calculation of the nucleon axial form factor using ... · people thesis advising:richard hill,...

20
Calculation of the Nucleon Axial Form Factor Using Staggered Lattice QCD Aaron S. Meyer ([email protected]) University of Chicago/Fermilab July 28, 2016 1 / 20

Upload: others

Post on 23-Sep-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Calculation of the Nucleon Axial Form Factor Using ... · People Thesis advising:Richard Hill, Andreas Kronfeld Also: A. Bazavov, C. Bernard, N. Brown, C. DeTar, Daping Du, A. X

Calculation of the Nucleon AxialForm Factor Using Staggered

Lattice QCD

Aaron S. Meyer ([email protected])

University of Chicago/Fermilab

July 28, 2016

1 / 20

Page 2: Calculation of the Nucleon Axial Form Factor Using ... · People Thesis advising:Richard Hill, Andreas Kronfeld Also: A. Bazavov, C. Bernard, N. Brown, C. DeTar, Daping Du, A. X

People

Thesis advising: Richard Hill, Andreas Kronfeld

Also:A. Bazavov, C. Bernard, N. Brown, C. DeTar, Daping Du, A. X.El-Khadra, E. D. Freeland, E. Gamiz, S. Gottlieb, U. M. Heller, J. Laiho,R. Li, P. B. Mackenzie, D. Mohler, C. Monahan, E. T. Neil, J. Osborn,T. Primer, J. Simone, R. Sugar, A. Strelchenko, D. Toussaint, R. S. Vande Water, A. Veernala, R. Zhou

Fermilab Lattice & MILC Collaborations

2 / 20

Page 3: Calculation of the Nucleon Axial Form Factor Using ... · People Thesis advising:Richard Hill, Andreas Kronfeld Also: A. Bazavov, C. Bernard, N. Brown, C. DeTar, Daping Du, A. X

Motivation

I Next generation particle physics projects dedicated tomeasuring fundamental properties of neutrinos

I Precision measurement of θ23, discovery of δCP

I Fermilab host to a number of neutrino experiments:I DUNE, MicroBooNE, MINERνA, NOνA, SBND, . . .

I To date, most experiments employ near/far detector paradigmI New experiments will be more sensitive,

need more precise nuclear/nucleon cross sections

3 / 20

Page 4: Calculation of the Nucleon Axial Form Factor Using ... · People Thesis advising:Richard Hill, Andreas Kronfeld Also: A. Bazavov, C. Bernard, N. Brown, C. DeTar, Daping Du, A. X

Cross Sections

10 20 300

200

400

600

800

1000

(GeV)νE 1 10

CC

evt

s/G

eV/1

0kt/M

W.y

rµ ν

0

200

400

600

800

1000

App

eara

nce

Pro

babi

lity

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

CC spectrumµν =n/acpδ = 0.0, 13θ22sin

/2π=-cpδ = 0.1, 13θ22sin=0cpδ = 0.1, 13θ22sin

/2π=+cpδ = 0.1, 13θ22sin

2 = 2.4e-03 eV 312m∆ CC spectrum at 1300 km, µν

precise energyresolution

precise crosssections

A

νµ

A′

p

µ−

(Figure from LBNE, 1307.7335 [hep-ex]) Charge Current QE scattering

I Measurements of neutrino parameters require preciseknowledge of cross sections

I Nuclear cross sections obtained using nucleon amplitudesas input to nuclear models

I Uncertainty on FA(Q2) is primary contribution to systematic errorsI F1V , F2V known from e − p scatteringI FP suppressed by lepton mass in cross sections

I Focus on FA, other form factors as consistency checks

4 / 20

Page 5: Calculation of the Nucleon Axial Form Factor Using ... · People Thesis advising:Richard Hill, Andreas Kronfeld Also: A. Bazavov, C. Bernard, N. Brown, C. DeTar, Daping Du, A. X

Dipole Form Factor

Neutrino community typically assumes dipole form factor:

FA(Q2) = gA

(1 + Q2/m2A)2

Introduced by Llewellyn-Smith in 1971 as an ansatz

Unmotivated in interesting energy range

=⇒ Uncontrolled systematics and underestimated uncertainties

5 / 20

Page 6: Calculation of the Nucleon Axial Form Factor Using ... · People Thesis advising:Richard Hill, Andreas Kronfeld Also: A. Bazavov, C. Bernard, N. Brown, C. DeTar, Daping Du, A. X

z-ExpansionThe z-Expansion (1108.0423 [hep-ph]) is a conformal mapping whichtakes the kinematically allowed region (t = −Q2 ≤ 0) to within |z | < 1

z(t; t0, tc) =√

tc − t −√

tc − t0√tc − t +

√tc − t0

FA(z) =∞∑

n=0anzn tc = 9m2

π

I Model independent: motivated by analyticity arguments from QCDI Only few parameters needed: unitarity boundsI Successful in B-meson physics

6 / 20

Page 7: Calculation of the Nucleon Axial Form Factor Using ... · People Thesis advising:Richard Hill, Andreas Kronfeld Also: A. Bazavov, C. Bernard, N. Brown, C. DeTar, Daping Du, A. X

Deuterium Bubble Chamber - z ExpansionAnalysis in Phys. Rev. D 93, 113015 (1603.03048 [hep-ph])

ASM, M. Betancourt, R. Gran, R. Hill

Reanalyzed deuterium bubble chamber data by replacing dipolewith z expansion framework

Form factor fit to BNL, ANL, FNAL data sets of ∼ 1000 events

]2[GeV2Q0 1 2 3

)2(-

QA

F

0

0.5

1

=4 z expansionaN

= 1.014(14) dipoleAm

[GeV]νE-110 1 10

]2)[

cmν

(Eσ

0

5

10

15

-3910×

=4 z expansionaN

= 1.014(14) dipoleAm

=⇒ Unfounded assumption of dipole form factor shape willseverely underestimate systematic uncertainties

7 / 20

Page 8: Calculation of the Nucleon Axial Form Factor Using ... · People Thesis advising:Richard Hill, Andreas Kronfeld Also: A. Bazavov, C. Bernard, N. Brown, C. DeTar, Daping Du, A. X

=⇒ A better determination of the form factor is neededto build sensible nuclear models

=⇒ Lots of room for LQCD to make significant contributions to crosssection determinations essential for neutrino physics

8 / 20

Page 9: Calculation of the Nucleon Axial Form Factor Using ... · People Thesis advising:Richard Hill, Andreas Kronfeld Also: A. Bazavov, C. Bernard, N. Brown, C. DeTar, Daping Du, A. X

Fermilab Lattice/MILC Effort

We are calculating the axial form factor FA(Q2) using staggered quarkson the MILC HISQ 2+1+1 gauge ensembles

I no explicit chiral symmetry breaking in m→ 0 limitI no exceptional configurationsI physical pion mass at multiple lattice spacingsI large volumesI exact renormalizationI high-statistics (computationally fast)

Effort is needed to handle:I Complicated group theoryI Lots of baryon tastes in correlation functions

9 / 20

Page 10: Calculation of the Nucleon Axial Form Factor Using ... · People Thesis advising:Richard Hill, Andreas Kronfeld Also: A. Bazavov, C. Bernard, N. Brown, C. DeTar, Daping Du, A. X

Gauge Ensembles

Current data:I a = 0.15 fm, 323 × 48 ensemble onlyI mvalence = mphysical

I ∼ 1000 2-point measurements, ∼ 500 3-point

10 / 20

Page 11: Calculation of the Nucleon Axial Form Factor Using ... · People Thesis advising:Richard Hill, Andreas Kronfeld Also: A. Bazavov, C. Bernard, N. Brown, C. DeTar, Daping Du, A. X

Group TheoryI Irreps of group (((TM ×Q8) o W3)× D4)/Z2

I Fermionic irreps: 8, 8′, 16; Isospin: 32 , 1

2I Fundamental quark contained in the 8 representation,

where 8 operators correspond to the 8 unit cube cornersI Because of symmetrization with taste quantum number, can

generate “nucleon-like” states with either choice of isospin

Number of different taste states in lowest-order (n = 0) multiplet:Irrep I = 3

2 I = 12

8 3N + 2∆ 5N + 1∆8′ 0N + 2∆ 0N + 1∆16 1N + 3∆ 3N + 4∆

I I = 32 : Nops = Nstates,n=0

I I = 12 : Nops = 2× Nstates,n=0

Can construct large operator basis of Nops × Nops correlatorsfor each irrep, isospin;

=⇒ always expect to extract all n = 0 states from variational method! 11 / 20

Page 12: Calculation of the Nucleon Axial Form Factor Using ... · People Thesis advising:Richard Hill, Andreas Kronfeld Also: A. Bazavov, C. Bernard, N. Brown, C. DeTar, Daping Du, A. X

2-Point Functions: CorrelatorsNucleon 2-point function 〈Ni |Nj〉:

PRELIMINARY

0 5 10 15 20 25

t

10−2

10−1

100

101

102

103

C(t)

0 5 10 15 20 25

t

10−2

10−1

100

101

102

103

C(t)

0 5 10 15 20 25

t

10−2

10−1

100

101

102

103

C(t)

0 5 10 15 20 25

t

10−2

10−1

100

101

102

103

C(t)

0 5 10 15 20 25

t

10−2

10−1

100

101

102

103

C(t)

0 5 10 15 20 25

t

10−2

10−1

100

101

102

103

C(t)

0 5 10 15 20 25

t

10−2

10−1

100

101

102

103

C(t)

0 5 10 15 20 25

t

10−2

10−1

100

101

102

103

C(t)

0 5 10 15 20 25

t

10−2

10−1

100

101

102

103

C(t)

0 5 10 15 20 25

t

10−2

10−1

100

101

102

103

C(t)

0 5 10 15 20 25

t

10−2

10−1

100

101

102

103

C(t)

0 5 10 15 20 25

t

10−2

10−1

100

101

102

103

C(t)

0 5 10 15 20 25

t

10−2

10−1

100

101

102

103

C(t)

0 5 10 15 20 25

t

10−2

10−1

100

101

102

103

C(t)

0 5 10 15 20 25

t

10−2

10−1

100

101

102

103

C(t)

0 5 10 15 20 25

t

10−2

10−1

100

101

102

103

C(t)

0 5 10 15 20 25

t

10−2

10−1

100

101

102

103

C(t)

0 5 10 15 20 25

t

10−2

10−1

100

101

102

103

C(t)

0 5 10 15 20 25

t

10−2

10−1

100

101

102

103

C(t)

0 5 10 15 20 25

t

10−2

10−1

100

101

102

103

C(t)

0 5 10 15 20 25

t

10−2

10−1

100

101

102

103

C(t)

0 5 10 15 20 25

t

10−2

10−1

100

101

102

103

C(t)

0 5 10 15 20 25

t

10−2

10−1

100

101

102

103

C(t)

0 5 10 15 20 25

t

10−2

10−1

100

101

102

103

C(t)

0 5 10 15 20 25

t

10−2

10−1

100

101

102

103

C(t)

Matrix of correlation functions shown (5 sources × 5 sinks)

=⇒ Get good t range, at least up to t = 10

=⇒ Wrong-parity oscillating states clearly visible12 / 20

Page 13: Calculation of the Nucleon Axial Form Factor Using ... · People Thesis advising:Richard Hill, Andreas Kronfeld Also: A. Bazavov, C. Bernard, N. Brown, C. DeTar, Daping Du, A. X

2-Point Functions: Effective Mass

Effective mass as a demonstration

PRELIMINARY

Effective mass prohibitively noisy at t = 10

Presence of wrong-parity (oscillating) excited state clearly visible

From effective mass alone, not clear that we could get a reliable spectrum=⇒ can we benefit from using correlations?

13 / 20

Page 14: Calculation of the Nucleon Axial Form Factor Using ... · People Thesis advising:Richard Hill, Andreas Kronfeld Also: A. Bazavov, C. Bernard, N. Brown, C. DeTar, Daping Du, A. X

2-Point Functions: S/N OptimizationOptimize a metric related to the signal to noise by varying v, w tovisualize statisical power hidden in correlations:

S2

N2 =∑

ij

tmax∑t=tmin

[v iCij(t)w j ]2

δ [v iCij(t)w j ]2

PRELIMINARY PRELIMINARY

unoptimized optimizedResulting correlators are cleaner

=⇒ Statistical power hidden in correlations=⇒ Oscillating states still visible, no choice but to do excited state fits 14 / 20

Page 15: Calculation of the Nucleon Axial Form Factor Using ... · People Thesis advising:Richard Hill, Andreas Kronfeld Also: A. Bazavov, C. Bernard, N. Brown, C. DeTar, Daping Du, A. X

2-Point Functions: Stability

PRELIMINARY PRELIMINARY

8 representation (3N + 2∆) → 16 representation (1N + 3∆)

Fully correlated fit with Bayesian priors, many excited states

Using fit results from 8 representation as priors to fit to 16 representationimproves precision on mass determinations

8′ w/ 0N + 2∆→ ∆ mass, taste splitting8 w/ 3N + 2∆→ N mass, N −∆ mass splitting, better taste splitting16 w/ 1N + 3∆→ “Golden channel”: precise measurement of nucleon properties

15 / 20

Page 16: Calculation of the Nucleon Axial Form Factor Using ... · People Thesis advising:Richard Hill, Andreas Kronfeld Also: A. Bazavov, C. Bernard, N. Brown, C. DeTar, Daping Du, A. X

3-Point Functions: Normalization of Aµ/Blinding

Calculate form factor:

〈N|ZAAµ |N〉〈0|ZAAµ |πa〉

∣∣∣∣∣q=0

∝ gAfπ

Benefits from statistical cancellation, exact renormalization

Normalize with fπ computed from MILC computation of fπ,Phys. Rev. D 90, 074509 (1407.3772 [hep-lat])

FA at nonzero momentum computed as ratio of nuclear matrix elements:

〈N(0)|ZAA⊥µ(q) |N(q)〉〈N(0)|ZAAµ(0) |N(0)〉 ∝

FA(Q2)gA

16 / 20

Page 17: Calculation of the Nucleon Axial Form Factor Using ... · People Thesis advising:Richard Hill, Andreas Kronfeld Also: A. Bazavov, C. Bernard, N. Brown, C. DeTar, Daping Du, A. X

3-Point Functions: Blinding

Value of gA well-known from neutron beta decay experiments

=⇒ Blinding implemented as a factor multiplying 3-point function

β 〈N(0)|ZAAµ(q) |N(q)〉 ∼ βFA(Q2)

Blinding known only to few members of collaboration, not to me

17 / 20

Page 18: Calculation of the Nucleon Axial Form Factor Using ... · People Thesis advising:Richard Hill, Andreas Kronfeld Also: A. Bazavov, C. Bernard, N. Brown, C. DeTar, Daping Du, A. X

3-Point Functions: First Look

optimize: S2

N2 =∑

ij

t−1∑τ=1

[v iCij(τ, t)w j ]2

δ [v iCij(τ, t)w j ]2

PRELIMINARY PRELIMINARY

raw correlator → optimized correlatorI raw 3-point functions have no visible plateauI prominent oscillating statesI errors improved by S/N optimization =⇒ strong correlationsI many currents available (local, point split)

18 / 20

Page 19: Calculation of the Nucleon Axial Form Factor Using ... · People Thesis advising:Richard Hill, Andreas Kronfeld Also: A. Bazavov, C. Bernard, N. Brown, C. DeTar, Daping Du, A. X

Future Prospects

I 6× propagators for 32× 48 lattice computed,computation of tie-ups in progress

I Still have not included pion 2-point function in ratio,expect statistical cancellation to improve results

I Can disentangle more excited states than implied byvariational method alone

I Have USQCD resources for inversions ona = 0.12, 0.09fm ensembles

I Will compute full error budget for form factor

19 / 20

Page 20: Calculation of the Nucleon Axial Form Factor Using ... · People Thesis advising:Richard Hill, Andreas Kronfeld Also: A. Bazavov, C. Bernard, N. Brown, C. DeTar, Daping Du, A. X

Conclusions

I Axial form factor is essential for the success of futureneutrino oscillation experiments

I Staggered baryons have the potential to weigh in on gA puzzleI Preliminary data for 2- and 3-point functions have been calculatedI Spectrum calculation for staggered baryons is feasibleI We are optimistic that our gA calculation will be

competitive with other collaborations

Thank you for your attention!

20 / 20