bjt, bipolar junction transisor

48
1 BJT, Bipolar Junction Transisor Bollen Base Current Base Current Controls Controls Output current Output current

Upload: dusty

Post on 06-Jan-2016

33 views

Category:

Documents


1 download

DESCRIPTION

Base Current Controls Output current. BJT, Bipolar Junction Transisor. Bollen. BJT transistorman Transistor types Bipolar Junction Transistor BJT models parameters water model NPN and PNP operation modes switch open switch closed. BJT linear, controlled current source - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: BJT, Bipolar Junction Transisor

1

BJT, Bipolar Junction Transisor

Bollen

Base CurrentBase Current

ControlsControls

Output currentOutput current

Page 2: BJT, Bipolar Junction Transisor

2

AGENDA

Bollen

BJT transistormanTransistor typesBipolar Junction TransistorBJT modelsparameterswater modelNPN and PNPoperation modesswitch openswitch closed

BJTlinear, controlled current sourceactive operationcharacteristicsDC input characteristicsac input characteristicsBJT DC biasing circuitsbase biasbase bias + collector feedbackbase bias + emitter feedbackvoltage divider

Page 3: BJT, Bipolar Junction Transisor

3

BJT, transistor man

Bollen

Page 4: BJT, Bipolar Junction Transisor

4

TransistorTypes

Bollen

Output currentOutput current controlled controlled

by by input currentinput current

Output currentOutput current controlledcontrolled

by by input voltageinput voltage

BJT ==

Bipolar Junction Bipolar Junction TransistorTransistor

FET ==

Field Effect TransistorField Effect Transistor

Page 5: BJT, Bipolar Junction Transisor

5

BJT, Bipolar Junction Transisor

Bollen

BE ForwardBE Forward bias, bias, BC ReverseBC Reverse bias bias

So So lowlow ohmic ohmic highhigh ohmic ohmic

TransistorTransistor == TranTransfersfer ReResistorsistor

Page 6: BJT, Bipolar Junction Transisor

6

BJT, Bipolar Junction Transisor

Bollen

Emitter Emitter = Sent = Sent electronselectrons

BaseBase = Base = Base

CollectorCollector = Get = Get electrons electrons

Page 7: BJT, Bipolar Junction Transisor

7

BJT, Models

Bollen

Page 8: BJT, Bipolar Junction Transisor

8

BJT, parameters

Bollen

Page 9: BJT, Bipolar Junction Transisor

9

BJT, Water model

Bollen

Page 10: BJT, Bipolar Junction Transisor

10

BJT, Water model

Bollen

Page 11: BJT, Bipolar Junction Transisor

11

BJT, NPN and PNP

Bollen

Page 12: BJT, Bipolar Junction Transisor

12

BJT, Operation modes

Bollen

Cut-off and Cut-off and saturation;saturation;

BJT is used as a BJT is used as a switchswitch

Active operationActive operation

Quiecent Point;Quiecent Point;

BJT is used as a BJT is used as a

controlled controlled

current source,current source,

or or analog amplifieranalog amplifier

Page 13: BJT, Bipolar Junction Transisor

13

BJT, Switch open

Bollen

Page 14: BJT, Bipolar Junction Transisor

14

BJT, Switch closed

Bollen

Page 15: BJT, Bipolar Junction Transisor

15

BJT, Lineair, controlled current source

Bollen

Page 16: BJT, Bipolar Junction Transisor

16

BJT, active operation

Bollen

Page 17: BJT, Bipolar Junction Transisor

17

BJT, characteristics

Bollen

DCDC model model acac model model

DCDC model; Vbe = 0V7 Ube, Uce, Ic, Ib, Ie model; Vbe = 0V7 Ube, Uce, Ic, Ib, Ie CapitalsCapitals

acac model; re = 26mV/Ie ube, uce, ic, ib, ie model; re = 26mV/Ie ube, uce, ic, ib, ie Low Low casescases

Page 18: BJT, Bipolar Junction Transisor

18

BJT, DC input characteristics

Bollen

Vbe = 0V7

Page 19: BJT, Bipolar Junction Transisor

19

BJT, AC input characteristics

Bollen

re = 26mV/Ic

The dynamic resistor can be calculated by the DC current

Ic

Page 20: BJT, Bipolar Junction Transisor

20

BJT, characteristics

Bollen

Page 21: BJT, Bipolar Junction Transisor

21

BJT, DC biasing circuits

Bollen

A base biasA base bias

B base bias + emitter feedbackB base bias + emitter feedback

C base bias + collector feedbackC base bias + collector feedback

D voltage dividerD voltage divider

Page 22: BJT, Bipolar Junction Transisor

22

BJT, base bias, introduction

Bollen

Base current determined by Vcc, Rb and Vbe

Page 23: BJT, Bipolar Junction Transisor

23

BJT, base bias

Bollen

cc Rb beV U U

cc b b beV I R U

c bI I Calculate Ib and then Ic

Ic directly dependent on ß variation

So, for stability a “bad” circuit

Page 24: BJT, Bipolar Junction Transisor

24

BJT, base bias load line

Bollen

Load line is the loading of the transistor seen from Uce (>0V7)

Vcc and Rc determines the; “open voltage” and the “short circuit current”

Q-point = Quiecient

point= Working point

Page 25: BJT, Bipolar Junction Transisor

25

BJT, base bias load line

Bollen

Load line is the loading of the transistor seen from Uce (>0V7)

Vcc and Rc determines the; “open voltage” and the “short circuit current”

Reliable circuit= Q-point

stability

Page 26: BJT, Bipolar Junction Transisor

26

BJT, base bias load line

Bollen

Vce always > 0V7BC junction

REVERSE

If Rc too big, transistor in saturation; then;

Page 27: BJT, Bipolar Junction Transisor

27

BJT, base bias load line

Bollen

Vce always > 0V7BC junction

REVERSE

If Vcc too small, transistor in saturation; then;

Page 28: BJT, Bipolar Junction Transisor

28

BJT, base bias example

Bollen

Calculate;

Ib, IcURc, Uc, Uce

Draw output caracteristic

Calculate now;

Uce if ß = 40How many % did Uce

ChangeIb = 47 uA, Ic = 2,35 mA, URc = 5,17 V, Uc = 6,83 V, Uce = 6,83 VUce (for ß = 40) = 7,86 Ξ 15 %

Page 29: BJT, Bipolar Junction Transisor

29

BJT, base bias example

Bollen

Ib = 33 uA, Ic = 2,9 mA URc = 7,9 V, Uc = 8,1 V

Rb = 282,5 kΩ, Ic = 3,2 mA,

Rc = 1,855 kΩ

Page 30: BJT, Bipolar Junction Transisor

30

BJT, base bias example

Bollen

ß = 200, VRc = 8,8 VVcc = 16 VRb = 765 kΩ

Page 31: BJT, Bipolar Junction Transisor

31

BJT, base bias + emitter feedback

Bollen

Base current determined by Vcc, Rb, Vbe and Ve

More stable for ß variations, than base bias.

Page 32: BJT, Bipolar Junction Transisor

32

BJT, base bias + emitter feedback

Bollen

Always calculate in the smallest current Ib !!

Recc Rb beV U U U

Re1cc b b be bV I R U I U

Rc c cV I R

c cc c cV V I R

e e eV I R

ce c eV V V

Page 33: BJT, Bipolar Junction Transisor

33

BJT, base bias + emitter feedback

Bollen

Load line is the loading of the transistor seen from Uce (>0V7)

Vcc, Rc and Re determines the; “open voltage” and the “short circuit current”

Page 34: BJT, Bipolar Junction Transisor

34

BJT, base bias + emitter feedback example

Bollen

Calculate;

Ib, IcURc, Uc, Ue, Uce

Draw output caracteristic

Ib = 6,2 uA, Ic = 0,74 mA, URc = 8,9 V, Uc = 7,1 V, Ue =-0,9 V, Uce = 8,0 V

Page 35: BJT, Bipolar Junction Transisor

35

BJT, base bias + emitter feedback example

Bollen

Calculate;

Ib, IeURe, Ue, Uce

Draw output caracteristic

Ib = 24 uA, Ie = 2,9 mA, URc = 3,5 V, Ue = -2,5 V, Uce = 2,5 V

Page 36: BJT, Bipolar Junction Transisor

36

BJT, base bias + collector/emitter feedback

Bollen

If Ic > then Uc < then Ib <

If Ic > then Uc <and Ue > then Ib <

Page 37: BJT, Bipolar Junction Transisor

37

BJT, base bias + collector feedback

Bollen

cc Rc Rb beV U U U

1cc b c b b beV I R I R U

Always calculate in the smallest current Ib !!

The current through Rc is not Ic but Ic + Ib,

so (β+1)Ib !!!

If Ic rises for any reason, then Uc falls and

also Ib decreases, so then Ic decreases

Page 38: BJT, Bipolar Junction Transisor

38

BJT, base bias collector feedback example

Bollen

Calculate;

Ib, ß, Ic

Draw output caracteristic

Ib = 13 uA, ß = 196, Ic = 2,5 mA

Page 39: BJT, Bipolar Junction Transisor

39

BJT, base bias collector/emitter feedback

Bollen

Recc Rc Rb beV U U U U

1

1

cc b c

b b

be

b e

V I R

I R

U

I R

Always calculate in the smallest current Ib !!

Page 40: BJT, Bipolar Junction Transisor

40

BJT, base bias collector/emitter feedback ex

Bollen

Calculate;

Ib, IeURc, Uc, Ue, Uce

Draw output caracteristic

Ib = 11,8 uA, Ie = 1,1 mA

URc = 5,2 V, Uc = 4,8 V

Ue = 1,3 V, Uce = 3,5 V

Page 41: BJT, Bipolar Junction Transisor

41

BJT, voltage divider

Bollen

Vb is a stable voltage - 0,7 V =

so Ve is a stable voltageIe is determined by Ve/ Re

Ic = Ie . ß/(ß+1)

Ic is very stable and nearly independent to ß

variation, as long as ß is BIG in value

2 methods of calculating Ic - neglegting Ib, use voltage divider - not neglecting Ib and use thevenin

Page 42: BJT, Bipolar Junction Transisor

42

BJT, voltage divider, neglect Ib

Bollen

2

1 2b cc

RV V

R R

0 7e bV V V

ee

e

VI

R

1c eI I

So neglegt Ib to R2, or in general Ri >> R2In practice 10 times bigger

Page 43: BJT, Bipolar Junction Transisor

43

BJT, voltage divider, exact, thevenin

Bollen

Thevenin resistance

R1 // R2 62k // 9k1= 7k9

Thevenin voltage 2

1 2th cc

RV V

R R

9 116 2 0

62 9 1th

kV V

k k

Page 44: BJT, Bipolar Junction Transisor

44

BJT, voltage divider, exact, thevenin

Bollen

2V0

7k9

1th b th be b eV I R V I R

2,0 7 9 0,7 80 1 0,68b bI k I k Ib = 20 uA

Page 45: BJT, Bipolar Junction Transisor

45

BJT, voltage divider, example

Bollen

Thevenin resistance = 6k8

Thevenin voltage = 3V1

Ib = 18,8 uAIc = 2,25 mAre = 11,5 ΩURc = 7V4Uc = 10V6Ue = 2V3Uce = 5V1

Page 46: BJT, Bipolar Junction Transisor

46

BJT, voltage divider, example

Bollen

Thevenin resistance = 255k

Thevenin voltage = 0V0

Ib = 14,3 uAIc = 1,9 mAre = 14 ΩURc = 17V3Uc = 0V7Ue = -3V7Uce = 4V4

Page 47: BJT, Bipolar Junction Transisor

47

BJT

Bollen

Page 48: BJT, Bipolar Junction Transisor

48

BJT

Bollen