A. R., W. M.Kohrt,R. J . Spina, J . P. Kirwan,D. M.Bier, and J . O. Holloszy. P la s m a g lu cose k in et ics d u r in gexercise in subjects with h igh and low la ctat e thresholds. J . A p p l .Physiol. 73: 18731880, 1992.

    8. Coggan, A.R ., R. J . Spina, W. M.Kohrt, D. M.Bier, and J . O.Holloszy. Plasma glucose kinetics in a well t ra ined cyclist fedglucose throughout exercise. In t . J. Sport N utr . 1: 279288, 1991.

    9. Colberg, S. R., G. A. Casazza, M. A. Horning, and G. A.Brooks. Increased dependence on blood glucose in smokersduring rest a nd susta ined exercise. J. A ppl . Physiol . 76: 2632,1994.

    10. Coyle, E. F., A. R. Coggan, M. K. Hemmert, and J . L. Ivy.Muscle glycogen utilization during prolonged strenuous exercisewhen fed carbohydrate. J. A ppl . Physiol . 61: 165172, 1986.

    11. Coyle, E. F., A. E. J eukendrup, A. J . M. Wagenmakers,and

    W. H . M. Saris. F a t t y a c id ox id a t ion is d ir e c t ly r e g u la t e d b ycarbohydrate metabolism during exercise. A m . J . P h y si o l . 273(Endocr inol . Metab. 36): E 268E 275, 1997.

    12. Craig, H. Isotopic standa rds for carbon a nd oxygen an d correc-tion factors. Geochi m. Cosmochim . Acta12: 133149, 1957.

    13. DeFronzo, R. A., E. Ferrannini, Y. Sato, P. Felig, and J .Wahren. Synergistic interaction between exercise and insulin onperipheral glucose uptake. J. Cl in. Invest . 68: 14681474, 1981.

    14. Fielding, R. A., D. L . Costill, W. J . Fink, D. S. King, M.Hargreaves, and J . E. Kovaleski. Ef f ec t of c a r b oh y d r a t efeeding frequencies a nd dosage on muscle glycogen use duringexercise. M ed. Sci. Sports Exerc. 17: 472476, 1985.

    15. Flynn, M. G., D. L . Costill, J . A. Hawley, W. J . Fink, P. D.Neufer, R. A. Fielding, and M. D. Sleeper. I n flu e n c e ofselected carbohydrate drinks on cycling performa nce and glyco-gen use. M ed. Sci. Sports Exerc. 19: 3740, 1987.

    16. Friedlander,A.L.,G.A.Casazza,M.A.Horning,M.J .Huie,and G. A. Brooks. Tra ining-induced altera tions of glucose fl uxin men. J. A ppl . Physiol . 82: 13601369, 1997.

    17. Gollnick, P. D., B. Pernow, B. Essen, E. J ansson, and B.Saltin. Availability of glycogen and plasma FFA for substrateutilization in leg muscle of man during exercise. Clin . Physiol . 1:2742, 1981.

    18. Hargreaves, M., and C. A. Briggs. Effect of carbohydra teingest ion on exercise metabolism. J . A p p l . P h y s i ol . 65: 15531555, 1988.

    19. Hargreaves, M., D. L. Costill,A. Coggan, W. J . Fink, and I.Nishibata. Effect of carbohydrate feedings on muscle glycogenutilization and exercise performance. M ed. Sci. Sports Exerc. 16:219222, 1984.

    20. Hargreaves, M., B. Kiens, and E. A. Richter. Effect ofincreased plasma free fatty a cid concentr at ions on muscle metabo-lism in exercising men. J. A ppl . Physiol . 70: 194201, 1991.

    21. Hawley, J . A., A. N. Bosch, S. M. Weltan, S. C. Dennis, andT. D. Noakes. Glucose kinetics during prolonged exercise ineuglycemic a nd hyperglycemic subjects . Pflu ger s A r ch . 426:378386, 1994.

    22. Hawley, J . A., S. C. Dennis, and T. D. Noakes. Oxidat ion ofcarbohydrate ingested during prolonged endurance exercise.Sports M ed. 14: 2742, 1992.

    23. Hawley, J . A., S. C. Dennis, A. Nowitz, F.Br ouns, and T. D.Noakes. Exogenous carbohydrate oxidat ion from maltose andglucose ingested during prolonged exercise. Eur. J. Appl. Physiol.64: 523527, 1992.

    24. Hevener, A. L., R. N. Bergman, and C. M. Donovan. Novelglucosensor for hypoglycemic detect ion localized to the portalvein. Diabetes46: 15211525, 1997.

    25. Horowitz, J . F., R. Mora-Rodriguez,L. O. Byerley, and E. F.Coyle. Lipolyt ic suppression following carbohydrate ingest ionlimits fat oxidation during exercise. Am. J . Physiol . 273 (Endocr i- n ol. Metab. 36): E 768E 775, 1997.

    26. J enkins, A. B., D. J . Chisholm, D. E. J ames, K. Y. Ho, andE. W. Kragen. Exercise-induced hepatic glucose output is pre-cisely sensitive to the r at e of systemic glucose supply. Metabolism34: 431436, 1985.

    27. J eukendrup, A. Aspects of Carbohydrate and Fat M etabol ism

    D u r i n g E x er c i se . Haarlem, The Netherlands: De Vrieseborch,1997.28. J eukendrup, A. E., L. Borghouts, W. H. M. Saris, and A. J .

    M. Wagenmakers. Reduced oxidat ion rates of orally ingestedglucose during exercise after low CHO intake and low muscleglycogen. J. A ppl . Physiol . 81: 19521957, 1996.

    29. J eukendrup,A.E.,A.Raben,A.Gijsen,J .C.H.C.Stegen,F.Brouns, W. H. M. Saris, and A. J . M. Wagenmakers.Glucosekinetics during prolonged exercise in highly trained subjects .Effect of glucose ingest ion. J . P h y si o l . ( L o n d . ) 515: 579589,1999.

    30. J eukendrup, A. E., A. J . M. Wagenmakers, F. Brouns, D.Halliday, and W. H . M. Saris. Effects of carbohydrate (CHO)and fat supplementat ion on CHO metabolism during prolongedexercise. Metabolism 45: 915921, 1996.

    31. Kuipers, H., F. T. J . Verstappen, H. A. Keizer, P. Geurten,and G. van Kranenburg. Variability of aerobic performance in

    the la boratory a nd its physiologic correlates. In t . J. Sports Med.6: 197201, 1985.

    32. Massicotte, D., F. Peronnet, G. Brisson, K. Bakkouch, andC. Hillaire-Marcel. O x id a t ion of a g lu cose p oly m er d u r in gexercise: comparison with glucose and fructose. J. A ppl . Physiol .66: 179183, 1989.

    33. Massicotte, D., F. Peronnet, G. Brisson, L. Boivin, and C.Hillaire-Marcel. Oxidat ion of exogenous carbohydrate duringprolonged exercise in fed and fasted condit ions. I n t . J . S p o r t s M ed. 11: 253258, 1990.

    34. McConell, G., S. Fabris, J . Proietto, and M. Hargreaves.Ef f ec t of c a r b oh y d r a t e in g es t ion on g lu cose k in et ics d u r in gexercise. J. A ppl . Physiol . 77: 15371541, 1994.

    35. Odland, L. M., R. A. Howlett, G. J . Heigenhauser, E.Hultman, and L. L. Spriet. Skeletal muscle ma lonyl-CoAc on t e n t a t t h e on s et of e xe r cis e a t v a r y in g p ow e r ou t pu t s inh u m a n s . Am. J. Physiol . 274 (Endocr inol . Metab. 37): E1080

    E1085, 1998.36. Peronnet, F., and D. Massicotte. Table of n onprotein respira -

    tory quotient : an update. Can. J. Sport Sci. 16: 2329, 1991.37. Pirnay, F., J . M. Crielaard, N. Pallikarakis, M. Lacroix, F.

    Mosora, G. Krzentowski, A. S. Luyckx, and P. J . Lefebvre.Fa te of exogenous glucose during exercise of different in tensitiesin h u m a n s . J. A ppl . Physiol . 53: 16201624, 1982.

    38. Pirnay, F., M. Lacroix, F. Mosora, A. Luyckx, and P. Lefe-bre. Glucose oxidation during prolonged exercise evaluated withn a t u r a l ly la b e le d [13C]glucose. J . A p p l . P h y s i o l . 43: 258261,1977.

    39. Ploug, T., H. Galbo, T. Ohkuwa, J . Tranum-J ensen, and J .Vinten. K in e t ic s of g lu cose t r a n s p or t in r a t s k elet a l m u s clemembrane vesicles: effects of insulin and contract ions. A m . J .Physiol. 262 (Endocr inol . M etab. 25): E700E 711, 1992.

    40. Ploug, T., J . Wojtaszewski, S. Kristiansen, P. Hespel, H.Galbo, and E. A. Richter. Glucose transport and transportersin giant vesicles: differential effects of insulin and contractions.Am. J . Physiol . 264 (End ocr i nol . M etab. 27): E 270E 278, 1993.

    41. Proietto, J . Estimations of glucose kinetics following an oralglucose load. H orm. M etab. Res. 24: 2530, 1990.

    42. Rehrer, N. J ., F. Brouns, E. J . Beckers, F. ten Hoor, andW. H. M.Saris.Ga stric emptying with r epeated drinking duringrunning a nd bicycling. Int . J. Sports Med. 11: 238243, 1990.

    43. Rehrer, N. J ., A. J . M. Wagenmakers, E. J . Beckers, D.Halliday, J . B. Leiper, F. Brouns, R. J . Maugham, K.Westerterp, and W. H. M. Saris. Ga stric emptying, absorption,and carbohydrate oxidat ion during prolonged exercise. J . A p p l .Physiol. 72: 468475, 1992.

    44. Roberts, A. C.,J . T.Reeves,G. E. Butterfield, R. S.Mazzeo,J . R. Sutton, E. E. Wolfel, and G. A. B rooks. Altitude and

    E682 CH O I N G ES T I O N CA N CO M P L ET EL Y S U P P R ES S EG P

  • 7/28/2019 Carbohydrate Ingestion Can Completely Suppress Endogenous Glucose Production During Exercise

    13/13

    -blockade augment glucose utilization during submaximal exer-cise. J. A ppl . Physiol . 80: 605615, 1996.

    45. Romijn, J .A.,E . F. Coyle, L. S.Sidossis,A. Gastaldelli, J . F.Horowitz, E. Endert, and R. R. Wolfe. Regulat ion of endog-enous fa t and carbohydrate metabolism in relat ion to exerciseintensity. A m . J . P h y si o l . 265 (Endocr inol . Metab. 28): E380E 391, 1993.

    46. Rossetti, L.,A. Giaccari, N. Barzilai, K. Howard, G. Sebel,and M.Hu. Mechanism by which hyperglycemia inhibits hepaticglucose production in conscious rats. Implications for the patho-physiology of fast ing hyperglycemia in dia betes. J. Cl in. Invest .92: 11261134, 1993.

    47. Saris,W.H.M. Limits of huma n endura nce: lessons from th e Tour deFrance. In: Physiology, Stress and M alnu tr i t ion: Fun ct ional Cor- relates, Nutr i t i onal I ntervent ion, e d i t ed b y J . M . K in n ey a n dH. N. Tucker. Ph ila delphia , PA: Lippin cott, 1997, p. 451463.

    48. Schrauwen, P., D. P. C. van Aggel-Leijssen, W. D. vanMarken Lichtenbelt, M. A. van Baak, A. P. Gijsen, andA. J . M. Wagenmakers. Validat ion of the [1,2-13C]acetaterecovery fa ctor for correction of [U-13C]palmita te oxidat ion ra tesin h u m a n s . J. Physiol . (Lond.) 15: 215223, 1998.

    49. Sidossis,L . S., A.R. Coggan,A. Gastaldelli, and R. R. Wolfe.Pa thw ays of free fa t ty acid oxidat ion in hum an subjects : implica-tions for tracer studies. J. Cl i n. In vest . 95: 278284, 1995.

    50. Steele, R. Infl uences of glucose loadin g an d of injected insulin onhepat ic glucose output . Ann. N Y Acad. Sci . 82: 420430, 1959.

    51. Tsintzas,K.,and C. Williams.Human muscle glycogen metabo-lism during exercise. E ffect of carbohydrate supplementat ion.Sports M ed. 25: 723, 1998.

    52. Tsintzas, O. K., C. Williams, L. Boobis, and P. Greenhaff.Ca r b oh y d r a t e in g es t ion a n d g ly coge n u t i liz a t i on in d i ff er e n tm u s c le fi b r e t y p e s in m a n . J. Physiol . (Lond.) 489: 243250,1995.

    53. Tsintzas, O.-K., C. Williams, L. Boobis, and P. Greenhaff.Carbohydrate ingestion and single muscle fiber glycogen metabo-l is m d u r in g p r olon g e d r u n n in g in m e n . J . A p p l . P h y s i o l . 81:801809, 1996.

    54. Wagenmakers, A. J . M., F. Brouns, W. H. M. Saris, and D.Halliday. Oxidat ion rat es of orally ingested carbohydrates dur-ing prolonged exercise in man. J. Appl . Physiol . 75: 27742780,1993.

    55. Wasserman, D. H., and A. D. Cherrington. Regulat ion ofextra muscular fuel sources during exercise. H and book of Physiol- ogy. Exercise: Regulat ion and In tegrat ion of M ult i ple Systems.Bethesda, MD: Am. Physiol. Soc. , 1996, sect . 12, chapt . 23, p.10361074.

    56. Wasserman, D. H., R. J . Geer, D. E. Rice, D. Bracy, P. J .Flakoll, L. L. Brown, J . O. Hill, and N. N. Abumrad.I n t e r a c t ion of e x e r c is e a n d in s u l in a c t ion in h u m a n s . A m . J .Physiol. 260 (Endocr inol . Metab. 23): E37E45, 1991.

    57. Wolfe, R. R. Radioactive and Stable Isotope Tracers in Biomedi-cine. New York: Wiley-Liss , 1992.

    E683CH O I N G ES T I O N CA N CO M P L ET EL Y S U P P R ES S EG P