blocker tolerant software defined receivers

42
1 Hooman Darabi 7/25/13 Blocker Tolerant Software Defined Receivers

Upload: others

Post on 03-Feb-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

1

Hooman Darabi

7/25/13

Blocker Tolerant Software Defined Receivers

2

Receiver Noise and Linearity

• Small signal linearity:

IIP2, IIP3

Y

XABAD

Operates here

GGD

fB1 fB22fB1-fB2• Large signal linearity:

Gain compression

• Reciprocal mixing

• Harmonic mixing

• Receiver NF sets the sensitivity, range:

Set by the standard10Log(KT), dBm/Hz

Sensitivity = -174 + NF + 10Log(BW) +SNRRS=50ΩΩΩΩ

RX

Blo

cke

rs: I

n/O

ut-

Ban

d

3

Reciprocal Mixing

• PB + PN(∆∆∆∆B) + 10×LOG(BW) = PD – SNR

• BNF = 174 + PB + PN

fLO

PD

PBSNR

BWfLO

Noisy LO

∆∆∆∆fB

4

Harmonic Rejection & Aliasing in Mixers

Weldon, JSSC 2001

• Square-wave LO harmonically rich

• More phases alleviates the issue

• More energy in main, less in higher harmonics

-6

-4

-2

0

2

2 4 8 16

32

# of Phases

Gai

n, d

B

)(M

SinM π

π

1.0

1.5

2.0

Alia

sin

g

=

1

1/31/5

Aliasing = 1+1/32+1/52+…= ππππ2/2

5

RF IC

Large Blocker

Duplexer

RX Desired

TX Leakage

3/4G Full-Duplex Problem

• Duplexer is a dual-band filter• Similar issue due to co-existence

TX RX

RX-Band NoiseIIP2IIP3

6

Ideal Receiver

fIF = fIN - fLO

ADCADC

IFfLO

RF

• Filter only rejects out-of-band blockers

• In-band blockers require a high-resolution ADC

• Power hungry

• Invented by Armstrong in 1918

• Down-conversion relaxes IF signal processing

• Lower power

-99dBm

0dBm-26dBm

Mitola 1995

7

Ideal Receiver Challenges

• Scalable

• Broad-band: Low-noise, Blocker tolerant

• Low-power

Murmann

97

03 09

15

Year (ADC)

FoM

Current RX

FoM = p/fs/2^ENOB

06

09

Year (3G RX)

I DD, m

A

30

50

70

12

BCM2093

Mikhemar

8

Narrow-Band Filtering Concerns

• Large blockers compress the receiver

• External filtering is narrow-band and costly

-99dBm

0dBm

Mu

lti-

Ban

d R

ece

ive

r

Swit

ch

15-20dB

6.6V p-p

9

N-Path Filtering Concept

• Very high-Q passives needed

• N-path filtering extends Nyquist rate1

SC LPF

fc 2fcfc/2

SC LPF

SC LPF

SC LPF

…… ………… ……

ININOUT

OUT

fc 2fc

NY=N×(fc/2)

L. Franks, Bell Syst. Tech. J., 1960

10

Passive Mixers as High-Q Filters

)()(2

)(2 LOBBLOBBSWin jsZjsZRsZ ωω

π++−+≈

LO1

LO2

LO3

LO4

0

IRF

VRF

0

High-Q BPF from low-Q LPF

fLO

fLO

LO1

LO4

0

LO2

LO3

VRF

IRF

ZBB

Mirzaei, TCAS 2010

Blo

cke

r

11

Current-Mode Receivers

• Passive mixers to achieve high-Q filtering

• Current mode LNA: LNTA

• Enhance the blocker tolerance

GM

0fRF

fRF

0

BUF

BUF

12

Front-End Matching Concerns

• Wide-band matching

• Good linearity

• NF suffers

RS=50ΩΩΩΩ

RS

• Narrow-band matching

• Good NF

• Modest linearity

NF > 3dB

Matching

RS

13

Mixer-First Receivers

• N = 1 / (sinc (ππππ/M))2 > 1

• NF > 3dB in practice at GHz frequencies Andrews, JSSC 2010

LO1

LO2

LO3

LO4TI

A_I

I

TIA

_Q Q

RS

VS

SW Resistance, ΩΩΩΩ

NF,

dB

0

1

2

3

4

5

0 10

20

30

40

50

gAlia

S

bb

S

DS NKTRM

v

R

ONrF

sin

2

)4(

)(1 ×

++=• For M phases:

14

Noise Cancelling Concept

• Used in broad-band LNA’s

• Poor linearity

RS

RIN=RS

VIN+- ααααVIN

+- -rmIIN

IIN

+VOUT

-

rm = αααα × RS

Relative GainN

F0

Bruccoleri, ISSCC 2002

15

Noise Cancelling RX Architecture

• Low noise and linear

• No Balun required

RS

RS = RSW + 2RBB/ππππ2

-+

BW << ∆∆∆∆fB

-+

GM αααα = -GM×RLA+

VOUT

-

Low resistance

Noise and linearity bottleneck

RLA

RLM

rm = RLM

Murphy, ISSCC 2012

16

Noise & Linearity Performance of NC RX

• GM noise dominant, no need to provide matching

F ≅≅≅≅ (1+vGM2/4KTRS)×N

• Similarly main path distortion cancelled:

IIP3 ≅≅≅≅ (1+RS/RIN)3/2 × IIP3_AUX

RS

GM+

VOUT

-

TIA_A

TIA_M

Suppressed by GM

Upconverts, Cancelled

Dominant

17

Over-Sampling Mixer Architecture

• Synthesizes arbitrary 8-phase LO:

TIA K0

TIA K1

TIA K7

ΣΣΣΣVOUT

IRF

8-P

has

e

√2

Harmonic Combination

∑=

−=7

0

)8

()(x

xRFOUTT

xtswKtiV

1

1/7

18

Complete NC Receiver Architecture

GM

10ΩΩΩΩ

50ΩΩΩΩ

I

Q

We

igh

tin

g &

Re

com

bin

atio

n

…LO0LO1

LO7

4fLO ÷4

NF ≈ 1 + 1/GMRS

19

RF GM Cell

• Class AB transconductance

• Scalable

• Linear due to class AB and low-impedance loading

0.0

0.1

0.2

0.3

-0.7

-0.5

-0.4

-0.2

0.0

0.2

0.3

0.5

0.7

GM

≈ 10ΩΩΩΩ

N P

Overall

VDD

GM

, S

2.7×

Input, V

20

Baseband TIA

• Most power efficient

• Noise: vbb2 ≈ 4KTγγγγ/Gm ≈ 4KT/40ID

• Input resistance: Rin ≈ RF / AOPEN ≈ RF / (Gm(RFllRL))

0

5

10

15

20

25

1 4 13

44

143

464

151

2

492

4

Width, µµµµm

g m/I

D, V

-1

NMOSPMOS

Gm

RF

RL

Gm = gmn+gmp ≈ 40××××ID

Rin

vbb2

21

Receiver Scalability

VD

D

4tr

S××××T = 8VDD

• Inherently relies on high-speed logic, switches

• In 40nm, tr ≈ 10pS:

– 12.5GHz for 2-phase (overlapping)

– 3.12GHz for 8-phase

• Scales w/ technology

8-Phase

T = 32tr

VD

D

tr

3tr

tf

S××××T = 8VDD

2-Phase

T = 8tr

22

Noise Figure

• 1/f corner reduces from 100kHz to less than 10kHz

• Corresponds to <-113dBm GSM sensitivity

NC ON

NC OFF

NF,

dB

RF Input, MHz

23

Blocker Noise Figure

• 4.1dB 0dBm BNF, mostly limited by reciprocal mixing

BN

F, d

B

Blocker Power, dBm

3GPP Requirement

24

Linearity

• Close to 0dBm 1dB compression at maximum gain

NC ON

NC OFFP

1-d

B, d

Bm

Blocker Distance, MHz

25

NF vs. Relative Phase Correction

• Robust at optimum point

NF,

dB

Relative Phase, ⁰

Uncompensated

26

Summary of Performance

Architecture Mixer first NC LNA NB SAW-Less NC RX

RF Range 0.1-2.4GHz 0.4-6GHz 900/1800 0.1-2.7GHz

Input SE Differential Differential SE

NF at 2GHz 7dB 4.4dB 4.1dB 1.8dB

0dBm BNF NA 13dB 7dB 4.1dB

3rd/5th HR 35/43dB None None 42/45dB

OB IIP3 25dBm 10dBm NA 14dBm

RX Current 12mA 12mA 37mA 12mA

Area 2mm2 2mm2 1.4mm2 1.2mm2

Technology 65nm 40nm 65nm 40nm

27

NC RX Die Photo

• Die area: 1.2mm2

• Inductor-less

Single-EndedDifferential

28

Reciprocal Mixing Issue System Approach

• Start w/ a low-power/cost VCO

• Deal with its consequences in system level

• Proper phase noise estimation is key

Receiver Chain

Noisy VCONoise

Estimation

-Desired + RM

RM Replica

Desired

Reciprocal mixing NF = 174 – PB -PN

29

Symmetry of Reciprocal Mixing

30

RM Cancellation Architecture

31

Limiter Based Architecture

32

Noise Aliasing in a Limiter

33

Protoype RM Cancelling Receiver

34

Measured Blocker Noise Figure

• Blocker offset as low as 10MHz

• SS NF of about 2.4dB

Blo

cker

NF,

dB

5

15

25

35

-25 -20 -15 -10Blocker Power, dBm

19dB

Effective LO FoM=188dB

After

Before

Before, Ideal LO

35

RM Cancelling RX Die Photo

• 40nm CMOS, 1.4mm2

36

Receiver Architecture for Coexistence

• Second path to divert blocker away

• Relaxes noise and linearity of main receiver

LC-

matchGm

RXLO VCO/PLL

TIA/LPF

TIA/LPF

fRXfb

fRXfb

ZIN :

fRXfb

Short at fb

Open at fRX

Aux Path

Reciprocal mixing NF = 174 – PB -PN

37

N-Path Impedance Implementation

• Clocker by the aggressor TX LO

LO1

LO3

ZBB(s)

LO2

LO4

0

ZBB(f)

Zin(f)

fRXfb

Zin(f)

f

LO1

LO3

LO2

LO4

25% duty-cycle clocks @ fb

f-3dB,h (f-3dB,h << fb)

0f

TX Signal

38

Coexistence Receiver Architecture

LC-match

Gm

RXLO VCO/PLL

TIA/LPF

TIA/LPF

fRXfb

PRX

Pb

PRX

Pbfb fRX

H1(f)

Main path TF

LO @ fb

+

-TIA

TIA+

-fb fRX

Zin

fb fRX

H2(f)

Aux path TF

LO @ fRX

39

Measured Blocker Noise Figure

• NF > 25dB if Aux path de-activated

Blo

cker

NF,

dB

Blocker Power, dBm

Desired at 2GHz,Blocker at 1.9GHz

40

RX Performance Summary

[1] T. Sowlati, et al., "Single-chip multiband WCDMA/HSDPA/HSUPA/EGPRS transceiver with diversity receiver and 3G DigRF interface without SAW filters in transmitter / 3G receiver paths," ISSCC, 2010, pp. 116-117.[2] M. Nilsson, et al., "A 9-band WCDMA/EDGE transceiver supporting HSPA evolution," ISSCC, 2011, pp. 366-368.[3] Y. H. Chung, et al., "A 4-in-1 (WiFi/BT/FM/GPS) connectivity SoC with enhanced co-existence performance in 65nm CMOS,“ ISSCC, 2012.

Parameter [1] [2] [3] This work

NF, dB 2.5 2.5 4 1.7

OB IIP3, dBm -2.5 -4 -14 -2.5

OB IIP2, dBm > 50 58 N/A > 50

0dBm Blocker NF, dB N/A 13.5

Battery Current, mA 65 44 46 10

Total RX Area, mm2 6.7 3.4 2.2 0.93

Technology 130nm 90nm 65nm 40nm

Application Cellular Cellular WiFi Generic

41

Coexistence RX Die Photo

40nm CMOS with active area of 0.93mm2

42

Summary & Conclusions

• Scalable

• Immune to large blockers and/or low-power

RS

Noise Canc.

RM Canc.

Coexistence

Nφφφφ MX First

DSP