biomass gasification in the united...

25
Biomass Gasification in the United States Country Report for IEA Bioenergy Task 33 Kevin Whitty, Elena Shanin and Spencer Owen The University of Utah, Salt Lake City, Utah, USA 30 September 2015

Upload: others

Post on 14-Jul-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Biomass Gasification in the United Statestask33.ieabioenergy.com/download.php?file=files/file/country_report… · ! ! ! ! !!!!1! Introduction Gasification!is!a!process!that!involves!thermochemical!conversion!of!carbon]containing!materialssuch!as

Biomass Gasification in the United States    Country Report for IEA Bioenergy Task 33                                                         Kevin  Whitty,  Elena  Shanin  and  Spencer  Owen  

  The  University  of  Utah,  Salt  Lake  City,  Utah,  USA           30  September  2015    

Page 2: Biomass Gasification in the United Statestask33.ieabioenergy.com/download.php?file=files/file/country_report… · ! ! ! ! !!!!1! Introduction Gasification!is!a!process!that!involves!thermochemical!conversion!of!carbon]containing!materialssuch!as

 

                i  

Table of Contents Introduction  .................................................................................................................................................  1 Bioenergy  and  Biomass  Resources  ..............................................................................................................  2 Biomass  Energy  Policies  and  Incentives  in  the  US  .....................................................................................  10 Status  of  Biomass  Gasification  Technology  in  the  United  States  ...............................................................  13

Commercial  Projects  .............................................................................................................................  13 Enerkem  (Pontotoc,  Mississippi)  .....................................................................................................  13 LanzaTech  Freedom  Pines  Biorefinery  Facility  (Soperton,  Georgia)  ...............................................  15 Commercial  Plant:  INEOS  Bio  Cellulosic  Plant  in  Vero  Beach,  Florida  .............................................  16

Pilot  Plants  ............................................................................................................................................  17 TRI  Plant  in  Durham,  North  Carolina  ...............................................................................................  17 GTI  Plant  in  Des  Plaines,  Illinois  .......................................................................................................  18

References  .................................................................................................................................................  20    Table of Figures Figure  1.    Primary  energy  consumption  by  source  1949-­‐2014  (in  quadrillion  BTU)  [1]  ...............................  2 Figure  2.    Renewable  energy  consumption  by  source  1949-­‐2014  (quadrillion  BTU)  [1]  .............................  2 Figure  3.    Generation  and  capacity  of  biopower  in  the  United  States  [2]  ...................................................  3 Figure  4.    Classifications  of  biomass  sources  and  their  respective  biopower  generation  [2]  ......................  3 Figure  5.    National  distribution  of  forest  residues  available  for  biomass  feedstock  use  as  of  2012  []  ........  5 Figure  6.    National  Distribution  of  Crop  Residues  as  of  2012  [8]  .................................................................  6 Figure  7.    Crop  residue  current  and  future  supplies  estimates  [5]  ..............................................................  6 Figure  8.    Distribution  of  available  urban  wood  waste  in  the  United  States  as  of  2012  [6]  ........................  7 Figure  9.    Recovery  and  discards  of  materials  in  MSW,  1960  to  2012  []  .....................................................  8 Figure  10.    Estimated  supply  of  forest  biomass  and  wood  waste  at  $80  per  dry  ton  or  less  in  2012  [??]  ..  8 Figure  11.    Comparison  of  the  Union  of  Concerned  Scientists  and  Billion  Ton  Study  Update  estimates  [7]  9 Figure  12.    Renewable  Fuel  Standard  Volumes  by  Year  ............................................................................  10 Figure  13.    BETO’s  Multi-­‐Year  Plan  goals  [24].  ...........................................................................................  12 Figure  14.    Enerkem  Gasification  process  for  producing  biofuels  .............................................................  14 Figure  15.    Concord  Blue  Reformer  Process  ..............................................................................................  16 Figure  16.    INEOS  Gasification  process  for  producing  ethanol  ..................................................................  16 Figure  17.    INEOS  Plant  in  Vero  Beach,  Florida  ..........................................................................................  17  

Page 3: Biomass Gasification in the United Statestask33.ieabioenergy.com/download.php?file=files/file/country_report… · ! ! ! ! !!!!1! Introduction Gasification!is!a!process!that!involves!thermochemical!conversion!of!carbon]containing!materialssuch!as
Page 4: Biomass Gasification in the United Statestask33.ieabioenergy.com/download.php?file=files/file/country_report… · ! ! ! ! !!!!1! Introduction Gasification!is!a!process!that!involves!thermochemical!conversion!of!carbon]containing!materialssuch!as

 

                1  

Introduction Gasification  is  a  process  that  involves  thermochemical  conversion  of  carbon-­‐containing  materials  such  as  biomass,  coal  and  oil  to  an  energy-­‐containing  gas  (synthesis  gas,  or  syngas)  typically  rich  in  hydrogen  (H2)  and  carbon  monoxide   (CO).  Some  of   the   first  productive  gasifiers   reacted  steam  with  coal   to  produce  town  gas  for  heating  and  lighting  London  in  the  1850s.  Gasification  technology  advanced  slowly  for  the  next  100  years,  but  recent  decades  have  seen  a  dramatic  increase  in  the  level  of  sophistication,  types  of  applications   and  number  of   gasifiers  worldwide.   Today,   thousands  of   gasifiers  with   capacities   ranging  from  a  few  kilowatts  to  over  500  megawatts  generate  syngas  from  a  wide  range  of  fuels  for  production  of  heat,  electricity,  chemicals  and  synthetic  fuels.  

Over   99%   of   syngas   produced   today   comes   from   fossil   fuels   including   coal,   oil   and   petroleum   coke.  Biomass   presents   unique   challenges   for   gasification,   including   relatively   low   energy   density,   limited  availability   within   a   given   geographic   region,   inconsistency   of   physical   and   chemical   characteristics,  difficulty   preparing   and   feeding   the   material,   and   production   of   condensable   “tars”   in   the   syngas.  Nonetheless,  growth  in  biomass  gasification  has  accelerated  in  recent  years  and  today  there  are  many  profitable,  industrial-­‐scale  gasifiers,  some  processing  more  than  500  tons  per  day  of  biomass,  operating  reliably  throughout  the  world.  

This   report   provides   an   update   on   the   status   of   biomass   gasification   in   the   United   States,   including  availability   of   biomass   resources,   governmental   policies   relevant   to   biomass   gasification,   gasification  technology  development  and  biomass  gasification  facilities.  The  report  focuses  primarily  on  large-­‐scale  commercial  biomass  gasification  technologies  and  facilities,  although  consideration  is  also  given  to  small  scale  systems  suitable  for  regional  production  of  synthesis  gas  for  heat  or  power.    

Page 5: Biomass Gasification in the United Statestask33.ieabioenergy.com/download.php?file=files/file/country_report… · ! ! ! ! !!!!1! Introduction Gasification!is!a!process!that!involves!thermochemical!conversion!of!carbon]containing!materialssuch!as

   2      

Bioenergy and Biomass Resources According   to   the   U.S.   Department   of   Energy’s   Energy   Information   Administration   (EIA),   renewable  energy  represented  9.8%  of  primary  energy  consumed  in  the  United  States  in  2014  and  its  contribution  to  overall  energy  use  has  increased  over  the  past  15  years,  as  seen  in  Figure  1  [1].    Biomass  accounted  for  just  under  half  of  renewable  energy  consumption  (5.03  EJ),  hydroelectric  accounted  for  roughly  one-­‐quarter,  and  other  (wind,  geothermal,  and  solar)  made  up  the  rest  (Figure  2)  [1].    

Total   U.S.   electricity   generation   from   all   sources   in   2014   was   4093   terawatt-­‐hours   (billion   kilowatt  hours),   of   which   renewable   energy   represented   13%.     Roughly   half   of   renewable   electricity   was  hydroelectric,   but   12%,   or   64   TWh,   was   generated   from   biomass   and   waste  [1].   This   represented   a  nearly  7%  increase  from  2013,  when  60  TWh  of  electricity  was  generated  from  biomass  and  waste.  

 Figure  1.    Primary  energy  consumption  by  source  1949-­‐2014  (in  quadrillion  BTU)  [1]  

 

 Figure  2.    Renewable  energy  consumption  by  source  1949-­‐2014  (quadrillion  BTU)  [1]  

 

Page 6: Biomass Gasification in the United Statestask33.ieabioenergy.com/download.php?file=files/file/country_report… · ! ! ! ! !!!!1! Introduction Gasification!is!a!process!that!involves!thermochemical!conversion!of!carbon]containing!materialssuch!as

 

                3  

The  60  TWh  of  biopower  generation  in  2013  came  from  14  GW  of  capacity  (Figure  3).    Of  this  biopower  generation,   39.9   TWh   (67%)  was   based   on   forest   and   agricultural   residues—predominantly   produced  through  combustion—and  17.1  TWh  (29%)  was  based  on  municipal  solid  waste  (MSW)  including  landfill  gas  (Figure  4)  [2].    The  remaining  4%  of  biopower  was  generated  from  other  types  of  biomass.  

 Figure  3.    Generation  and  capacity  of  biopower  in  the  United  States  [2]  

 Figure  4.    Classifications  of  biomass  sources  and  their  respective  biopower  generation  [2]  

Page 7: Biomass Gasification in the United Statestask33.ieabioenergy.com/download.php?file=files/file/country_report… · ! ! ! ! !!!!1! Introduction Gasification!is!a!process!that!involves!thermochemical!conversion!of!carbon]containing!materialssuch!as

   4      

The  land  base  of  the  United  States,  including  Alaska  and  Hawaii,  is  about  9.16  million  square  kilometers  (3.537  million  square  miles).    Roughly  33%   is   forest   land,  26%   is  grassland,  pasture,  and  range,  20%  is  cropland,   and  21%   is  urban,   swamps,  deserts  and   special  use   land   [3,4].   Excluding  Alaska  and  Hawaii,  about  60%  of  the  land  in  the  United  States  has  the  potential  for  biomass  production.    

A   number   of   studies   have   been   performed   to   estimate   biomass   availability   and   costs   in   the   United  States.   The   most   comprehensive,   which   considered   biomass   currently   or   potentially   available   for  bioenergy,   is   the  so-­‐called  Billion-­‐Ton  study,  which  was  a   joint  effort  between  the  U.S.  Department  of  Agriculture  and  the  U.S.  Department  of  Energy  first  published  in  2005  then  updated  in  2011  [5,6].      

In  the  United  States,  potential  biomass  resources  are  generally  classified  into  four  major  categories:    

• forest  residues,  including  mill  residues  • agricultural  residues  • urban  wood  waste  • dedicated  herbaceous  and  woody  energy  crops  

Forest   Residues.     Forest   residues   include   waste   materials   from   forestry   for   e.g.   lumber   and   paper  production,  and  includes  stumps,  tops,  branches  and  dead  trees  commonly  left  in  the  forest.    In  addition  to  the  320  million  dry  tons  of  forest  biomass  used  for  primary  forest  purposes,  approximately  93  million  dry   tons  of   forest   residues   are   removed   annually  [6].   The  distribution  of   forest   residues   in   the  U.S.   is  shown   in  Figure  5.  Residues  are  concentrated   in   the  Pacific  northwest  and  southeastern  states  where  most  of   the   country’s   forests   are   located.   Changes   in   forestry  practices   could   increase   the  amount  of  forest  residues  available  for  bioenergy  production.      

Estimates  of  forest  residues  potentially  available  for  energy  production  vary  widely  and  depend  on  the  assumed   intensity   of   residue   removal,   as-­‐delivered   value   of   the   material   (dollars   per   dry   ton),  consideration   of   sustainability   of   the   forest   and   other   factors  [5-­‐7].   It   is   estimated   that   there   are  between  22  and  64  million  dry  tons  of  forest  residue  available  for  energy  use  at  $20  to  $60  per  ton.  The  expected  increase  of  available  forest  biomass  is  marginal,  with  an  estimated  66  million  dry  tons  at  $60  per  ton  in  2030.  

A  special  category  of  forest  residue  that  offers  opportunities  for  biomass  gasification  is  pulping  liquor,  or  so-­‐called   black   liquor,   resulting   from   the   chemical   pulping   process.   Black   liquor   contains   the   lignin  fraction   of   wood   that   is   cooked   and   separated   from   the   fibers,   and   is   a   highly   reactive,   pumpable  biomass-­‐based   feedstock   amenable   to   gasification.  Approximately   50  million   tons   per   year   of   pulping  liquors  are  currently  produced  in  the  U.S.    Production  of  pulping  liquor  is  expected  to  grow,  approaching  60  million  tons  by  2030  [6].  

Page 8: Biomass Gasification in the United Statestask33.ieabioenergy.com/download.php?file=files/file/country_report… · ! ! ! ! !!!!1! Introduction Gasification!is!a!process!that!involves!thermochemical!conversion!of!carbon]containing!materialssuch!as

 

                5  

 Figure  5.    National  distribution  of  forest  residues  available  for  biomass  feedstock  use  as  of  2012  [8]  

 

Agricultural  Residues.    Figure  6  shows  map  of  crop  residue  availability  in  the  United  States.    The  highest  concentration  of  agricultural  residues  is  in  the  farming-­‐heavy  midwest  states  including  Iowa,  Minnesota,  Illinois   and   North   and   South   Dakota.   The   current   estimate   of   crop   residue   and   agricultural   waste  available  is  111  million  dry  tons,  with  three-­‐fourths  being  corn  stover,  based  on  a  farmgate  price  of  $60  per  dry  ton  [6].    That  estimate  takes  into  consideration  the  amount  of  residue  that  must  remain  on  the  fields   to   prevent   erosion   and   maintain   soil   nutrients   and   carbon   levels.   As   with   forest   residues,  estimates   used   to   predict   the   future   availability   of   biomass   feedstocks   vary  widely   depending   on   the  initial  model  assumptions  used.  Although  greater  efficiency  in  farming  and  other  practices  could  lead  to  higher   future   yields,   improvements  might  be  offset   by   reductions   associated  with  negative   influences  such  as  climate  change.    

Predicted  future  availability  of  agricultural  residues  costing  $60  or  less  per  dry  ton  are  shown  in  Figure  7  for   both   a   baseline   and   a   high   yield   case.   Corn   stover   is   predicted   to   remain   the   major   source   of  agricultural  residues  for  many  years  to  come.  

Page 9: Biomass Gasification in the United Statestask33.ieabioenergy.com/download.php?file=files/file/country_report… · ! ! ! ! !!!!1! Introduction Gasification!is!a!process!that!involves!thermochemical!conversion!of!carbon]containing!materialssuch!as

   6      

 Figure  6.    National  Distribution  of  Crop  Residues  as  of  2012  [8]  

 

 Figure  7.    Crop  residue  current  and  future  supplies  estimates  [5]  

 

Page 10: Biomass Gasification in the United Statestask33.ieabioenergy.com/download.php?file=files/file/country_report… · ! ! ! ! !!!!1! Introduction Gasification!is!a!process!that!involves!thermochemical!conversion!of!carbon]containing!materialssuch!as

 

                7  

Urban   wood   waste.     Urban   wood   waste   includes   construction   and   demolition   debris   as   well   as   the  woody  component  of  municipal  solid  waste.  Generally,  urban  wood  waste  is  the  least  expensive  biomass  resource   based   on   gate   prices,   followed   by   mill   residues,   forest   residues,   agricultural   residues,   and  energy   crops.   This   more   or   less   reflects   the   costs   of   acquisition   (offsetting   landfill   tipping   fees),  collection  (or  production  and  harvesting),  and  processing.    

Figure  8   shows   the  distribution  of  urban  wood  waste   in   the  United  States.  Availability  of  urban  wood  waste   is   highest   in   areas   of   high   population   including   southern   California,   the   eastern   seaboard   and  Florida.  Depending  on  the  cost  that  can  be  received  for  the  feedstock,  estimates  for  availability  of  urban  wood   waste   for   energy   production   range   from   12   to   32   million   dry   tons   per  [6].   Construction   and  demolition  waste  is  especially  sensitive  to  cost,  with  an  estimated  5  times  more  material  available  at  $60  per  dry  ton  than  at  $20  per  dry  ton.  

Recovery   of   energy-­‐containing   materials   from   municipal   solid   waste   is   an   important   component   of  waste  availability.  The  fraction  of  MSW  recovered  has  risen  in  recent  decades  (Figure  9)  and  is  expected  to  increase  in  the  future.  

 Figure  8.    Distribution  of  available  urban  wood  waste  in  the  United  States  as  of  2012  [6]  

Page 11: Biomass Gasification in the United Statestask33.ieabioenergy.com/download.php?file=files/file/country_report… · ! ! ! ! !!!!1! Introduction Gasification!is!a!process!that!involves!thermochemical!conversion!of!carbon]containing!materialssuch!as

   8      

 Figure  9.    Recovery  and  discards  of  materials  in  MSW,  1960  to  2012  [9]  

 

A  summary  of  the  estimated  current  availability  of  forest  biomass  and  wood  waste,  not  counting  energy  crops  but  including  pulping  liquors,  and  assuming  high  demand  resulting  in  a  cost  of  $80  per  dry  ton  for  residues,   is   shown   in   Figure   10.     Current   annual   use   is   roughly   130   million   tons   and   total   potential  availability  is  approximately  250  million  tons.      

 Figure  10.    Estimated  supply  of  forest  biomass  and  wood  waste  at  $80  per  dry  ton  or  less  in  2012  [??]  

 

Page 12: Biomass Gasification in the United Statestask33.ieabioenergy.com/download.php?file=files/file/country_report… · ! ! ! ! !!!!1! Introduction Gasification!is!a!process!that!involves!thermochemical!conversion!of!carbon]containing!materialssuch!as

 

                9  

As   noted   previously,   estimates   of   biomass   availability   depend   on   assumptions   and   models   used.  Analyses  performed  in  recent  years  emphasize  sustainable  forestry  and  agriculture,  and  are  considered  more   realistic   than   the  original  2005  USDOE/USDA  Billion  Ton  Study  [5].  The  2011  Oak  Ridge  National  Laboratory  (ORNL)  2011  Billion  Ton  Study  Update  [6]  takes  such  issues  into  consideration.    The  Union  of  Concerned   Scientists   (UCS)   released   an   analysis   of   the   2011   Billion   Ton   Study   Update   that   created  stricter  model   assumptions.   In   the  UCS  analysis   [7],   predictions   in   the   increase  of   crop  yields   and   the  amount  of  agricultural  residues  removed  are  less  than  in  ORNL  study.  The  UCS  estimate  of  biomass  that  will  be  available  in  2030  is  slightly  less  than  the  ORNL  estimate  based  on  moderate  growth,  with  most  of  the  difference  relating  to  forest  biomass  (Figure  11).  

 Figure  11.    Comparison  of  the  Union  of  Concerned  Scientists  and  Billion  Ton  Study  Update  estimates  [7]    

   

Page 13: Biomass Gasification in the United Statestask33.ieabioenergy.com/download.php?file=files/file/country_report… · ! ! ! ! !!!!1! Introduction Gasification!is!a!process!that!involves!thermochemical!conversion!of!carbon]containing!materialssuch!as

   10      

Biomass Energy Policies and Incentives in the US In  the  United  States,  there  is  greater  focus  on  increasing  the  use  of  renewable  energy  as  a  whole  than  specifically  on  increasing  bioenergy  use.  No  law  requires  any  amount  of  electricity  generation  or  heating  to  be  sourced  from  biomass.  Despite  this,  biomass  is  not  only  a  viable  source  of  energy  for  the  future,  it  is  also  currently  the  second  greatest  source  of  renewable  energy  generation  [6].    

Biofuel   tax   credits.   Much   of   the   funding   the   biomass   industry   receives   is   through   the   federal  government  via  incentives  for  general  biomass  technologies  and  requirements  on  the  amount  of  biofuel  use   and   production   in   the   U.S.     Since   1978,   biofuel   incentives   have  mainly   come   in   the   form   of   tax  credits.  The  most  recent  round  of  tax  credits  expired  in  2014,  and  as  of  this  writing   it   is  expected  that  these  will   soon  be  extended  through  2016.   If  passed,   the   legislation  will   include  a  $1-­‐per-­‐gallon  credit  for   biodiesel   and   renewable   diesel   as   well   as   a   $1.01-­‐per-­‐gallon   production   tax   credit   for   cellulosic  biofuels,  which  are  the  same  as  the  tax  credits  that  expired  in  2014.  

Renewable  fuel  standards.     In  2005,  the  U.S.  Congress  passed  the  Energy  Policy  Act,  which   included  a  Renewable   Fuel   Standard   (RFS)   program   that   required   7.5   billion   gallons   of   renewable   fuel   to   be  blended   into   gasoline   by   2012   [10].   In   2007,   the  U.S.   Congress   passed   the   Energy   Independence   and  Security   Act   (EISA)   [11],   which   improved   upon   the   Renewable   Fuel   Standard   program   by   including  blending  biofuels  into  diesel  and  increasing  the  volume  of  renewable  fuels  blended  to  36  billion  gallons  by   2022   (Figure   12).    The   legislation   requires   21   billion   gallons   of   fuel   per   year   to   be   from   advanced  biofuel,  most  of  which  is  expected  to  be  cellulosic  ethanol.

 Figure  12.    Renewable  Fuel  Standard  Volumes  by  Year    

0"

5"

10"

15"

20"

25"

30"

35"

40"

2006"2007"2008"2009"2010"2011"2012"2013"2014"2015"2016"2017"2018"2019"2020"2021"2022"

Billion

s"of"G

allons"

Biomass6based"diesel"Other"advanced"biofuels"Cellulosic6advanced"biofuels"ConvenBonal"biofuels"

Page 14: Biomass Gasification in the United Statestask33.ieabioenergy.com/download.php?file=files/file/country_report… · ! ! ! ! !!!!1! Introduction Gasification!is!a!process!that!involves!thermochemical!conversion!of!carbon]containing!materialssuch!as

 

             11  

In   addition   to   contributing   to   renewable   transportation   fuels,   biomass   is   a   major   component   of   the  United   States’   renewable   energy   goals   and   is   included   in   nearly   all   legislation   on   renewables   that  provide  federal  funding  and  assistance.  Programs  offer  financial  support  through  grants,  tax  credits,  and  loan   guarantee   programs.   Programs   for   renewable   energy   in   general   include   the   Improved   Energy  Technology  Loan  program,  the  USDOE  Loan  Guarantee  program,  and  Advanced  Energy  Research  Project  Grants.   All   three   of   these   programs   are   for   commercial   or   research   projects   that   would   either  significantly   reduce   air   pollutants   and   greenhouse   gases   (GHG)   or   would   reduce   the   United   States’  dependence  on  foreign  energy  imports.  The  USDOE  Loan  Guarantee  program  in  particular  helps  provide  security   for   projects   that   are   high   risk   and   might   not   be   undertaken   otherwise.   In   June   2014,   the  Environmental  Protection  Agency  proposed  a  Clean  Power  Plan  under  President  Obama’s  Climate  Action  Plan   [17].   This   plan   set   out   a   proposal   to   cut   carbon   pollution   from  power   plants   by   30%   from   2005  levels   by   2030.   Power   plants   can   cut   their   GHG   emissions   through   conversion   to   cleaner   burning  advanced  biomass,  since  many  biomass  gasification  systems  can  have  a  lower  pollutant  and  GHG  output  than  burning  natural  gas.

The   Bioenergy   Technologies   Office   (BETO)   oversees   a   research,   development,   demonstration,   and  deployment  (RDD&D)  program  that  focuses  on  how  to  improve  five  technical  elements  of  bioenergy  in  order   to   lead   to   greater   use   of   bioenergy   technologies   in   the   US   [20].   The   first   three   elements   the  program   focuses   on—feedstock   supply,   conversion,   and   the   improvement   of   power   generation  technologies—are   R&D   efforts   [20].   The   two   final   areas,   integrated   biorefineries   and   distribution  infrastructure,   are   D&D   tasks   concentrating   on   demonstrating   the   reliability   and   success   of   biomass  conversion   technologies.   These   tasks   focus   on   taking   bench-­‐scale   technology   and   developing   it   into  effective   pilot,   demonstration,   and   commercial   scale   refineries   and   plants.   Since   these   are   costly  ventures,  BETO’s  main  role  is  to  provide  financial  assistance.  Once  the  initial  refineries  are  shown  to  be  economically   successful,   private   investors   will   be   more   likely   to   invest   in   projects   and   kick-­‐start   the  construction  of  more  refineries  [19].  

The  US  Department  of  Agriculture  (USDA)  has  multiple  programs  to  encourage  industry  to  either  build  new   biomass   refineries   or   convert   existing   fossil   fuel   refineries.   The   USDA’s   Biorefinery   Assistance  Program  is  a   loan  guarantee  program  that  assists   in  the  development,  construction,  and  retrofitting  of  commercial-­‐scale   biorefineries   [21].   The   USDA   Repowering   Assistance   Biorefinery   Program   is   more  specifically  for  providing  incentives  to  retrofit  existing  power  plants.  The  program  can  provide  up  to  50%  of   the   cost   to   convert   biorefineries   from   fossil   fuel   systems   to  biomass   fuel   systems   [18].  One  of   the  requirements  in  order  to  receive  the  funds  is  that  the  plant  must  show  that  it  has  a  constant  supply  of  biomass  for  a  minimum  of  three  years.  This  is  a  problem  if  the  biomass  is  to  be  sourced  from  crops  that  are  often  also  used   for   food  purposes,   since  overuse  of   food   crops   for  energy  generation  will   lead   to  higher  food  prices.  

The   hesitancy   to   use   food   crops   for   biomass   leads   to   the   instability   of   biomass   feedstock   supply   and  demand.  Producers  of  biomass  often  do  not  want  to  make  the  risk  of  growing  crops  for  biofuels  if  there  is   no   steady  buyer.   Similarly,   biomass   conversion   lags   because   companies   hesitate   to   take   the   risk   of  creating  or  upgrading  a  plant  without  assurance  of  an  existing  and  reliable  supply  of  biomass.  In  order  to  avoid  hikes  in  food  prices,  advanced  biofuels,  defined  as  any  biofuels  not  sourced  from  food  crops,  are  

Page 15: Biomass Gasification in the United Statestask33.ieabioenergy.com/download.php?file=files/file/country_report… · ! ! ! ! !!!!1! Introduction Gasification!is!a!process!that!involves!thermochemical!conversion!of!carbon]containing!materialssuch!as

   12      

incentivized   more   than   other   biofuels.   The   Advanced   Biofuel   Feedstock   Incentives   aims   to   alleviate  some  of   the  aforementioned  problems.  The  program   is  part  of   the  Biomass  Crop  Assistance  Program,  initially  passed  as  part  of  the  2008  Farm  Bill  and  renewed  by  the  2014  farm  bill.  For  farmers  looking  to  produce  biomass   crops,   the   legislation   reimburses   up   to   50%  of   the   cost   of   establishing   an   advanced  feedstock   crop   [18].   Since   woody   feedstocks   are   both   more   difficult   to   establish   and   have   a   higher  energy  content,  annual  payments  are  given   to  producers   for  up   to  15  years,  as  opposed   to  only  5   for  herbaceous  feedstock  crops.  Additionally,  the  legislation  provides  matching  payments  to  the  feedstock  producer  when  selling  the  biomass  to  refineries,  up  to  $20  per  dry  ton.  The  final  federal  effort  to  expand  the  biomass  market   is  the  USDA  Value  Added  Producer  Grants  (VAPG).  This  program  aims  to  generate  new   products,   create   and   expand  marketing   opportunities,   and   increase   producer   income   [22].  With  available   funding   through   2018,   VAPG   gives   planning   or   working   capital   grants   to   independent  agricultural  producers  who  are  expanding  into  biomass  crop  production.  

In  terms  of  future  expectations  for  biomass  energy,  the  United  States  is  continually  striving  to  increase  the  amount  of  renewable  energy  used  in  the  country.  On  June  30,  2015,  the  United  States,  China,  and  Brazil  signed  an  agreement  to   increase  the  amount  of  electricity  produced  from  renewable  sources  to  20%  by  the  year  2030  [23].  This  agreement  comes  in  advance  of  the  upcoming  December  United  Nations  Climate  Change  Conference,  where  it  is  expected  countries  will  make  further  commitments  to  decrease  greenhouse  gas  emissions.  As  a  low-­‐  or  zero-­‐carbon  producer,  biomass  gasification  is  a  technology  that  the  United  States  can  look  to  as  a  sustainable  source  of  renewable  energy.    

In  March  2015,  BETO  released  its  Multi-­‐Year  Program  Plan  for  the  next  5  years.  The  key  activities  BETO  will   be   focusing   on   fall   into   three   categories;   feedstock   supply,   conversion,   and   demonstration   and  market  transformation  (Figure  13).    

 Figure  13.    BETO’s  Multi-­‐Year  Plan  goals  [24].  

   

Page 16: Biomass Gasification in the United Statestask33.ieabioenergy.com/download.php?file=files/file/country_report… · ! ! ! ! !!!!1! Introduction Gasification!is!a!process!that!involves!thermochemical!conversion!of!carbon]containing!materialssuch!as

 

             13  

Status of Biomass Gasification Technology in the United States Over   the   past   ten   years   the   United   States   has   seen   a   flurry   of   new   gasification   facilities,   and   new  gasification   technology   companies.   The   struggle   in   the   United   States,   as   in  most   places,   has   been   to  move  the  technology  from  demonstration  to  a  large  scale  commercial  facility.  Many  of  the  large  facilities  never  came  to  pass  or  ran  out  of  money  quickly  after  operation.  In  Pontotoc,  Mississippi,  Enerkem  was  poised   to   build   a   300   tons   per   day   waste   to   ethanol   plant   back   in   2010.   This   facility   is   still   under  construction  and  has  not  had  any  progress  in  building  in  the  past  year.  Similarly,  over  $300  million  was  invested  into  a  plant  in  Soperton,  Georgia.  This  facility  was  shut  down  due  to  lack  of  funds  and  lack  of  production.  Still,  there  is  optimism  and  facilities  being  planned  for  the  future.  

Most  of  the  technology  for  biomass  gasification  in  the  United  States  is  smaller  scaled.  Over  the  past  20  years  over  50  companies  have  sprung  up  to  provide  gasification  facilities  to  businesses.  The  majority  of  the  gasification  facilities  power  small  commercial  buildings  or  manufacturing  plants.  Companies  such  as  All  Power  Labs  create  gasifiers  on  a  very  small  scale.  These  gasifiers  are  meant  to  power  homes  or  small  events.  

Commercial Projects

Enerkem (Pontotoc, Mississippi)  

Enerkem  plans  to  build  and  operate  a  300  ton  per  day  waste-­‐to-­‐biofuels  plant  in  Pontotoc,  Mississippi,  under  its  wholly-­‐owned  U.S.  affiliate,  Enerkem  Corporation.  The  company  has  signed  an  agreement  with  the  Three  Rivers  Solid  Waste  Management  Authority  of  Mississippi  (TRSWMA)  for  the  supply  of  190,000  tons   of   unsorted   municipal   solid   waste   (MSW)   per   year.   The   plant   broke  ground   in   2011.   It   has  successfully  met   federal  environmental  assessment   requirements,  which  allows   the  company   to  move  forward  with  the  project.  The  plant   is  designed  to  produce  10  million  gallons  per  year  of  ethanol  with  plans  for  future  facility  expansion  that  would  double  the  capacity  [25].

After  over  five  years  of  planning,  construction  still  has  not  started  in  Pontotoc.  Enerkem  has  not  given  up  on  this   facility,  but   is   trying   to  work   through  planning  and   financing  of   the  plant.  Enerkem  has  not  given  an  official  date  of  when  the  construction  will  start  on  the  Pontotoc  facility  [26].  

Enerkem  has   developed   a   gasification-­‐based   technology   that   transforms   sorted  municipal   solid  waste  (MSW)   and   forest   and   agricultural   residues   into   transportation   fuels,   high-­‐   value   chemicals   and  electricity.   Enerkem   refers   to   their   process   as   carbon   recycling   as   it   chemically   recycles   carbon   that  would   otherwise   be   trapped   in   landfill   waste.   The   process   is   complementary   to   traditional   recycling  practices   as   value   is   generated   by   converting   the   carbon   in   traditionally   non-­‐   recyclable   waste   to  renewable  energy  sources.  

Enerkem’s  conversion  technology  results  from  years  of  research  and  has  been  tested  at  pilot  plant  scale  since   2003.   The   technology   is   now   being   applied   at   Enerkem’s   first   commercial   plant   in   Westbury,  Quebec,  Canada.  The  process  combines  gasification  and  catalytic  synthesis  and  involves  heat,  pressure,  advanced   chemistry   and   the   use   of   proven   catalyst   technology.   Enerkem's   gas   conditioning   steps  

Page 17: Biomass Gasification in the United Statestask33.ieabioenergy.com/download.php?file=files/file/country_report… · ! ! ! ! !!!!1! Introduction Gasification!is!a!process!that!involves!thermochemical!conversion!of!carbon]containing!materialssuch!as

   14      

generate  a  tailored  syngas  product  suitable  for  conversion  to  premium  products.  Enerkem’s  gasification-­‐based  process  is  shown  in  the  simplified  process  flow  diagram  in  Figure  14.    

 

Figure  14.    Enerkem  Gasification  process  for  producing  biofuels  

The   feedstock   is  dried,   sorted,  and  shredded,  and   then  stored   in  a   container   that   is   connected   to   the  gasifier  via  a  front-­‐end  loading  system.  The  gasifier  feeding  system  is  capable  of  handling  fluffy  material  with  no  need   for  pelletizing.  Carbonaceous  slurries  or   liquids  can  also  be   fed   into   the  gasifier   through  appropriately  designed  injectors.  

The  biomass  is  fed  to  the  gasifier,  where  it  is  converted  into  a  syngas  in  Enerkem's  bubbling  fluidized  bed  reactor,   which   is   coupled   with   cyclone(s)   for   recovering   the   fluidized   bed   material   (sand)   from   the  syngas.  The  gasification  is  accomplished  using  air  or  oxygen-­‐enriched  air  as  a  partial  oxidation  agent.  

The   required   level   of   oxygen-­‐enrichment   is   a   function   of   the   desired   syngas   composition.   Steam  at   a  controlled   partial   pressure   is   also   required   in   the   gasification   process.   The   relatively   low   operating  severity   of   the   gasifier,   temperatures   between   700   and   750°C   (1,292   and   1,382°F)   and   pressures  between  2  atm  and  10  atm  (30  psi  to  150  psi)  allows  for  the  use  of  inexpensive  construction  materials  and  refractory.  

The  syngas  from  the  gasifier  is  cleaned  and  conditioned  for  downstream  processes  by  cyclonic  removal  of  fluidized  bed  materials,  secondary  carbon  and  tar  conversion,  heat  recovery  units,  and  reinjection  of  tar   and   solid   fines   into   the   gasification   reactor.   The   syngas   produced   by   this   process   is   suitable   for  

Page 18: Biomass Gasification in the United Statestask33.ieabioenergy.com/download.php?file=files/file/country_report… · ! ! ! ! !!!!1! Introduction Gasification!is!a!process!that!involves!thermochemical!conversion!of!carbon]containing!materialssuch!as

 

             15  

conversion  to   liquid  products.  Using  a  sequential  catalytic  conversion  process,   the  syngas   is  converted  into  transportation  fuels  and  chemicals  like  methanol,  ethanol,  synthetic  gasoline,  synthetic  diesel,  and  dimethyl  ether  [27].    

LanzaTech Freedom Pines Biorefinery Facility (Soperton, Georgia)

  Location:   Soperton,  Georgia  

  Status:    

In  early  2012  LanzaTech  assumed  ownership  of  the  Soperton,  Georgia  site  that  had  previously  been  the  location  of   the  Range  Fuels  demonstration   facility.   LanzaTech  began   retrofitting   the  old   gasifier   to  be  compatible   with   the   Concord   Blue   Energy   Reformer   and   the   LanzaTech   gas   fermentation   system.  LanzaTech  is  not  finished  with  the  retrofitting,  but  with  successful  test  runs  at  their  China  facility,  they  hope  to  have  a  125  ton  per  day  facility  working  by  the  end  of  2015  [28],  [29].  

Process  Description:  The  pre-­‐conditioned  waste  travels  into  a  waste-­‐storage  vessel  to  ensure  a  constant  supply   of   input   material.   When   traveling   from   the   waste   storage   to   the   reformer   vessel,   oxygen   is  removed,   allowing   for   conversion   without   combustion.   Working   in   an   oxygen-­‐starved   environment  means  the  facility  doesn't  produce  toxic  oxidized  pollutants,  such  as  dioxins  and  furans.  

Heat   carrier   balls   are   heated   to   a   high   temperature   and   dropped   from   the   heat   carrier   vessel   to   be  mixed   in  with   the  organic  waste.  Then,   in  a   two-­‐stage   thermolysis  process,   the  waste,  heated   to  over  400   degrees   Celsius,   is   converted   directly   into   gaseous   form,   due   to   the   lack   of   oxygen.  Unlike   other  waste-­‐to-­‐energy   technologies,   Concord   Blue   uses   heat   transfer   instead   of   incineration   to   convert   the  waste.  Finally,  the  gas  produced  in  the  thermolyser  then  travels  to  the  separate  reforming  vessel,  where  it  is  transformed  into  high  quality  syngas  [30].    

 

Page 19: Biomass Gasification in the United Statestask33.ieabioenergy.com/download.php?file=files/file/country_report… · ! ! ! ! !!!!1! Introduction Gasification!is!a!process!that!involves!thermochemical!conversion!of!carbon]containing!materialssuch!as

   16      

Figure  15.    Concord  Blue  Reformer  Process  

Commercial Plant: INEOS Bio Cellulosic Plant in Vero Beach, Florida

INEOS  was  able  to  raise  $130  million  to  build  and  run  their  plant  in  Vero  Beach,  Florida.  The  INEOS  Bio  plant  in  Florida  is  designed  to  produce  8  million  gallons  of  ethanol  every  year.  Also,  it  produces  6  MW  of  electricity  per  year.  In  the  fall  of  2013  the  plant  had  been  finished  and  was  put  online.  INEOS  is  one  of  the  very  few  companies  in  the  United  States  that  has  successfully  integrated  the  technology  from  their  pilot  facility  into  a  commercial  plant  [31].  Unfortunately,  in  January  of  2015  the  plant  had  to  be  shut  for  a   period   of   time   because   it   started   producing   a   hydrogen   cyanide   (HCN)   in   amounts   that   was  detrimental  to  the  bacteria  in  the  fermentation  stage.  This  was  a  problem  that  the  plant  had  had  in  the  beginning,  but  is  now  more  prevalent.  There  have  been  scrubbers  ordered  to  take  care  of  this  problem,  but  the  installation  is  not  complete.  INEOS  has  not  posted  a  restart  day  for  the  plant  yet.  It  is  shut  down  until  they  can  find  a  solution  to  the  HCN  [32].  

 Figure  16.    INEOS  Gasification  process  for  producing  ethanol  

Process:  “The   INEOS  Bio  gasification  process   is  a  two-­‐step,  oxygen-­‐blown  technology  and  converts  the  prepared,   dried  biomass  waste   into   a   synthesis   gas   comprising   carbon  monoxide   (CO),   hydrogen   (H2)  and  CO2  gases.  Carbon  monoxide  and  hydrogen  gases  contain   important  chemical  energy  and  are  the  building  blocks  for  the  production  of  bioethanol.  Feedstocks  of  different  bulk  density,  particle  shape  and  size  may  be  mixed  together  in  order  to  optimize  feed  rate  and  minimize  entrained  air.  Upon  exposure  to  the  heat  in  the  lower  chamber  of  the  gasifier  further  drying  takes  place  followed  by  pyrolysis,  generating  a   pyrolysis   gas.   The   pyrolysis   gas   passes   through   to   the   upper   chamber  where   it   is  mixed  with  more  oxygen,  generating  more  heat  from  partial  combustion.  The  high  temperature  and  residence  time  cracks  the   pyrolysis   gases   to   carbon   monoxide,   hydrogen   and   carbon   dioxide.   No   tars   or   aromatic  hydrocarbons   are   present   in   the   syngas.   The   gasification   proceeds   in   a   reducing   environment,   with  insufficient   oxygen   present   for   complete   oxidation   of   the   carbon   present.   This   reducing   environment  suppresses  the  formation  of  dioxins  and  furans,  and  any  dioxins  or  furans  introduced  with  the  feedstock  

Page 20: Biomass Gasification in the United Statestask33.ieabioenergy.com/download.php?file=files/file/country_report… · ! ! ! ! !!!!1! Introduction Gasification!is!a!process!that!involves!thermochemical!conversion!of!carbon]containing!materialssuch!as

 

             17  

would  be  destroyed  at  the  temperature  and  residence  time  in  the  gasifier.  The  gasifier  also  operates  at  slightly   negative   pressure,   which   prevents   the   escape   of   gases   from   the   gasifier,   and   hence   any  emissions  to  air”  [33].  

 

 Figure  17.    INEOS  Plant  in  Vero  Beach,  Florida  

Table  1.    Location  of  biomass  gasification  facilities  in  the  US  [34]  

       Pilot Plants  TRI Plant in Durham, North Carolina ThermoChem  Recovery  International  (TRI)  operates  a  four  dry  tons  per  day  pilot  plant  in  North  Carolina.  This   plant   uses   a   steam   reforming   technology   that   was   developed   by   TRI.   This   plant   has   tested   a  numerous   amount   of   feedstock   including   wood   chips,   saw   dust,   rice   hulls,   grape   plant   prunings,  municipal   solid  waste,  poultry   litter,  and  much  more   [35].  This  plant  converts   this  biomass   to  biofuels  

Page 21: Biomass Gasification in the United Statestask33.ieabioenergy.com/download.php?file=files/file/country_report… · ! ! ! ! !!!!1! Introduction Gasification!is!a!process!that!involves!thermochemical!conversion!of!carbon]containing!materialssuch!as

   18      

and  biochemical.  The  Durham  plant  has  seen  over  9,000  hours  of  the  steam  reforming  technology  used,  and  over  4,500  hours  of  biofuels  production  [36].  TRI  has  licensed  its  technology  to  Fulcrum  Bioenergy,  who  is  building  a  10  million  gallon  per  year  biofuel  commercial  plant  in  Nevada.  

 Figure  19  TRI  Steam  Reformer  [36]  

GTI Plant in Des Plaines, Illinois  Gas  Technology  Institute  (GTI)  and  Haldor  Topsoe  Inc.  partnered  up  at  the  pilot  plant  in  Des  Plaines  to  test   the   Adritz-­‐Carbona   technology.   Tests   on   this   technology   have   just   recently   finished   at   this   pilot  plant.  During  their  runs  they  used  over  300,000   lbs.  of  biomass  to  produce  biofuels.  By  scaling  up  this  technology,  they  would  be  able  to  build  a  57  million  gallons  per  year  of  gasoline  commercial  plant.  After  these  successful  trials,  Haldor  Topsoe   is  now  looking  for  buyers  of  their  technology   in  order  to  build  a  commercial  scale  facility  [37].  

Page 22: Biomass Gasification in the United Statestask33.ieabioenergy.com/download.php?file=files/file/country_report… · ! ! ! ! !!!!1! Introduction Gasification!is!a!process!that!involves!thermochemical!conversion!of!carbon]containing!materialssuch!as

 

             19  

 Figure  21  Haldor  Topsoe  Gasification  process  [37]  

 

     

 

 

Page 23: Biomass Gasification in the United Statestask33.ieabioenergy.com/download.php?file=files/file/country_report… · ! ! ! ! !!!!1! Introduction Gasification!is!a!process!that!involves!thermochemical!conversion!of!carbon]containing!materialssuch!as

   20      

References [1]   “Monthly  Energy  Review,”  Energy  Information  Administration,  2015.  [Online].  Available:  

http://www.eia.gov/totalenergy/data/monthly/.  [Accessed:  15-­‐Jul-­‐2015].  

[2]   S.  Esterly,  R.  Gelman,  C.  Richard,  V.  Reed,  L.  Putnam,  A.  Brown,  J.  Cochran,  P.  Denholm,  D.  Feldman,  B.  Hannegan,  J.  Logan,  M.  Mann,  D.  Mooney,  R.  Newmark,  M.  Pacheco,  G.  Porro,  P.  Schwabe,  and  K.  Wipke,  2013  Renewable  Energy  Data  Book.  Energy  Efficiency  and  Renewable  Energy  |  US  Department  of  Energy,  2014.  

[3]   M.  Vesterby  and  K.  S.  Krupa,  “Major  Uses  of  Land  in  the  United  States,  1997,”  Statistical  Bulletin  No.  (SB-­‐973),  2001.  [Online].  Available:  http://www.ers.usda.gov/media/252395/sb973_1_.pdf.  [Accessed:  21-­‐Jul-­‐2015].  

[4]   R.  J.  Alig,  A.  J.  Plantinga,  S.  Ahn,  and  J.  D.  Kline,  “Land  Use  Changes  Involving  Forestry  in  the  United  States:  1952  to  1997,  With  Projections  to  2050,”  p.  92,  2003.  

[5]   R.  D.  Perlack  and  B.  J.  Stokes,  “Crop  Residues  and  Agricultural  Wastes,”  US  Billion-­‐Ton  Update,  2011.  [Online].  Available:  http://www1.eere.energy.gov/bioenergy/pdfs/btu_crop_residues.pdf.  [Accessed:  21-­‐Jul-­‐2015].  

[6]   “Biomass  Maps,”  National  Renewable  Energy  Laboratory.  [Online].  Available:  http://www.nrel.gov/gis/biomass.html.  [Accessed:  21-­‐Jun-­‐2015].  

[7]   R.  D.  Perlack  and  B.  J.  (Study  L.  Stokes,  “Forest  Biomass  and  Wood  Wastes,”  US  Billion-­‐Ton  Update,  2011.  [Online].  Available:  http://www1.eere.energy.gov/bioenergy/pdfs/btu_forest_biomass.pdf.  [Accessed:  10-­‐Jun-­‐2015].  

[8]   “Municipal  Solid  Waste  Generation,  Recycling,  and  Disposal  in  the  United  States,”  2014.  

[9]   “Biomass  Resources  in  the  United  States,”  2012.  

[10]   M.  E.  Walsh,  R.  L.  Perlack,  A.  Turhollow,  D.  G.  De  La  Torre  Ugarte,  D.  A.  Becker,  R.  L.  Graham,  S.  E.  Slinsky,  and  D.  E.  Ray,  “Biomass  Feedstock  Availability  in  the  United  States:  1999  State  Level  Analysis,”  Oak  Ridge,  TN,  2000.  

[11]   R.  Perlack,  L.  Wright,  A.  Turhollow,  R.  L.  Graham,  B.  J.  Stokes,  and  D.  Erbach,  “Biomass  as  Feedstock  for  a  Bioenergy  and  BioProducts  Industry:  The  Technical  Feasibility  of  a  Billion-­‐Ton  Annual  Supply,”  Oak  Ridge,  TN,  2005.  

[12]   A.  Milbrandt,  “Geographic  Perspective  on  the  Current  Biomass  Resource  Availability  in  the  United  States,”  Golden,  CO,  2005.  

[13]   N.  A.  of  S.  (NAS),  “Liquid  Transportation  Fuels  from  Coal  and  Biomass:  Technological  Status,  Costs,  and  Environmental  Impacts  |  National  Academy  of  Sciences,”  Washington,  DC,  2009.  

[14]   Z.  Haq  and  J.  Easterly,  “Agricultural  Residue  Availability  in  the  United  States,”  Appl.  Biochem.  Biotechnol.,  vol.  129,  no.  1–3,  pp.  3–21,  2006.  

[15]   M.  E.  Walsh,  “US  Cellulosic  Biomass  Feedstock  Supplies  and  Distribution,”  M&E  Biomass,  2008.  

[16]   R.  D.  Perlack  and  B.  J.  (Study  L.  Stokes,  “U.S.  Billion-­‐Ton  Update:  Biomass  Supply  for  a  Bioenergy  and  Bioproducts  Industry,”  Oak  Ridge,  TN,  2011.  

[17]   O.  US  EPA,  OAR,  “FACT  SHEET:  Clean  Power  Plan  Overview.”  2015.  

[18]   U.  D.  of  Energy,  “Federal  Laws  and  Incentives  for  Biodiesel,”  Alternative  Fuels  Data  Center.  [Online].  Available:  http://www.afdc.energy.gov/fuels/laws/BIOD/US.  [Accessed:  15-­‐Jul-­‐2015].  

[19]   J.  R.  Hess,  J.  J.  Jacobson,  and  R.  Nelson,  “International  Energy  Agency  (  IEA  )  Task  40  Sustainable  International  Bioenergy  Trade :  Securing  Supply  and  Demand  Country  Report  –  United  States,”  Idaho  Falls,  ID,  2015.  

Page 24: Biomass Gasification in the United Statestask33.ieabioenergy.com/download.php?file=files/file/country_report… · ! ! ! ! !!!!1! Introduction Gasification!is!a!process!that!involves!thermochemical!conversion!of!carbon]containing!materialssuch!as

 

             21  

[20]   “Research,  Development,  Demonstration,  and  Deployment,”  Bioenergy  Technologies  Office.  [Online].  Available:  http://www.energy.gov/eere/bioenergy/research-­‐development-­‐demonstration-­‐and-­‐deployment.  [Accessed:  21-­‐Jul-­‐2015].  

[21]   “Database  of  State  Incentives  for  Renewables  &  Efficiency®  -­‐  DSIRE,”  2015.  [Online].  Available:  http://www.dsireusa.org/.  [Accessed:  15-­‐Jul-­‐2015].  

[22]   “Value  Added  Producer  Grants  |  USDA  Rural  Development,”  2015.  [Online].  Available:  http://www.rd.usda.gov/programs-­‐services/value-­‐added-­‐producer-­‐grants.  [Accessed:  15-­‐Jul-­‐2015].  

[23]   J.  Worland,  “U.S.,  China  and  Brazil  Commit  to  New  Climate  Change  Goals,”  TIME  Magazine,  2015.  [Online].  Available:  http://time.com/3941783/china-­‐brazil-­‐usa-­‐climate-­‐change/.  [Accessed:  15-­‐Jul-­‐2015].  

[24]   B.  T.  Office,  “Bioenergy  Technologies  Office  Multi-­‐Year  Program  Plan:  March  2015  Update.”  [Online].  Available:  http://www.energy.gov/eere/bioenergy/downloads/bioenergy-­‐technologies-­‐office-­‐multi-­‐year-­‐program-­‐plan-­‐march-­‐2015-­‐update.  [Accessed:  21-­‐Jul-­‐2015].  

[25]   R.  Bain,  “United  States  Country  Report  IEA  Bioenergy  ,  Task  33  United  States  Country  Report  IEA  Bioenergy  ,  Task  33,”  Natl.  Renew.  Energy  Lab.,  2011  

[26]   D.  Seid,  “Enerkem’s  biofuel  plant  in  Pontotoc  still  on  drawing  board,”  Daily  Journal,  2014.  [Online].  Available:  http://djournal.com/news/enerkems-­‐biofuel-­‐plant-­‐pontotoc-­‐still-­‐drawing-­‐board/.  [Accessed:  25-­‐Jul-­‐2015].  

 [27]   “Enerkem,”  2015.  [Online].  Available:  http://enerkem.com/.  [Accessed:  15-­‐Jul-­‐2015].  

 [28]   S.  R.  Schill,  “LanzaTech  to  move  headquarters;  Soperton  retrofit  ongoing,”  Ethanol  Producer  Magazine,  2014.  [Online].  Available:  http://ethanolproducer.com/articles/10934/lanzatech-­‐to-­‐move-­‐headquarters-­‐soperton-­‐retrofit-­‐ongoing.  [Accessed:  25-­‐Jul-­‐2015].  

[29]   “Facilities  |  LanzaTech.”  [Online].  Available:  http://www.lanzatech.com/facilities/.  [Accessed:  25-­‐Jul-­‐2015].  

[30]   “Concord  Blue.”  [Online].  Available:  http://www.concordblueenergy.com/solutions-­‐in-­‐action/how-­‐it-­‐works.aspx.  [Accessed:  25-­‐Jul-­‐2015].  

[31]   S.  R.  Schill,  “A  Waste-­‐Filled  Proposition,”  Ethanol  Producer  Magazine,  2013.  [Online].  Available:  http://www.ethanolproducer.com/articles/10343/a-­‐waste-­‐filled-­‐proposition.  [Accessed:  25-­‐Jul-­‐2015].  

[32]   S.  Baita,  “INEOS  bio  plant  shut;  produced  excess  deadly  gas,”  Vero  News,  2015.  [Online].  Available:  http://www.veronews.com/32963_features/ineos-­‐bio-­‐plant-­‐shut-­‐produced-­‐excess-­‐deadly-­‐gas/article_374a5034-­‐9c04-­‐11e4-­‐ac0f-­‐03e6559b9db4.html.  [Accessed:  25-­‐Jul-­‐2015].  

[33]   “INEOS  Bio  |  Process  Technology.”  [Online].  Available:  http://www.ineos.com/Global/Bio/Technology/Ineos  US  Bio  Process  Description  Brochure_April  2012.pdf.  [Accessed:  25-­‐Jul-­‐2015].  

 [34]   “World  Gasification  Database.”  Gasification  Technologies  Council,  Arlington,  Virginia.    

[35]   "Research  and  Development  |  TRI  Innovations."  [Online].  Available:  http://www.tri-­‐inc.net/TRI-­‐inc/R%26D.html.  [Accessed  1-­‐Aug-­‐2015].  

[36]   "Customized  Deployments  |  TRI."  [Online].  Available:  http://www.tri-­‐inc.net/TRI-­‐inc/Deployments.html  .  Accessed  [1-­‐Aug-­‐2015].  

[37]   R.  Knight,"Green  Gasoline  from  Wood  Using  Carbona  Gasification  and  Topsoe  TIGAS  Processes."  Gas  Technology  Institute.  March  2015.  [Online].  Available:  http://www.energy.gov/sites/prod/files/2015  /04/f22/demonstration_market_transformation_knight_3417.pdf.  [Accessed:  1-­‐Aug-­‐2015].  

 

 

 

Page 25: Biomass Gasification in the United Statestask33.ieabioenergy.com/download.php?file=files/file/country_report… · ! ! ! ! !!!!1! Introduction Gasification!is!a!process!that!involves!thermochemical!conversion!of!carbon]containing!materialssuch!as

   22      

                                                                                                                         1.   U.S.  Energy  Information  Administration,  “Monthly  Energy  Review,”  [Online].  Available:  

http://www.eia.gov/totalenergy/data/monthly/.  [Accessed:  15-­‐Jul-­‐2015].  

2.   Esterly,  S.,  Gelman,  R.,  Richard,  C.,  Reed,  V.,  Putnam,  L.,  Brown,  A.,  Cochran,  J.,  Denholm,  P.,  2.   Esterly,  S.,  Gelman,  R.,  Richard,  C.,  Reed,  V.,  Putnam,  L.,  Brown,  A.,  Cochran,  J.,  Denholm,  P.,  Feldman,  D.,  Hannegan,  B.,  Logan,  J.,  Mann,  M.,  Mooney,  D.,  Newmark,  R.,  Pacheco,  M.,  Porro,  G.,  Schwabe,  P.,  Wipke,  K.,  “2013  Renewable  Energy  Data  Book,”  US  Department  of  Energy  Report  DE/GO-­‐102014-­‐4491,  2014.  

3.   Vesterby,  M.,  Krupa,  K.S.,  “Major  Uses  of  Land  in  the  United  States,  1997,”  Statistical  Bulletin  No.  (SB-­‐973),  2001.  [Online].  Available:  http://www.ers.usda.gov/media/252395/sb973_1_.pdf.  [Accessed:  21-­‐Jul-­‐2015].  

4.   Alig,  R.J.,  Plantinga,  A.J.,  Ahn,  S.,  Kline,  J.D.,  “Land  Use  Changes  Involving  Forestry  in  the  United  States:  1952  to  1997,  With  Projections  to  2050,”  USDA  Report  PNW-­‐GTR-­‐587,  Pacific  Northwest  Research  Station,  Portland,  OR,  2003.  

5.   Perlack,  R.D.,  Wright,  L.L.,  Turnhollow,  A.F.,  Graham,  R.L.,  Stokes,  B.J.,  Erbach,  D.C.,  “Biomass  As  Feedstock  For  A  Bioenergy  And  Bioproducts  Industry:  The  Technical  Feasibility  Of  A  Billion-­‐Ton  Annual  Supply,”  U.S.  DOE  Report  ORNL/TM-­‐2005/66,  Oak  Ridge  National  Laboratory,  Oak  Ridge,  TN,  2005.  

6.   U.S.  Department  of  Energy.  U.S.  Billion-­‐Ton  Update:  Biomass  Supply  for  a  Bioenergy  and  Bioproducts  Industry.  R.D.  Perlack  and  B.J.  Stokes  (Leads),  ORNL/TM-­‐2011/224.  Oak  Ridge  National  Laboratory,  Oak  Ridge,  TN,  2011.  

7.   Union  of  Concerned  Scientists  (UCS),  “The  Promise  of  Biomass.  Clean  Power  and  Fuel–If  Handled  Right,”  Online  at  http://www.ucsusa.org/assets/documents/clean_vehicles/Biomass-­‐Resource-­‐Assessment.pdf,  2012.  

8.   “Biomass  Maps,”  National  Renewable  Energy  Laboratory.  [Online].  Available:  http://www.nrel.gov/gis/biomass.html.  [Accessed:  21-­‐Jun-­‐2015].  

9.   U.S.  Environmental  Protection  Agency,  “Municipal  Solid  Waste  Generation,  Recycling,  and  Disposal  in  the  United  States.  Tables  and  Figures  for  2012,”  2012.  

10.   “Energy  Policy  Act  of  2005,”  (P.L.  109-­‐58,  August  8,  2005),  United  States  Statutes  at  Large,  Title  XV–Ethanol  and  Motor  Vehicles,  2005.  

11.   “Energy  Independence  and  Security  Act  of  2007,”  (P.L.  110-­‐140,  December  19,  2007),  United  States  Statutes  at  Large,  Title  II–Energy  Security  through  Increased  Production  of  Biofuels,  2007.