boost converter class notes

21
1 EE462L, Spring 2014 DC−DC Boost Converter

Upload: lamtram

Post on 15-Jan-2017

256 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Boost converter class notes

1

EE462L, Spring 2014DC−DC Boost Converter

Page 2: Boost converter class notes

2

Vin +

Vout–

C iC

Iout iinBuck converter

iL

L

+ vL –

Boost converter

Vin +

Vout–

C iC

Iout iin

iL

L

+ vL –

Page 3: Boost converter class notes

3

Boost converter

This is a much more unforgiving circuit than the buck converter

Vin +

Vout–

C iC

Iout iin

iL

L

+ vL – iD

• If the MOSFET gate driver sticks in the “on” position, then there is a short circuit through the MOSFET – blow MOSFET!

• If the load is disconnected during operation, so that Iout = 0, then L continues to push power to the right and very quickly charges C up to a high value (250V) – blow diode and MOSFET!

• Before applying power, make sure that your D is at the minimum, and that a load is solidly connected

!

Page 4: Boost converter class notes

4

Boost converter

Vin +

Vout–

C iC

Iout iin

iL

L

+ vL – iD

• Modify your MOSFET firing circuit for Boost Converter operation (see the MOSFET Firing Circuit document)

• Limit your output voltage to 120V

Page 5: Boost converter class notes

5

Boost converter

Using KVL and KCL in the average sense, the average values are

+ 0 V – Iout

Vin +

Vout–

C

Iout

L

0 A

Iin

Vin +

Vout–

C iC

Iout iin

iL

L

+ vL – iD

Find the input/output equation by examining the voltage across the inductor

Page 6: Boost converter class notes

6

Switch closed for DT seconds

Reverse biased, thus the diode is openL

Vdtdi inL

for DT seconds

Vin +

Vout–

C

Iout iin

iL

L

Iout

Note – if the switch stays closed, the input is short circuited!

+ Vin −

Page 7: Boost converter class notes

7

Switch open for (1 − D)T seconds

Diode closed. Assume continuous conduction.L

VVdtdi outinL

Vin +

Vout–

C

Iout iin

iL

L

for (1−D)T seconds

(iL – Iout)

+ (Vin − Vout ) −

Page 8: Boost converter class notes

8

Since the average voltage across L is zero

01 outininLavg VVDVDV

inininout VDVDVDV )1(

DVV in

out

1

The input/output equation becomes

A realistic upper limit on boost is 5 times

!

Page 9: Boost converter class notes

9

Examine the inductor current

Switch closed,

Switch open,

LV

dtdiVv inL

inL ,

LVV

dtdiVVv outinL

outinL

,

sec/ ALVin

DT (1 − D)T

T

Imax

Imin

Iavg = Iin

Iavg = Iin is half way between

Imax and Imin

sec/ ALVV outin

ΔI

iL

Page 10: Boost converter class notes

10

Inductor current rating

22222121

121 IIIII inppavgLrms

2222342

121

inininLrms IIII

Max impact of ΔI on the rms current occurs at the boundary of continuous/discontinuous conduction, where ΔI =2Iin

inLrms II3

2

2Iin

0Iavg = Iin ΔI

iL

Use max

Page 11: Boost converter class notes

11

MOSFET and diode currents and current ratings

inrms II3

2

Use max

2Iin

0

2Iin

0

Take worst case D for each

Vin +

Vout–

C iC

Iout iin

iL

L

+ vL – iD

Page 12: Boost converter class notes

12

Capacitor current and current rating

2Iin −Iout

−Iout

0

Max rms current occurs at the boundary of continuous/discontinuous conduction, where ΔI =2Iout

outCrms II

Use max

iC = (iD – Iout)

Vin +

Vout–

C iC

Iout iin

iL

L

iD

See the lab document for the derivation

Page 13: Boost converter class notes

13

Worst-case load ripple voltage

CfI

CTI

CQV outout

The worst case is where C provides Iout for most of the period. Then,

−Iout

0

iC = (iD – Iout)

Page 14: Boost converter class notes

14

Voltage ratings

Diode sees Vout

MOSFET sees Vout

C sees Vout

• Diode and MOSFET, use 2Vout

• Capacitor, use 1.5Vout

Vin +

Vout–

C

Iout iin

iL

L

Vin +

Vout–

C

Iout iin

iL

L

Page 15: Boost converter class notes

15

Continuous current in Lsec/ A

LVV outin

fL

DD

VTD

L

VD

V

TDL

VVIboundary

in

boundary

inin

boundary

inoutin

11

11

1112

fIDVLin

inboundary 2

2Iin

0Iavg = Iin

iL

(1 − D)T

fIVLin

in2

guarantees continuous conduction

Then, considering the worst case (i.e., D → 1),

use max

use min

, 2fL

DVIboundary

inin

Page 16: Boost converter class notes

16

Impedance matching

outout

load IVR

equivR

loadout

outout

out

in

inequiv RD

IVD

DIVD

IVR 22 11

1

1

DC−DC Boost Converter

+

Vin

+

Iin

+

Vin

Iin

Equivalent from source perspective

Source DVV in

out

1

inout IDI 1

Page 17: Boost converter class notes

17

Example of drawing maximum power from solar panel

PV Station 13, Bright Sun, Dec. 6, 2002

0

1

2

3

4

5

6

0 5 10 15 20 25 30 35 40 45

V(panel) - volts

I - a

mps

Isc

Voc

Pmax is approx. 130W (occurs at 29V, 4.5A)

44.65.429AVRload

For max power from panels, attach

I-V characteristic of 6.44Ω resistor

But as the sun conditions change, the “max power resistance” must also change

Page 18: Boost converter class notes

18

Connect a 100Ω resistor directly, extract only 14W

PV Station 13, Bright Sun, Dec. 6, 2002

0

1

2

3

4

5

6

0 5 10 15 20 25 30 35 40 45

V(panel) - volts

I - a

mps

130W

6.44Ω

resistor

100Ω resistor

14W

75.0100

44.611 ,1 2 load

equivloadequiv R

RDRDR

To extract maximum power (130W), connect a boost converter between the panel and the load resistor, and use D to modify the equivalent load resistance seen by the source so that maximum power is transferred

So, the boost converter reflects a high load resistance to a low resistance on the source side

Page 19: Boost converter class notes

19

Worst-Case Component Ratings Comparisons for DC-DC Converters

Converter Type

Input Inductor

Current (Arms)

Output Capacitor Voltage

Output Capacitor Current (Arms)

Diode and MOSFET Voltage

Diode and MOSFET Current (Arms)

Boost inI3

2 1.5 outV outI 2 outV inI3

2

5A 10A10A 120V 120V

Likely worst-case boost situation

5.66A 200V, 250V 16A, 20AOur components

9A 250V

MOSFET. 250V, 20A

L. 100µH, 9AC. 1500µF, 250V, 5.66A p-p

Diode. 200V, 16A

BOOST DESIGN

Page 20: Boost converter class notes

20

Comparisons of Output Capacitor Ripple Voltage

Converter Type Volts (peak-to-peak) Boost

CfIout

5A

1500µF 50kHz

0.067V

BOOST DESIGN

MOSFET. 250V, 20A

L. 100µH, 9AC. 1500µF, 250V, 5.66A p-p

Diode. 200V, 16A

Page 21: Boost converter class notes

21

Minimum Inductance Values Needed to Guarantee Continuous Current

Converter Type For Continuous

Current in the Input Inductor

For Continuous Current in L2

Boost fI

VLin

in2

40V

2A 50kHz

200µH

BOOST DESIGN

MOSFET. 250V, 20A

L. 100µH, 9AC. 1500µF, 250V, 5.66A p-p

Diode. 200V, 16A