biotechnological application of extremophiles r. amils

220
Biotechnological application of extremophiles R. Amils CBMSO and CAB Gran Sasso, November 2019

Upload: others

Post on 06-Apr-2022

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Biotechnological application of extremophiles R. Amils

Biotechnological application of extremophiles

R. AmilsCBMSO and CAB

Gran Sasso, November 2019

Page 2: Biotechnological application of extremophiles R. Amils

extreme environmentsgeophysical constrains

- high temperature: hipertehermophiles

- low temperature: psicrophiles- high ionic strength: halophiles

- high pressure: barophiles- high radiation

(adaptation)

Page 3: Biotechnological application of extremophiles R. Amils

Charles Darwin

Page 4: Biotechnological application of extremophiles R. Amils

Yellowstone

Page 5: Biotechnological application of extremophiles R. Amils

submarine hydrothermalism

Page 6: Biotechnological application of extremophiles R. Amils

Uyuni salt flat, Boliviaradiation + desecation

Page 7: Biotechnological application of extremophiles R. Amils

Volcan Illimani, Bolivia

Page 8: Biotechnological application of extremophiles R. Amils

Acidic hypersaline lake (SW-Australia)

Page 9: Biotechnological application of extremophiles R. Amils

radiation (nuclear plantJapan)

Page 10: Biotechnological application of extremophiles R. Amils

Russian drilling base at Vostok

Page 11: Biotechnological application of extremophiles R. Amils

subsurface

Page 12: Biotechnological application of extremophiles R. Amils

extreme environmentsgeophysical constrains

- high temperature: hipertehermophiles

- low temperature: psicrophiles- high ionic strength: halophiles

- high pressure: barophiles- high radiation

(adaptation)

Page 13: Biotechnological application of extremophiles R. Amils
Page 14: Biotechnological application of extremophiles R. Amils
Page 15: Biotechnological application of extremophiles R. Amils
Page 16: Biotechnological application of extremophiles R. Amils

geomicrobiology of metallic sulfides

pyrite, molibdenite, tungstenite (thiosulfate mec.)FeS2+6Fe3++3H2O → S2O3

2-+7Fe2++6H+

S2O32-+8Fe3++5H2O → 2SO4

2-+8Fe2++10H+

rest of sulfides (polisulfide mec.)8MS+8Fe3++8H+ → 8M2++4H2Sn+8Fe2+ (n≥2)4H2Sn+8Fe3+ → S8

o+8Fe2++8H+

S8o+4H2O (S oxidizers) → SO4

2-+8H+

Page 17: Biotechnological application of extremophiles R. Amils

Bacterias come-meteoritos

role of the microbial activity in the leaching of pyrite

SO42-+ H+

Fe2+

Fe3+

microbialactivity

chemical reaction

Page 18: Biotechnological application of extremophiles R. Amils
Page 19: Biotechnological application of extremophiles R. Amils

A B

isolation is fundamental to study the physiological

properties of microorganisms

Page 20: Biotechnological application of extremophiles R. Amils

Fe(II) + 4 O2 + 4H2O Fe(III) + 8H+

oxidation and reduction of Fe by At. ferrooxidans

Sº + Fe(III) + + 4H2O SO42- + Fe(II) + 8H+

Step 1Step 4

Step 3 Step 2

Page 21: Biotechnological application of extremophiles R. Amils

DGGE

Page 22: Biotechnological application of extremophiles R. Amils

phylogeny of cloned 16SrRNAs of Acidithiobacillus spp.

0.10

Thermithiobacillus tepidarius spp. AF023264

Acidithiobacillus spp. AF339743Acidithiobacillus spp. AF359940

Acidithiobacillus spp. AF023264

Leptospirillum ferrooxidans X86776

At. caldus AB023405

At. caldus Z29975At. caldus AF137369

Group II

Group I

Group IIIAcidithiobacillus spp. AF407402

At. ferrooxidans AF465607

At. ferrooxidans AJ457808At. ferrooxidans AJ278719

Acidithiobacillus spp. AF376020

Tinto 3

T1

At. ferrooxidans AF465604At. ferrooxidans X75268

Acidithiobacillus

DSM612 AJ459802

Page 23: Biotechnological application of extremophiles R. Amils

Cells hybridized with LEP636 probe (Cy3-labeled)specific for L. ferrooxidans

DAPI-stained cells

fluorescence in situ hybridization (FISH)

Page 24: Biotechnological application of extremophiles R. Amils

confocal microscopy of pyrite colonized with Acidithiobacillus ferrooxidans

(CARD-FISH)

Page 25: Biotechnological application of extremophiles R. Amils

phylogeny of acidophilic microorganisms detected in Rio Tinto

Firmicutes

Actinobacteria

OP2

OP9OP8

OP3

OP10

Aquificae

Chloroflexi

Thermomicrobia

Deinicocci

Bacteroidetes/Flavobacteria/

Sphingobacteriaa

Fibrobacteres

Spirochaetes

Fusobacteria

Chlorobia

Planctomycetacia

VerromicrobiaeChlamydiae

Acidobacteria

Cyanobacteria

a-Proteobacteria

e -Proteobacteria

b/g -ProteobacteriaEuryarchaeota

Crenarchaeota

Koraarchaeota

OP1

d -Proteobacteria

0.1

Page 26: Biotechnological application of extremophiles R. Amils

+H2O Fe(OH)3+H+

Fe2O3 ( )

SRBAt. ferrooxidansAt. thiooxidans

At. caldus

CO2

(CH2O)n

Acidiphilium spp.Acidimicrobium spp.Ferromicrobium spp.

S2-

SO42-

At. ferrooxidans

Acidiphilium spp.(CH2O)n

CO2

Anoxic[O2] [O2]

Oxic

Fe2+

At. ferrooxidans

L. ferrooxidansFerroplasma spp.Acidimicrobium spp.Ferromicrobium spp.

Fe3+

geomicrobiological model of the water column of Río Tinto

Page 27: Biotechnological application of extremophiles R. Amils

ecological paradox

Page 28: Biotechnological application of extremophiles R. Amils

Bodo sp.

5

Euglena mutabilis

Stichococcus sp.

Mesotaenium sp.

Dunaliella bardawil

Chl orella sp.

Cyanid iumcaldarium

Oxytricha granuliferaColpidium sp.

Pinnularia sp.

Eolimna m inima

Actinophryis sp.

Rotaria sp.

Chlamidom onas sp.

Vahlkampfiaust iana

Page 29: Biotechnological application of extremophiles R. Amils

Animals

Fungi

ViridiplantaeStramenopiles

Alveolata

Amoebae

Red Algae

Cercozoa

Euglenozoa

Page 30: Biotechnological application of extremophiles R. Amils

acidophilic fungi from Río Tinto

Page 31: Biotechnological application of extremophiles R. Amils

endemic plants : Erica andevalensis

Page 32: Biotechnological application of extremophiles R. Amils

Fe hyperaccumulator plants such as Imperata cylindrica produce

jarosite and Fe oxides in the interior of their tissues

Page 33: Biotechnological application of extremophiles R. Amils

EO2

pHCO2 + CH4

MethanobrevibacterMethanosaeta

Methanosarcina

CO2 + H2O

S2- Fe2+ CO2

Acetate + CO2 +H2

S80

ThermodesulfobiumDesulfotomaculumDesulfosporosinusSyntrophobacter

Desulfobulbus

Acidithiobacillus, Sulfobacillus, Acidiphilium

SO42-

Acidiphilium, Pedobacter, Variovorax, PseudomonasAcidithiobacillus

Sulfobacillus, Alicyclobacillus, Ferroplasma, Leptospirillum,

Ferrimicrobium, Ferrithrix

Desulfurella, Thermoplasma, Acidithiobacillus

Chromatiales

NO3-

N2O/N2

Pseudomonas

Clostridium, Desulfitobacterium Propionibacterium, AcidovoraxLysinobacillus, RummelibacillusPseudomonas, DechloromonasSedimentibacter, Alcaligenes

Clostridium, GeobacterBacilllus, PaenibacillusDelftia, CommamonasPseudochrobactrum

NO3-

N2O/N2

(CH2O)n

Syntrophobacter

Organic acids/Alcohols

Paludibacter, Staphylococcus, ClostridiumPropionibacterium, Propionispora, Bacillus

AcidithiobacillusSulfobacillus

Acidiphilium, Acidobacterium, Sulfobacillus, Ferrimicrobium, Ferrithrix, Alicyclobacillus, Ferroplasma, Geobacter,

Aciditerrimonas, Desulfosporosinus NO3-

Fe3+

GEOMICROBIOLOGICAL MODEL OF TINTO RIVER SEDIMENTS

N2O/N2

Page 34: Biotechnological application of extremophiles R. Amils

Acidophilic bacteriophages from Rio Tinto

Phage ACD-RT1 – a myovirus infecting Acidiphilium sp., both host and phage isolated from Rio Tinto.

Page 35: Biotechnological application of extremophiles R. Amils

GEOmicrobiología

Page 36: Biotechnological application of extremophiles R. Amils

mineral deposits of Fe preserved in sedimentary

rocks

Page 37: Biotechnological application of extremophiles R. Amils

iron minerals on sedimentary rocks

Page 38: Biotechnological application of extremophiles R. Amils

Fe deposits older than 106 years

Page 39: Biotechnological application of extremophiles R. Amils

which is the origin of this peculiar extreme acidic environment?

Page 40: Biotechnological application of extremophiles R. Amils

subsurface microbiology

Page 41: Biotechnological application of extremophiles R. Amils

Existing woreholes

Artesian wells

Devoted drills

Page 42: Biotechnological application of extremophiles R. Amils
Page 43: Biotechnological application of extremophiles R. Amils
Page 44: Biotechnological application of extremophiles R. Amils

! "#$%&'() *+%, *+'- .'

! "#$%/ '(0++%1*+'- .'

$"%2*'

$"%//3/&'

45%/+(6.'

45%/+(7.'

45%// (6.'45%// (7.'

45%/+(6.'

45%//(6.'

45%/&'

45%/ ) '

8/ '8&'

Site 1 Site 2

R1

R2

L1 L2

Page 45: Biotechnological application of extremophiles R. Amils
Page 46: Biotechnological application of extremophiles R. Amils

Core Processing Steps

Cores brought to surface Cores in plastic liners, cut, labeled

Bags filled with N2 Anaerobic chamber

Page 47: Biotechnological application of extremophiles R. Amils
Page 48: Biotechnological application of extremophiles R. Amils
Page 49: Biotechnological application of extremophiles R. Amils
Page 50: Biotechnological application of extremophiles R. Amils

Profiling BH10After

drilling

XRD Analysis

Page 51: Biotechnological application of extremophiles R. Amils

cromatografía iónica, BH10

613 m0Depth

NO3-

NO2-

PO4=

SO4=

ppm

Page 52: Biotechnological application of extremophiles R. Amils

cromatografía iónica BH10, ácidos orgánicos

0

0.1

0.2

01

2

3

100

50

0

0

5

10

0

3

6

ppm

Tartrate

Propionate

Acetate

Formate

Oxalate

613 m0Depth

Page 53: Biotechnological application of extremophiles R. Amils

cromatografía de gases

0

0,2

0,4

0,6

0,8

1

1,2

1,4

BH10

%H2 %CO2 %CH4

Page 54: Biotechnological application of extremophiles R. Amils

Total proteins ans sugars, BH10

100 612

Page 55: Biotechnological application of extremophiles R. Amils

LD300Chip, sample from 538mbs, BH10

1 23

45

6

7

0

10000

20000

30000

40000

1→Sulfobacillus acidophilus

2→Bacterioferritin protein5→DPS protein3→Pyrococcus furiosus

4→NAG-NAM polymers

6→Shewanella gelidimarina

7→Poly-Glutamic acid

1 23 456 7

Page 56: Biotechnological application of extremophiles R. Amils

Chip tp detect 16S rRNA genes

Page 57: Biotechnological application of extremophiles R. Amils
Page 58: Biotechnological application of extremophiles R. Amils
Page 59: Biotechnological application of extremophiles R. Amils
Page 60: Biotechnological application of extremophiles R. Amils

enrichment cultures:-pyrite, Fe and S oxidizes- ferric iron and sulfate reducers-methanogens- methanotrophs- denitrifiers- acetogenic bacteria

Page 61: Biotechnological application of extremophiles R. Amils

isolated bacteria from enrichment cultures

• Tessarococcus profundi (-139m) Tessarococcus lapidicaptus (-284m, -336m))• Shewanella hafniensis (-121m) Desulfivibrio oxamicus (-450m)• Rhodoplanes piscinae (-420m) Pseudomonas stutzeri (-420m)• Rhizobium selenitireducens (-538m) Microbacterium saccharophilum (-284m)• Acetoanaerobium notareae (-45m) Citrobacter amalonaticus (-336m)• Cellulomonas fimi (-450m) Pleomorphomonas oryzae (-63m)• Macelibacteroides fermentans (-63m) Oerskovia turbata (-414m)

Parabacteroides chartae (-450m) Nocardiodes pyridinolyticus (-420m)Propinicimonas paludícola (-414m)

Page 62: Biotechnological application of extremophiles R. Amils

IPBSL CARD-FISH

BH10-414,80

THIO820

BET42aGAM42a

Page 63: Biotechnological application of extremophiles R. Amils

SAMPLE EUB338 I-III EUB338 II ALF968 ACD840 BET42a ACI145 GAM42a THIO820 THIO1 SBR385 DSS658 LGC354a LGC354b SUL228 HGC69a SS_HOL1400 CF319a LF655 CYA361 ARC915 MSSH859 MC1109 MG1200 MEB859

BH10-50,00 - - -

BH10-75,00 - - -

BH10-90,00 + + + - - - - - - - - + - + + + + - - + - - - -

BH10-102,60 - + - - - - - - - - - - - - - + - - - - - + - -

BH10-103,50 + + - - - - - + - - - + - + + + - - - + - + - -

BH10-121,80 - + - - + - - - - + - - - + - - - - - - - - - -

BH10-130,80 - - - - + - - - - - - - - - - - - - - - - - - -

BH10-139,40 + + - - + + - - - + - + - + + - - - - - - - - -

BH10-206,60 + - + - - + - - + + + + - + + + - - + + + - - +

BH10-228,60 + + - - - - - - - - - - - - - + - - - + - - - -

BH10-249,80 + - + - + - + + - - + - - - + - - + + - - - - +

BH10-266,30 + + - - - - - - - - - - - - - - - - - - + - - +

BH10-284,00 + + + + + + + + - + + - - - + + + + - + +/++ - - -

BH10-294,45 + + + - - - + - - - - + - + + + - - - - - - - -

BH10-294,65 - - - - - - - - - - - - - + + - - - - - - - - +

BH10-311,10 + - + - + - - - - - + + - - - - - - - - - - - -

BH10-352,65 + - - - - - - - - - - + - + - - - - - + - - - -

BH10-353,15 - - - - - - - - - - - - - - - - - - + - - - - -

BH10-355,70 + + - - - - - - - - - + + - - + - - - - + - - +

BH10-392,90 + - - - - - - - - - - - - - - - - - + + +/+ - - -

BH10-401,90 - - - - - - - - - - - - - + - - - - + + + - - -

BH10-409,70 - - - + - - + - - - - - - + - - - - - - - - - -

BH10-414,00 + - - - - - - - - - - - - - - - - - - + - - - -

BH10-414,80 + - + - + + + + - - - - - - + - - - - - - - - -

BH10-415,30 - - - - - - - - - - - - - - - - - - - - - + + -

BH10-415,97 - - - - - - - - - - - - + - - - - ? - - - - - -

BH10-416,55 - + - - - - - - - - - - - + - - - - - - - - - +

BH10-420,00 + + - - - - - - - - - - - - + + - - + - + - - -

BH10-426,15 + - - + - - + - - + - - - - + - - - - + - - - -

BH10-450,30 + + + - + - + - - - - + + + - - - - - - - - - -

BH10-468,80 + + - - - - - - - + - - - + - - - - - - - + - -

BH10-477,45 + + - - - - - - - - - - - + - - - - - - - - - -

BH10-487,20 + + - + - - - - - - + - - + + + - - - - + - - -

BH10-492,60 + + - - - - - - - + - + - + + + + - - - + - - -

BH10-496,75 + + + - + - + - - - - - - + + + - - - + +/- - - -

BH10-519,05 + + - - - - - - - - - - - + - - - - - + + - - +

BH10-520,00 + + - - - - - + - - + + - + - - - - - + - - - -

BH10-544,00 + + - + + - - - - - - - - + - + - - - - + - - -

BH10-568,60 + + + - - - - - - - - - - + + + - - - - - - + +

BH10-607,60 + + - - - - + - - - - - - + + - - - - - - - - +

BH10-612,94 + + - - - - - + - - - + - - + - - - - + +/+ - - -

SONDAS

Page 64: Biotechnological application of extremophiles R. Amils

Fe and S cycles

10μmAcidovora

x

Sulfobacill

us

Acidiphilli

um

SRB

Sred SoxFe2+ Fe3+

Fe2+

Fe3+

10μm

-139.4m

Page 65: Biotechnological application of extremophiles R. Amils

H2S

Seco

ndar

ysu

lfide

s

SO42-Fe2+

CO2

Organic acids

CO2

S2-

SO4

2-

Methanotrophy

S2-

Pseudomonas

Rhodococcus

Actinobacteria

Desulfovibrio

Sulfobacillus

Desulfosporosinus

Methanococcus

Methanosarcina

Fermentation

SO42-

Chemoheterotrophy(Anaerobicrespiration)

S2-

SO42-

Acidiphillium

Shewanella

Desulfovibrio

Sulfobacillus

Desulfosporosinus

Tessaracoccus

Pseudomonas

Fe2+

e- donorsH2

S2FeSMFe2+

NO2-

CH4Organic acids

e- aceptorsCO2SO4

2-

NO3-

Fe3+

Nitratereductio

n SO42-

At. ferrooxidans

S0

Acidovorax

At. ferrooxidans

Organic matter(buried or produced

chemolithoautotrophically)

Page 66: Biotechnological application of extremophiles R. Amils

subsurface biofilms

-355.7m

-420m

-519.1m

Page 67: Biotechnological application of extremophiles R. Amils
Page 68: Biotechnological application of extremophiles R. Amils

LESSONS LEARNED

- It has been detected a high level of diversity and functional activity in the deep subsurface of the IPB (up to -610m) - Iron can be efficiently oxidized in anaerobic conditions- The detected subsurface microbial activities allow to explain the extreme characteristic conditions of Río Tinto- H2 has an important role as a source of energy in the deep subsurface of the IPB (possible origin: water radiolysis, geochemical, biological)- The most important biogeochemical cycles ( C, N, S, Fe) are operative along the different depths of the solid matrix of the IPB - Subsurface biofilms have been detected in situ for the first time. Biofilms seems to be common in the subsurface eventhough it is considered a high energy consuming strategy not recommended for oligotrophic environment like the subsurfaces

Page 69: Biotechnological application of extremophiles R. Amils

and which is the interest of these extreme acidic

environment ?

Page 70: Biotechnological application of extremophiles R. Amils

Biomining (biohydrometallurgy)

FeS2+6Fe3++3H2O → S2O32-+7Fe2++6H+

S2O32-+8Fe3++5H2O → 2SO4

2-+8Fe2++10H+

8MS+8Fe3++8H+ → 8M2++4H2Sn+8Fe2+ (n≥2)4H2Sn+8Fe3+ → S8

o+8Fe2++8H+

Page 71: Biotechnological application of extremophiles R. Amils

Mars exploration

Page 72: Biotechnological application of extremophiles R. Amils

biohydrometallurgy

Page 73: Biotechnological application of extremophiles R. Amils

heap bioleaching

Page 74: Biotechnological application of extremophiles R. Amils

Bio-reactor

Page 75: Biotechnological application of extremophiles R. Amils

the most extreme condition that chemolithotrophic

microorganisms have to deal with is the high concentration

of toxic heavy metals generated by their metabolism

Page 76: Biotechnological application of extremophiles R. Amils

- Fluorescence in situ hybridization (CARD-FISH) is a technology ready to be applied to biohydrometallurgical operations

Page 77: Biotechnological application of extremophiles R. Amils

Cells hybridized with Lep154 probe specific for

L.ferriphilum. Alexa488.

DAPI

Page 78: Biotechnological application of extremophiles R. Amils

L. ferriphilum in MGM cobaltiferrous concentrate tank reactor

0

10

20

30

40

50

60

70

80

90

Feed R1 R2 R3

Continuous Bioleaching reactors

Cells

det

ecte

d (%

)

EUB33 NTR12 GAM42a LEP154 THIO1 SUL1238 FER656+TMP65454

100

Page 79: Biotechnological application of extremophiles R. Amils

endemic plants: Erica andevalensis

Page 80: Biotechnological application of extremophiles R. Amils

future: combination of bio-techniques. Biomining +

specific sequester of metals using acidophilic fungi

Page 81: Biotechnological application of extremophiles R. Amils

acidophilic fungi

Page 82: Biotechnological application of extremophiles R. Amils

• Tabla 2. Eficiencia y especificidad de secuestro de metales pesados• _____________________________________________________•• Aislados concentración de metal secuestro %•• Bahusacala sp. O66 1mM Ag(I) 66• Scytalidium sp. P65 10mM Cd(II) 90• Penicillium sp. I25 200mM Zn(II) 93• Penicillium sp. P34 100mM Cu(II) 35• 10mM As(V) 68• Penicillium sp. V80 100mM Cr(III) 75• Alternaria sp. I14 0.1mM Hg(II) 95

Page 83: Biotechnological application of extremophiles R. Amils
Page 84: Biotechnological application of extremophiles R. Amils

Mars exploration

Page 85: Biotechnological application of extremophiles R. Amils

habitability

Page 86: Biotechnological application of extremophiles R. Amils
Page 87: Biotechnological application of extremophiles R. Amils

Misión MER, crater Endurance,2005

Page 88: Biotechnological application of extremophiles R. Amils
Page 89: Biotechnological application of extremophiles R. Amils

SPIRIT IN GUSEV CRATER

Page 90: Biotechnological application of extremophiles R. Amils

blueberries in Columbia Hills

Page 91: Biotechnological application of extremophiles R. Amils

sulfates exhumed in crater Gusev

Page 92: Biotechnological application of extremophiles R. Amils

silica exhumed (hidrotermal?)

Page 93: Biotechnological application of extremophiles R. Amils

MEX, wáter vapor (SPICAM)

Page 94: Biotechnological application of extremophiles R. Amils

Fe oxides distribution (MEX)

Page 95: Biotechnological application of extremophiles R. Amils
Page 96: Biotechnological application of extremophiles R. Amils

Curiosity

Page 97: Biotechnological application of extremophiles R. Amils

Crater Gale

Page 98: Biotechnological application of extremophiles R. Amils

MSL, arm with instruments

Page 99: Biotechnological application of extremophiles R. Amils

MSL ChemCam,elemental analysis

Page 100: Biotechnological application of extremophiles R. Amils
Page 101: Biotechnological application of extremophiles R. Amils

Mars Express

Page 102: Biotechnological application of extremophiles R. Amils
Page 103: Biotechnological application of extremophiles R. Amils

it can be concluded that on Mars there are sedimentary rocks that were formed in

acidic conditions (acidic lakes or oceans)

terrestrial analogues: - acidic environments

- hydrothermal activities

Page 104: Biotechnological application of extremophiles R. Amils

comparison between MARS and RIO TINTO

MP RTsurf RTss• - hematite ++ ++ +• - jarosite ++ ++ +• - goethite ++ ++ +• - ionic strength ++ ++ ++• - temperature suf low 4-35oC• - temperature subs ? 25-30oC• - methane + - +• - oxygen +/- ++ -• - µorganisms ? ++ +

Page 105: Biotechnological application of extremophiles R. Amils

the actual conditions on the surface of Mars, intens radiation and very oxidant conditions,

do not seems to be the ideal place for life development (mechanisms of protection,

methodological problems). Life on the subsurface has much more possibilities. It is

important to develop a martian drilling mission in a near future.

Page 106: Biotechnological application of extremophiles R. Amils

.

Page 107: Biotechnological application of extremophiles R. Amils

the exploration and characterization of the

Tinto ecosystem is important to understand

the properties of microorganisms that could develop on Mars. Also is a

good bench to test instruments designed to

detect life on Mars…

Page 108: Biotechnological application of extremophiles R. Amils

and to better understand the period in which life appeared

on Earth (Archean)

banded iron formations of Pilbara (Australia)

Page 109: Biotechnological application of extremophiles R. Amils

THANK YOU

Page 110: Biotechnological application of extremophiles R. Amils
Page 111: Biotechnological application of extremophiles R. Amils

isolation in acidic waters from a coal mine

of Thiobacillus

ferrooxidans

Page 112: Biotechnological application of extremophiles R. Amils

terrestrial acidic environments

Page 113: Biotechnological application of extremophiles R. Amils

natural acidic environments:- areas with volcanic activity

SO2 + H2S → S0 + H2O

Page 114: Biotechnological application of extremophiles R. Amils

Yellowstone

Page 115: Biotechnological application of extremophiles R. Amils

natural acidic environments:- metal mining activitiesFeS2 + H2O —> Fe3+ + SO4

2- + H+

in these cases the extreme acidic conditions are promoted by biological activity

Page 116: Biotechnological application of extremophiles R. Amils

Biomining, the future of miningR. Amils

CBMSO and CAB

Bolonia, november 2018

»

Page 117: Biotechnological application of extremophiles R. Amils

isolation in acidic waters from a coal mine of Thiobacillus

ferrooxidans

Page 118: Biotechnological application of extremophiles R. Amils

metabolisms involved

Page 119: Biotechnological application of extremophiles R. Amils
Page 120: Biotechnological application of extremophiles R. Amils

la irrupción de técnicas moleculares al estudio de la ecología microbiana ha sido

una auténtica revolución

Page 121: Biotechnological application of extremophiles R. Amils

DGGE

Page 122: Biotechnological application of extremophiles R. Amils

mesocosms

Page 123: Biotechnological application of extremophiles R. Amils

Cells hybridized with LEP636 probe (Cy3-labeled)specific for L. ferrooxidans

DAPI-stained cells

hibridación in situ con marcadores fluorescentes (FISH)

Page 124: Biotechnological application of extremophiles R. Amils

16S rRNA gene-based oligonucleotide microarray

Page 125: Biotechnological application of extremophiles R. Amils

filogenia de los microorganismos acidófilos detectados en la cuenca del Tinto

Firmicutes

Actinobacteria

OP2

OP9OP8

OP3

OP10

Aquificae

Chloroflexi

Thermomicrobia

Deinicocci

Bacteroidetes/Flavobacteria/

Sphingobacteriaa

Fibrobacteres

Spirochaetes

Fusobacteria

Chlorobia

Planctomycetacia

VerromicrobiaeChlamydiae

Acidobacteria

Cyanobacteria

a-Proteobacteria

e -Proteobacteria

b/g -ProteobacteriaEuryarchaeota

Crenarchaeota

Koraarchaeota

OP1

d -Proteobacteria

0.1

Page 126: Biotechnological application of extremophiles R. Amils

UV radiation protection with Fe3+

Page 127: Biotechnological application of extremophiles R. Amils

radiation protection by ferric iron

01234567

cells x10+5/ml

96 hours incubation

Dunaliella control, 0 hours

Dunaliella control, 96 h

Dunaliella RT media, 5 mWcm-2

Dunaliella RT media, 10 mWcm-2

Dunaliella A media, 5 mWcm-2

Dunaliella A media, 10 mWcm-2

Page 128: Biotechnological application of extremophiles R. Amils

Fe meteorites (irons) chemolithoautotrophy

Page 129: Biotechnological application of extremophiles R. Amils

t0

1 día

3 días

7 días

“irons” as a source of energy

meteorite oxidation by chemolithoautotrophic microorganisms

Page 130: Biotechnological application of extremophiles R. Amils

phyllosilicates can be generated in acidic conditions (Río Tinto)

Page 131: Biotechnological application of extremophiles R. Amils

basic knowledge is needed to improve the efficiency

of bioleaching

Page 132: Biotechnological application of extremophiles R. Amils
Page 133: Biotechnological application of extremophiles R. Amils
Page 134: Biotechnological application of extremophiles R. Amils

Probes used in Petiknas Zn 35ºC, Petiknas Zn 35ºC and Aguablanca 35ºCProbe Targe

tet Sequence (5’ to 3’) (%) FMa Specificity Reference

EUB338 16S GCT GCC TCC CGT AGG AGT 0-35 Bacteria domain Amann, 1990

EUB338-II 16S GCA GCC ACC CGT AGG TGT 0-35 Planctomyces Daims, 1999

EUB338-III 16S GCT GCC ACC CGT AGG TGT 0-35 Verrumicrobia (and others) Daims, 1999

THC642 16S CAT ACT CCA GTC AGC CCG T 35 Acidithiobacillus caldus Bond, 2000

LEP154 16S TTG CCC CCC CTT TCG GAG 35 Leptospirillum ferriphilumGonzález-Toril, 2003

SUL141 16S CGG CCC GAT ATC CCC CAC 35 Sulfobacillus spp. Diez et al. BIOMINE

FER656 16S CGT TTA ACC TCA CCC GAT C 35 Ferroplasma spp. Edwards, 2000

NON338 ----- ACT CCT ACG GGA GGC AGC 35 Negative control Amann, 1990

Page 135: Biotechnological application of extremophiles R. Amils

Cells hybridized with Sul141 probe specific for Sulfobacillus

sp. Alexa488.

DAPI

Page 136: Biotechnological application of extremophiles R. Amils

Tabla 3. Resistencia constitutiva e inducible a metales pesados__________________________________________________

Aislados resistencia constitutiva máximo nivel de resistencia

Cladosporium sp. Y18 < 1mM Cr(III) 400mM Cr(III)Nigrospora sp. V12 1mM Ag(I) 1mM Ag(I)

Penicillium sp. P34 < 1mM Cu(II) 200mM Cu(II)Penicillium sp. Y22 < 1mM Zn(II) 400mM Zn(II)

Page 137: Biotechnological application of extremophiles R. Amils

Tabla 4. Eficiencia del secuestro específico de Cr(III) de Penicillium V80___________________________________________________________

tipo de crecimiento biomasa tiempo de exposición (días) medio secuestro %

crecimiento activo 0.93g (final) 7 YEPD 75.7crecimiento activo 0.8g (final ) 7 50% YEPD 34.9crecimiento activo 0.76g (final) 7 C 39.8fase estacionaria 1g 1 YEPD 1.2células rotas 1g 1 YEPD 0.9

Page 138: Biotechnological application of extremophiles R. Amils

Tabla 5. Comparación de eficiencias de recuperación de V80 utilizando distintos tratamientos

________________________________________________________________número de ciclos [Cr(III)] (mM) inóculo tiempo (días) eficiencia% Cr (moles)

tratamiento #1

un ciclo (A) 100 fresco1/100 7 73.9 73.9dos ciclos (A+B) 26.1 ½ A 2 55.1 87.5tres ciclos (A+B+C) 12.5 ½ B 2 11.1 88.9

volumen total tratado: 100ml

tratamiento #2

un ciclo (M) 100 fresco 1/100 7 79.9 79.9dos ciclos (M+N) 100 ½ A 2 40.2 120.1tres ciclos (M+N+L) 100 ½ B 2 3.1 123.2

volumen total tratado: 300 ml

Page 139: Biotechnological application of extremophiles R. Amils

Themal area of Gunhuver, Iceland

Page 140: Biotechnological application of extremophiles R. Amils

contact/no-contact (direct/indirect)

Page 141: Biotechnological application of extremophiles R. Amils

confocal microscopy of pyrite colonized with Acidithiobacillus ferrooxidans

(CARD-FISH)

Page 142: Biotechnological application of extremophiles R. Amils

Fe content of the core 8,68c

Page 143: Biotechnological application of extremophiles R. Amils

MARTE project, CARD-FISH of sample from core 8,50a

(-107m)

Page 144: Biotechnological application of extremophiles R. Amils
Page 145: Biotechnological application of extremophiles R. Amils
Page 146: Biotechnological application of extremophiles R. Amils
Page 147: Biotechnological application of extremophiles R. Amils

Multianalyte Sample

Incubation with theAb microarray (50-150 m spot diameter)

Addition and incubation with

fluorescent antibodies

Wash

Scanning

Image

Wash

0Antibodies

Quantification of the signal

Immunoprofiling by Sandwich Microarray Immunoassay (SMI)

0Antibodies

C2- Buffer

0Antibodies

Inte

nsity C1- Burnt sample Sample

5 mm

10 mm

800 spots

Page 148: Biotechnological application of extremophiles R. Amils

IPBSL

Nature Reviews Microbiology 6, 339-348

CARD-FISH: Catalyzed reporter deposition Fluorescence In Situ Hybridization

Alexa-488

Page 149: Biotechnological application of extremophiles R. Amils

anaerobic methanogenicconsortium

Page 150: Biotechnological application of extremophiles R. Amils
Page 151: Biotechnological application of extremophiles R. Amils

IPBSL

Page 152: Biotechnological application of extremophiles R. Amils

Sulfolobus acidocaldarius

Page 153: Biotechnological application of extremophiles R. Amils
Page 154: Biotechnological application of extremophiles R. Amils

0,0

10,0

20,0

30,0

40,0

50,0

60,0

70,0

80,0

90,0

100,0

Petiknas Zn 35 Petiknas Zn 45

EUB338+II+III

THC642

LEP154

SUL141

FER656

41,2

25,5

3,9

28,5

62,8

70,9

22,9

1,8

3,9

92,1% o

f m

icro

orga

nism

s

Samples

Page 155: Biotechnological application of extremophiles R. Amils

heap leaching

Page 156: Biotechnological application of extremophiles R. Amils

Tabla 1. Perfiles de resistencia a metales exhibidas por hongos acidófilos___________________________________________________________

Aislados valores máximos de resistencia otras resistencias

Scytalidium sp. O64 1mM Hg(II), 400mM As(V) 200mM Cr(III)Cladosporium sp. I18 400mM Zn(II) y Cr(III) 50mM Cu(II)

Cladosporium sp. P72 400mM As(V) 100mM Zn(II), 200 mM Cr(III)Alternaria sp. I14 1mM Ag(I) ---

Aspergillus sp. P37 --- 50mM Cu(II), As(V) y Cr(III)Aspergillus sp. P51 100mM Cr(III) ---Bahusakala sp. O62 1mM Ag(I) ---

Bahusakala sp. O66 400mM As(V), 1mM Ag(I) y Hg(II) 10mM Ni(II) y Cd(II) Penicillium sp. P54 1mM Ag(I), 400mM As(V) 50mM Cu(II), 100mM Cr(III)

Penicillium sp. V80 200mM Cr(III) ---Penicillium sp. P34 200mM Cu(II), 1mM Ag(I) 50mM As(V), 100mM Cr(III)

Hormonema sp. I12 400mM As(V), 1mM Ag(I) 200mM Cr(III)Hormonema sp. I17 1mM Ag(I) 50mM Zn(II)

Nodulisporium sp. V56 400 mM As(V), 10mM Ni(II) 50mM Cr(III), 10mM Zn(II)Nodulisporium sp. V58 400mM As(V) 100mM Cr(III)Trichoderma viride O6 1mM Ag(I), 10mM Ni(II) y Cd(II) 200mM As(V)

Trichoderma viride CECT 2423 --- ---

Page 157: Biotechnological application of extremophiles R. Amils
Page 158: Biotechnological application of extremophiles R. Amils

EL CAPITAN (MP)

Page 159: Biotechnological application of extremophiles R. Amils

temperature gradient (Endurence)

Page 160: Biotechnological application of extremophiles R. Amils

clauds at Meridiani Planum

Page 161: Biotechnological application of extremophiles R. Amils

Viking I

Page 162: Biotechnological application of extremophiles R. Amils

16S rRNA gene-based oligonucleotide microarray

Page 163: Biotechnological application of extremophiles R. Amils
Page 164: Biotechnological application of extremophiles R. Amils

enrichment cultures:- pyrite, Fe and S oxidizers- Fe and sulfate reducers-methanogens- metanotrophs- denitrifiers- acetogenic bacteria

Page 165: Biotechnological application of extremophiles R. Amils

4H2 + CO2 → CH4 + 2H2O BH2 + SO4

2- + H+→ HS- + 4H2O BFe2+ + H2S→FeS + H2 Q

FeS + H2S → H2 + FeS2 Q FeS2+Fe3++8H2O→2SO4

2-+ Fe2++16H+ BFe2+ + NO3

-→Fe3+ + NO2- B

Cn(H2O)n+Fe3++H2O→CO2+Fe2+4H+ BH2 + HCO3

- + H+→ CH3COO- + H2O BC3H6O3 + SO4

2- → CH3COO- + S2- B

Page 166: Biotechnological application of extremophiles R. Amils

H2O on Mars

Page 167: Biotechnological application of extremophiles R. Amils

MER OPPORTUNITY AT MERIDIANI PLANUM

Page 168: Biotechnological application of extremophiles R. Amils

Crater Eagle

Page 169: Biotechnological application of extremophiles R. Amils

rock outcrop at Eagle crater (MP)

Page 170: Biotechnological application of extremophiles R. Amils

robotic arm with instruments

Page 171: Biotechnological application of extremophiles R. Amils
Page 172: Biotechnological application of extremophiles R. Amils
Page 173: Biotechnological application of extremophiles R. Amils
Page 174: Biotechnological application of extremophiles R. Amils
Page 175: Biotechnological application of extremophiles R. Amils

blueberries, Endurance crater,

Page 176: Biotechnological application of extremophiles R. Amils
Page 177: Biotechnological application of extremophiles R. Amils

SPIRIT AT GUSEV CRATER

Page 178: Biotechnological application of extremophiles R. Amils

blueberries at Columbia Hills

Page 179: Biotechnological application of extremophiles R. Amils

exhumed sulfates at Gusev crater

Page 180: Biotechnological application of extremophiles R. Amils

exhumed silica (hydrothermal?)

Page 181: Biotechnological application of extremophiles R. Amils

MEX, water wapor (SPICAM)

Page 182: Biotechnological application of extremophiles R. Amils

Fe oxides distribution on Mars (MEX)

Page 183: Biotechnological application of extremophiles R. Amils

HRSC-MRO

Page 184: Biotechnological application of extremophiles R. Amils

HRSC-MRO

Page 185: Biotechnological application of extremophiles R. Amils

paleo-ocean (K, Th, Fe) Gamma Ray spectrometer (Mars Odissey)

Page 186: Biotechnological application of extremophiles R. Amils

MEX, phylosilicates (OMEGA)

Page 187: Biotechnological application of extremophiles R. Amils

MEX, H2O-ice in the South Pole (MARSIS)

Page 188: Biotechnological application of extremophiles R. Amils

Phoenix landing site, june 2008

Page 189: Biotechnological application of extremophiles R. Amils
Page 190: Biotechnological application of extremophiles R. Amils

MGS

Page 191: Biotechnological application of extremophiles R. Amils

craterización reciente, MGS

Page 192: Biotechnological application of extremophiles R. Amils

MEX, methane (PFS)

Page 193: Biotechnological application of extremophiles R. Amils
Page 194: Biotechnological application of extremophiles R. Amils

Curiosity

Page 195: Biotechnological application of extremophiles R. Amils

Crater Gale

Page 196: Biotechnological application of extremophiles R. Amils

meteorito de Fe-Ni marciano

Page 197: Biotechnological application of extremophiles R. Amils

MSL, brazo con instrumentación

Page 198: Biotechnological application of extremophiles R. Amils

MSL ChemCam, análisis elemental

Page 199: Biotechnological application of extremophiles R. Amils
Page 200: Biotechnological application of extremophiles R. Amils
Page 201: Biotechnological application of extremophiles R. Amils

se puede concluir que en Marte existen rocas sedimentarias

formadas en condiciones ácidas (lagos o océanos ácidos)

análogos terrestres:

- ambientes ácidos- hidrotermalismo submarino

Page 202: Biotechnological application of extremophiles R. Amils

comparación entre MeridianiPlanum y Río Tinto

MP RTsurf RTss• - hematites ++ ++ +• - jarosita ++ ++ +• - goetita ++ ++ +• - fuerza iónica ++ ++ ++• - T superficie low 4-35oC• - T subsuelo ? 25oC• - metano + - +• - oxígeno +/- ++ -• - µorganismos ? ++ +

Page 203: Biotechnological application of extremophiles R. Amils

Las condiciones actuales de la superficie de Marte, fuerte irradiación UV y condiciones muy oxidantes, no parecen ser el lugar ideal para el desarrollo de

la vida (mecanismos de protección, problemas metodológicos). La vida en el subsuelo tiene

muchas más posibilidades que en la superficie. Es importante diseñar y desarrollar una misión de perforación si queremos detectar vida en Marte

Page 204: Biotechnological application of extremophiles R. Amils

Mars Express

Page 205: Biotechnological application of extremophiles R. Amils
Page 206: Biotechnological application of extremophiles R. Amils

.

Page 207: Biotechnological application of extremophiles R. Amils

La exploración y caracterización del ecosistema del Tinto es importante para

entender las propiedades de los microorganismos que se podrían

desarrollar en Marte. Además es un buen banco de pruebas para probar las

prestaciones de los instrumentos que volarán a Marte en futuras misiones de

exploración…

Page 208: Biotechnological application of extremophiles R. Amils

y para entender mejor el periodo en el que apareció la

vida sobre la Tierra (Archean)

formaciones de hierro bandeado de Pilbara (Australia)

Page 209: Biotechnological application of extremophiles R. Amils

the irruption of molecular biology techniques into microbial ecology has produced an authentic

revolution

Page 210: Biotechnological application of extremophiles R. Amils

• Proteobacteria (Acidithiobacillus, Acidiphilium, Acidiferrobacter, Ferrovum)

• Nitrospira (Leptospirillum)• Firmicutes (Alicyclobacillus, Sulfobacillus)• Actinobacteria (Ferrimicrobium,

Acidimicrobium, Ferritrix)• Archaea (Sulfolobus, Acidianus,

Metallosphaera, Sulfurisphaera, Ferroplasma)

Page 211: Biotechnological application of extremophiles R. Amils

Fungal diversity

Eurotiomycetes

Índice de bootstrap:100%

90-99%80-89%

Page 212: Biotechnological application of extremophiles R. Amils

XRD and Mössbauer spectra

Page 213: Biotechnological application of extremophiles R. Amils

MARTE project, SEM of a sample from core 8,68c (-162m)

Page 214: Biotechnological application of extremophiles R. Amils
Page 215: Biotechnological application of extremophiles R. Amils
Page 216: Biotechnological application of extremophiles R. Amils

MEX: OMEGA

Page 217: Biotechnological application of extremophiles R. Amils

meteorito de Fe-Ni marciano

Page 218: Biotechnological application of extremophiles R. Amils

MARTE project: geomicrobiological exploration of the Iberian Pyritic Belt

subsurface

Page 219: Biotechnological application of extremophiles R. Amils
Page 220: Biotechnological application of extremophiles R. Amils