biofuels and bioenergy from organic solid waste · eco-technologies. production. resource ....

43
Biofuels and bioenergy from organic solid waste Prof.Dr.ir. Piet Lens UNESCO-IHE

Upload: others

Post on 08-Aug-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Biofuels and bioenergy from organic solid waste · Eco-technologies. Production. Resource . recovery • Green chemistry • Integrated wastewater and solid waste management • Biorefinery

Biofuels

and bioenergy

from organic solid waste

Prof.Dr.ir. Piet Lens UNESCO-IHE

Page 2: Biofuels and bioenergy from organic solid waste · Eco-technologies. Production. Resource . recovery • Green chemistry • Integrated wastewater and solid waste management • Biorefinery

POLLUTION CONTROLPOLLUTION PREVENTION

CLEANER PRODUCTION ECO-TECHNOLOGIES

RESOURCE RECOVERYwater – solid waste – gas

Key topics:• nutrient cycle, removal of micropollutants, disinfection• constructed wetlands, waste stabilization ponds, photobioreactors• source separation, solid waste management• …

Page 3: Biofuels and bioenergy from organic solid waste · Eco-technologies. Production. Resource . recovery • Green chemistry • Integrated wastewater and solid waste management • Biorefinery

Pollution Prevention and Control

Eco-technologiesCleaner Production

Resource recovery

• Green chemistry• Integrated wastewater and solid

waste management• Biorefinery concepts

• Natural treatment systems (Wetlands, ponds, …)

• Anaerobic digestion• Photobioreactors• Phytobioremediation• Ecological engineering

• Reuse of water• Biorecovery of nutrients, minerals and metals• Bioenergy (H2 , CH4 , electricity)• Nanomaterials and chemicals

Page 4: Biofuels and bioenergy from organic solid waste · Eco-technologies. Production. Resource . recovery • Green chemistry • Integrated wastewater and solid waste management • Biorefinery

Petroleum

Chemistry

Fuels and energy

Biomass

Chemistry- Basic and fine chemicals- Nutrients and minerals

Fuels and energy- Biogas (methane)- Biohydrogen- Bioelectricity

Refinery Biorefinery

Materials- Biopolymers and

bioplastics- Nanomaterials

Page 5: Biofuels and bioenergy from organic solid waste · Eco-technologies. Production. Resource . recovery • Green chemistry • Integrated wastewater and solid waste management • Biorefinery

Mining BiominingMetalsMetalloidsRare Earth elements

Page 6: Biofuels and bioenergy from organic solid waste · Eco-technologies. Production. Resource . recovery • Green chemistry • Integrated wastewater and solid waste management • Biorefinery

Sustainable development/ Need for paradigm shifts

Nanotechnologyinnovation wave

(Process intensification/

Clean production)

Macrotechnology(End of pipe)

Page 7: Biofuels and bioenergy from organic solid waste · Eco-technologies. Production. Resource . recovery • Green chemistry • Integrated wastewater and solid waste management • Biorefinery

Create options for new technologies

(Cleaner Production)

• Green productionprocesses synthesis nanoparticles

• Process intensification

Resourcerecovery(Concentrated) waste streams

Biogenic synthesis of nanomaterials

EmergingOpportunities

• Sorption pollutants• Sensors

Page 8: Biofuels and bioenergy from organic solid waste · Eco-technologies. Production. Resource . recovery • Green chemistry • Integrated wastewater and solid waste management • Biorefinery

ContentsBiofuel production

The biogas fuel cell chain

Partial gasification (CO – Biochar)

Page 9: Biofuels and bioenergy from organic solid waste · Eco-technologies. Production. Resource . recovery • Green chemistry • Integrated wastewater and solid waste management • Biorefinery

Utilisation of biogas

Biogas plant of FAL Braunschweig, Germany

Page 10: Biofuels and bioenergy from organic solid waste · Eco-technologies. Production. Resource . recovery • Green chemistry • Integrated wastewater and solid waste management • Biorefinery

Bioethanol

Lignocellulosic

biomass material used for bioethanol

production

Primary crop or product Biomass residue

Corn Corn stover, cob, etc.

Sugarcane Bagasse, barbojoa

Grain (wheat, barley etc.) Straw

Rice Rice straw, hulls, etc.

Green Coffee Husks (wet or dry)

Softwood (spruce, pine, etc.) -

Hardwood (willow, aspen, etc.) -

Energy Crops (switch grass etc.) -

LignocellulosicBiomass

Pre-treatment

Hydrolysis

Bioethanol

Wastewater

By-products

Fermentation

General outline of lignocellulose-based bioethanol

production

Page 11: Biofuels and bioenergy from organic solid waste · Eco-technologies. Production. Resource . recovery • Green chemistry • Integrated wastewater and solid waste management • Biorefinery
Page 12: Biofuels and bioenergy from organic solid waste · Eco-technologies. Production. Resource . recovery • Green chemistry • Integrated wastewater and solid waste management • Biorefinery
Page 13: Biofuels and bioenergy from organic solid waste · Eco-technologies. Production. Resource . recovery • Green chemistry • Integrated wastewater and solid waste management • Biorefinery

Bio-chemicalBio-chemical

Fermentation

Thermochemical

Combustion

Gasification

Pyrolysis

Hydrothermal upgrading (HTU)

Mechanical/physical

Extraction

Fiber separation

Mechanical fractionation

Pressing

Pretreatment

Separation

ChemicalChemical

Catalytic processes

Chemical reactions

Esterification

Hydrogenation

Hydrolysis

Anaerobic digestion

Page 14: Biofuels and bioenergy from organic solid waste · Eco-technologies. Production. Resource . recovery • Green chemistry • Integrated wastewater and solid waste management • Biorefinery

BiorefineryGasification New process

CO/H2

e.g. Fisher-tropsch

Biodiesel,Biopolymers

Various monomers

Specific processes,often using GMO’s

Bioethanol,C4-chemicals

Various monomers and nutrients/metals

Mixed microbial culture bioconversions

Bioenergy, Biochemicals,Biomaterials

Low water content biomass,high (corn) or low (residues) value

High water content biomass,produced in eco-technologies

Page 15: Biofuels and bioenergy from organic solid waste · Eco-technologies. Production. Resource . recovery • Green chemistry • Integrated wastewater and solid waste management • Biorefinery

Step III:Downstream processing and upgrading

Step II:Product formation

Step I:Pretreatment

Page 16: Biofuels and bioenergy from organic solid waste · Eco-technologies. Production. Resource . recovery • Green chemistry • Integrated wastewater and solid waste management • Biorefinery

Contents The biogas fuel cell chain

Partial gasification (CO – Biochar)

Biofuel production

Page 17: Biofuels and bioenergy from organic solid waste · Eco-technologies. Production. Resource . recovery • Green chemistry • Integrated wastewater and solid waste management • Biorefinery

Existing situation in Bwaise III – Kampala, Uganda (Alex Katikuzi)

Page 18: Biofuels and bioenergy from organic solid waste · Eco-technologies. Production. Resource . recovery • Green chemistry • Integrated wastewater and solid waste management • Biorefinery

18

��

Storage, transport, treatment and safe disposal of sludge! Storage, transport, treatment and safe Storage, transport, treatment and safe disposal of sludge!disposal of sludge!

Challenge in Feacal sludge management

Page 19: Biofuels and bioenergy from organic solid waste · Eco-technologies. Production. Resource . recovery • Green chemistry • Integrated wastewater and solid waste management • Biorefinery

Existing Ecosan toilets in peri-urban Kampala

Waste stream separation

Waste stream separation

Collection of excreta for reuse

Collection of excreta for reuse

Katukiza

et al. 2010 Science of The Total Environment 409(1), 52-62.

Page 20: Biofuels and bioenergy from organic solid waste · Eco-technologies. Production. Resource . recovery • Green chemistry • Integrated wastewater and solid waste management • Biorefinery
Page 21: Biofuels and bioenergy from organic solid waste · Eco-technologies. Production. Resource . recovery • Green chemistry • Integrated wastewater and solid waste management • Biorefinery

Production of syngas

from cokes:

C (s)

+ H2

0 CO + H2

from natural gas:

CH4

+ H2

O CO + 3 H2

Page 22: Biofuels and bioenergy from organic solid waste · Eco-technologies. Production. Resource . recovery • Green chemistry • Integrated wastewater and solid waste management • Biorefinery

Purification of synthesis gas currently performed in chemical catalytic shift converters

CO + H2 O CO2 + H2 (G0’

= -

20 kJ/mol)

Disadvantages: high T, high P, sensitive for H2

S

and relative high exit CO

concentration

Introduction

Page 23: Biofuels and bioenergy from organic solid waste · Eco-technologies. Production. Resource . recovery • Green chemistry • Integrated wastewater and solid waste management • Biorefinery

Therefore interest in a biological alternative:

-

Phototrophic organisms convert CO to H2

-

Thermophilic CO converting bacteria (Hydrogenogens)

Key enzymes: CODH and hydrogenaseswidespread in nature

Introduction

Page 24: Biofuels and bioenergy from organic solid waste · Eco-technologies. Production. Resource . recovery • Green chemistry • Integrated wastewater and solid waste management • Biorefinery

Biological

water-gas shift reaction

Photosynthetic

bacteria:–

Rhodobacter sp.

Rhodopseudomonas gelatinosa–

Rhodospirillum rubrum

Methanogens:–

Methanosarcina barkeri

Chemoheterotroph:–

Citrobacter sp.

Carboxydotrophic

(chemoautotroph) –

Carboxydothermus hydrogenoformans

Carboxydobrachium pacificum

Biological CO conversion

Page 25: Biofuels and bioenergy from organic solid waste · Eco-technologies. Production. Resource . recovery • Green chemistry • Integrated wastewater and solid waste management • Biorefinery

CO conversion pathways

CO + H2 O H2 + CO2

CO + 3 H2

CH4

+ H2

O

4 CO + 2 H2

O CH4

+ 3 CO2

4 CO + 2 H2

O CH3

COOH + 2 CO2

Page 26: Biofuels and bioenergy from organic solid waste · Eco-technologies. Production. Resource . recovery • Green chemistry • Integrated wastewater and solid waste management • Biorefinery

CO conversion by anaerobic granular sludge

30° C

55° CAt 55°C

H2 production

Sipma

et al., 2003, FEMS Microbiol. Ecol. 44, 271-277

Page 27: Biofuels and bioenergy from organic solid waste · Eco-technologies. Production. Resource . recovery • Green chemistry • Integrated wastewater and solid waste management • Biorefinery

Specific CO converting microorganism

CO2 & H2

CO & H2 O

Desulfotomaculum carboxydivorans

55°C

Page 28: Biofuels and bioenergy from organic solid waste · Eco-technologies. Production. Resource . recovery • Green chemistry • Integrated wastewater and solid waste management • Biorefinery

Contents Biofuel production

Partial gasification

(CO –

Biochar)

The biogas fuel cell chain

Page 29: Biofuels and bioenergy from organic solid waste · Eco-technologies. Production. Resource . recovery • Green chemistry • Integrated wastewater and solid waste management • Biorefinery

The biogas-fuel cell chainA holistic appraoch

Page 30: Biofuels and bioenergy from organic solid waste · Eco-technologies. Production. Resource . recovery • Green chemistry • Integrated wastewater and solid waste management • Biorefinery

Fuel cell overview

F.....Fuel, IG…. Inert gas, React. ....... Takes part in electrode reaction

FCGas comp. Temp.°CFCGas comp. Temp.°C

-Typ PEFC80 100 200 650 800 1000

CO poison poison poison(<50ppm) (<500ppm)

CnHm IG poison

IG poison IG React. IG IG

nd poison poison poison poison(<50ppm) (<0.5ppm) (<1.0ppm)

F F

poison poison F F F

Analysis on siloxanes, halides, tar, dust, and other contaminants are missing!!!

Low Temperature FC High temperature FC

-Typ PEFC80 100 200 650 800 1000

CO poison poison poison(<50ppm) (<500ppm)

CnHm IG poison IG IG/F F F

IG poison IG IG IG

nd poison poison poison poison poison(<50ppm) (<0.5ppm) (<1.0ppm)

F F

poison poison

Analysis on siloxanes

Low Temperature FC High temperature FC

F F F

F F F

F

H2

CH4,

CO2

H2S, COS

NH3

AFC PAFC MCFC ITSOFC SOFC

F.....Fuel, IG…. Inert gas, React. ....... Takes part in electrode reaction

FCGas comp. Temp.°CFCGas comp. Temp.°C

-Typ PEFC80 100 200 650 800 1000

CO poison poison poison(<50ppm) (<500ppm)

CnHm IG poison

IG poison IG React. IG IG

nd poison poison poison poison(<50ppm) (<0.5ppm) (<1.0ppm)

F F

poison poison F F F

Analysis on siloxanes, halides, tar, dust, and other contaminants are missing!!!

Low Temperature FC High temperature FC

-Typ PEFC80 100 200 650 800 1000

CO poison poison poison(<50ppm) (<500ppm)

CnHm IG poison IG IG/F F F

IG poison IG IG IG

nd poison poison poison poison poison(<50ppm) (<0.5ppm) (<1.0ppm)

F F

poison poison

Analysis on siloxanes

Low Temperature FC High temperature FC

F F F

F F F

F

-Typ PEFC80 100 200 650 800 1000

CO poison poison poison(<50ppm) (<500ppm)

CnHm IG poison

IG poison IG React. IG IG

nd poison poison poison poison(<50ppm) (<0.5ppm) (<1.0ppm)

F F

poison poison F F F

Analysis on siloxanes, halides, tar, dust, and other contaminants are missing!!!

Low Temperature FC High temperature FC

-Typ PEFC80 100 200 650 800 1000

CO poison poison poison(<50ppm) (<500ppm)

CnHm IG poison IG IG/F F F

IG poison IG IG IG

nd poison poison poison poison poison(<50ppm) (<0.5ppm) (<1.0ppm)

F F

poison poison

Analysis on siloxanes

Low Temperature FC High temperature FC

F F F

F F F

F

H2

CH4,

CO2

H2S, COS

NH3

AFC PAFC MCFC ITSOFC SOFC

Why high temperature fuel cells ?

Page 31: Biofuels and bioenergy from organic solid waste · Eco-technologies. Production. Resource . recovery • Green chemistry • Integrated wastewater and solid waste management • Biorefinery

Naturalgas

BiogasBioethanol

Biomassgasification

Landfilllgas

Biomethanol

Sewagegas

waste waterFuel cell

Fuel Flexibility

Biodiesel

Alternative Bio-Fuels

Alternative

Industrial Fuels

Page 32: Biofuels and bioenergy from organic solid waste · Eco-technologies. Production. Resource . recovery • Green chemistry • Integrated wastewater and solid waste management • Biorefinery

Variety of different Fuels within the EU

Biodiesel and Bioglycerin

Gasification of Wood and Cardboard

Gasficatioin of Solid SewageResidues

Landfill Gas

Biogas fromSolidfermatationProcess

Regional distributionof Biogas FacilitiesProfiles

Oils

Page 33: Biofuels and bioenergy from organic solid waste · Eco-technologies. Production. Resource . recovery • Green chemistry • Integrated wastewater and solid waste management • Biorefinery

Closing Energy

Cycle – role of fuel cells

HotModule

Electricity

400°C Heat

50°C Heat

Clean CO2 Fertilising

New Value Food

Substrate Substrate CleansingCleansing

SuperHygienic Green House

High Value FoodHygienic Mineral

Fertiliser

Deposit Cleansing

Biogas

Page 34: Biofuels and bioenergy from organic solid waste · Eco-technologies. Production. Resource . recovery • Green chemistry • Integrated wastewater and solid waste management • Biorefinery

Operational Experience•

Construction of different Gas Cleaning Units for H2

S Removal from Biogas

Construction of three Testfacilities

for Stack Operation

Operation of combined systems at different locations operated with different types of Fuel

Pinto, Spain, 2.000 hours operation (Waste treatment plant, Urbaser)

Owschlag, Germany, 2.200 h operation (Industrial research center, Seaborne GmbH)

Locations of Biogas – MCFC Testruns

• Slovakia: Agricultural Biogas

• Germany: Biogas from Cattle Sewage and Co- Fermentation of industrial waste (Food)

• Austria: Sewage Gas from Waste Water Treatment

• Spain: Landfillgas

Linz, Austria, 1.500 hours operation (Waste water treatment plant in Asten, Linz AG)

Nitra, Slowak Republic, 2.400 hours in operation in first cycle, over 3.300 hours in the 2nd (Agricultural Biogas plant at Uni Nitra) and 3.600h in the third cycle

Page 35: Biofuels and bioenergy from organic solid waste · Eco-technologies. Production. Resource . recovery • Green chemistry • Integrated wastewater and solid waste management • Biorefinery

Biogas upgrading

BiogasProduction

Biogas upgrading

Fuel cell for electricity and heat

BiogasProduction

Biogas upgrading

Fuel cell for electricity and heat

Biomass Utilization

Page 36: Biofuels and bioenergy from organic solid waste · Eco-technologies. Production. Resource . recovery • Green chemistry • Integrated wastewater and solid waste management • Biorefinery

Principles of biogas upgradingRemoval of hydrogen sulphide

Gas type H2 CH4 CnHm CO2 N2 CO H2S NH3 OthersVol% Vol% Vol% Vol% Vol% Vol% ppm ppm

Biogas from fermentation1Biogas fromagriculturalbiogas plants

0 55-70 - 30-45 0-2 - 500 100 Siloxane,Oxigen

Waste water gas - 65 - 35 - - 1000 100 Siloxane,Oxigen

2Landfill gas - 50-60 - 40-50 - - 0-50 - Aromates,Chlor comp.,Siloxanes

Biogene gas from thermal gasification3Biomass-gasification

4,5 14,8 - 10,6 39,6 19,1 100 2000 Dust, Teer(3000ppm)

FossilNatural gas - 93 4,9 1 1,1 - 1 - Inert gas

1 Jensen, J.K., Jensen, A.B.: Biogas and natural gas – fuel mixture for the future, 1st World Conference and Exhibition on Biomass for Energy and Industry,Sevilla, 2000

2 Christenson, T.H., Cossu, R., Stegmann, R.: Landfilling of Waste, Biogas, E&FN Spon, London 19963 Kivisaari, T., Björmbom, P., Sylwan, C.: Studies of Biomass MCFC Systems, Journal of Power Sources, 104 (2002) p. 114-124

Page 37: Biofuels and bioenergy from organic solid waste · Eco-technologies. Production. Resource . recovery • Green chemistry • Integrated wastewater and solid waste management • Biorefinery

Principles of biogas upgradingRemoval of hydrogen sulphide

Physical – Chemical Methods

Biotechnological Methods

High efficiency

Lower investment costs

Lead to savings on energy

Avoid catalysts

Avoid formation of secondary contaminants

BiofilterBioscrubberBiotrickling filter

Page 38: Biofuels and bioenergy from organic solid waste · Eco-technologies. Production. Resource . recovery • Green chemistry • Integrated wastewater and solid waste management • Biorefinery

Biotrickling filter conceptRemoval of hydrogen sulphide

Microorganisms to degrade H2 S:

bacteria genus Thiobacillus

Common bacteria.

They do not oxidise CH4.

Their carbon source is CO2.

They obtain energy for growth from oxidising inorganic sulphur substrates.

H2 S + 0.5 O2 S + H2 O

H2 S + 2 O2 + 2 OH - SO42- + 2 H2 O

clean gas

water, acids/ bases,nutrients

raw biogas

inert packingwith biomass

liquid recirculation

drain

air

Page 39: Biofuels and bioenergy from organic solid waste · Eco-technologies. Production. Resource . recovery • Green chemistry • Integrated wastewater and solid waste management • Biorefinery

Pilot plants

Biotrickling filter concept

Page 40: Biofuels and bioenergy from organic solid waste · Eco-technologies. Production. Resource . recovery • Green chemistry • Integrated wastewater and solid waste management • Biorefinery

Principles of biogas upgradingSiloxanes – problems in sewage and landfill gas

Page 41: Biofuels and bioenergy from organic solid waste · Eco-technologies. Production. Resource . recovery • Green chemistry • Integrated wastewater and solid waste management • Biorefinery

Silicon containing compoundsLinear and cyclic siloxanes

CH3 Si

CH3

CH3

O Si

CH3

CH3

CH3

hexamethyldisiloxane (L2)

CH3 Si

CH3

CH3

O Si

CH3

CH3

O Si

CH3

CH3

CH3

octamethyltrisiloxane (L3)

octamethylcyclotetrasiloxane (D4)

Si

O

SiO

Si

OSi

O

CH3

CH3 CH3

CH3

CH3

CH3CH3

CH3O

SiO

Si

SiO

CH3CH3

CH3

CH3

CH3

CH3

hexamethylcyclotrisiloxane (D3)

Si

O

SiO

Si

Si

O

CH3

CH3 CH3

CH3

CH3

CH3CH3

CH3

OSi

O

CH3 CH3

decamethylcyclopentasiloxane (D5)

Page 42: Biofuels and bioenergy from organic solid waste · Eco-technologies. Production. Resource . recovery • Green chemistry • Integrated wastewater and solid waste management • Biorefinery

Book about the Results of the EU-granted EFFECTIVE Project

ISBN 3-85487-626-2

With contributions from:

Loreto Daza (Ciemat)Jan Gadus (Univ. of Nitra)Joachim Hoffmann (MTU CFC Solutions)Mogens Hedegaard (Seaborne)Jesus Gil Diez (Urbaser)Peter Berger (MTU CFC Solutions)Piet Lens (Univ. of Wageningen)Knut Stahl (RWE)and many more……

Page 43: Biofuels and bioenergy from organic solid waste · Eco-technologies. Production. Resource . recovery • Green chemistry • Integrated wastewater and solid waste management • Biorefinery

Hard cover book

The integration of Biomass Fermentation and Fuel Cells (FC) technology creates a new and interdisciplinary research area. This book cross-links scientists of all fields concerned with Biomass Fermentation, Fuel Upgrading and Fuel Cells at European and World level.