bioe 162 final review 2014 ho

36
Complex numbers and opera0ons Addi0on of sinusoids phasor addi+on determine periodicity of the sum (review HW#2 & HW#3) Signals and opera0ons Final Reviews

Upload: tennisstarbyfar

Post on 21-May-2017

214 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: BIOE 162 Final Review 2014 HO

 •  Complex  numbers  and  opera0ons  •  Addi0on  of  sinusoids              -­‐  phasor  addi+on                -­‐  determine  periodicity  of  the  sum                                                  (review  HW#2  &  HW#3)  •  Signals  and  opera0ons        

Final  Reviews  

Page 2: BIOE 162 Final Review 2014 HO

 •  Representa)on  and  proper)es  of    LTIC  systems                  -­‐  Mathema+cal  models/diff.  eqs.  for  typical  processes                      (first-­‐order,  second-­‐order)                    -­‐  System  response  from  solu+on  to  diff.  eq.                        zero-­‐input  +  zero-­‐state  response    •  Time  domain  approach            -­‐  Impulse  Response  h(t)              -­‐  Convolu+on      •  Complex  frequency  domain  (s-­‐domain)  approach      -­‐  Laplace  Transform  

 -­‐  Transfer  func+on  H(s)                            -­‐  Zero-­‐state  response    •  Frequency  domain  approach      -­‐  Fourier  Transform  

 -­‐  Frequency  Response  H(jω)          

Page 3: BIOE 162 Final Review 2014 HO

)/sin( txA ωλ −

}Re{)( )( 0θω += tjAety

Re

Im y(t):    Projec0on  on  Real  axis  

Represent  sinusoids  using  phasors                                              -­‐  Euler  formula:    

A sinusoid:

0θ Re

Im ω (rad/s)

A

)(sin)(cos)( tjte tj ααα +=

Initial phase (at t=0):

)( 0θω +tjAeConsider as a rotating vector (at ω rad/s), a phasor,

)cos()( 0θω += tAtyUsing Euler’s formula

Time (t)

Page 4: BIOE 162 Final Review 2014 HO

}Re{ )(2

)(1

21 θωθω ++ + tjtj eAeA

)cos()cos( 2211 θωθω +++ tAtA

}Re{ tjj eCe ωθ

}Re{ )( θω +tjCe

})Re{( 2121

tjjj eeAeA ωθθ +Where,

θθθ jjj CeeAeA =+ 2121

Addi+on  of  two  sinusoids  of  same  freq.    using  Euler’s  formula    

                                           )cos( θω +tC

Page 5: BIOE 162 Final Review 2014 HO

)/sin( txA ωλ −

)cos()cos()cos( 2211 θωθωθω +=+++ tCtAtA

 Projec0on  on  Real  axis    

C

Re

Im

1A

2A

2θ θ 1θ

ω

At initial position (at t=0):

Phasor  addi+on  of  two  sinusoids  of  same  freq.                                              

Time (t)

θθθ jjj CeeAeA =+ 2121

}Re{}Re{ )()(2

)(1

21 θωθωθω +++ =+ tjtjtj CeeAeA

Page 6: BIOE 162 Final Review 2014 HO

)/sin( txA ωλ −

)cos()cos()cos( 2211 θωθωθω +=+++ tCtAtA

Phasor  addi+on  of  two  sinusoids  of  same  freq.                                              

)cos(sincos θωωω +=+ tCtbta

a = A1 cosθ1 + A2 cosθ2

b = −(A1 sinθ1 + A2 sinθ2 )

Use trigonometric identities

Page 7: BIOE 162 Final Review 2014 HO

)/sin( txA ωλ − )cos(sincos θωωω +=+ tCtbta

 -­‐  Phasor  addi0on  of  sinusoids  (of  same  frequency)  

θθsincosCbCa=−

=Where, OR

abbaC−

=

+=

−1

22

tanθ

(Use trigonometric identities)

Re

Im

a

b− Cθ

Same as conversion of from Cartesian to Polar form

jbaZ −=θjCeZ =

Page 8: BIOE 162 Final Review 2014 HO

Prac0ce  Ques0on  #  4:    Use  phasor  addi;on  to  put  the  following  into  the  form  of    x(t)  =  A  cos(ωt  +θ):    a).    x(t)  =    2  cos(7t)  +  sin(7t)  

A = 5

θ = tan−1 −12

Re

Im

2

−1

θ

Page 9: BIOE 162 Final Review 2014 HO

Prac0ce  Ques0on  #  4:    Use  phasor  addi;on  to  put  the  following  into  the  form  of    x(t)  =  A  cos(ωt  +θ):    b).    x(t)  =  sin(2πt  -­‐  45o  )  +  3  sin(2πt)  

acos2π t + bsin2π tStep  1:    write  x(t)  in  form  of          Step  2:    find      

a = − 22

b = 3+ 22

A = (0.707)2 + (3.707)2

θ = tan−1 −3.707−0.707

Re

Im

−0.707

−3.707

θ

Page 10: BIOE 162 Final Review 2014 HO

Review:      Linear  Systems    

•       Linear  system  vs.  non-­‐linear  system    

linear   system   is   characterized   by   linearity   property   that  implies  superposition  (additive  property);   if  several   inputs  are  acting  on  a  linear  system,  the  total  response  is  the  sum  of  the  responses  from  each  input;  time-­‐shift  property                •     Causal  vs.  non-­‐causal  signals/systems    -­‐   a  causal  signal  (or  response  from  a  causal  system)  has  zero            values  for  t<0      -­‐  unit  step  u(t)  is  often  used  to  represent  causal  signals  

Page 11: BIOE 162 Final Review 2014 HO

Mathematical  Models  (Diff.  Eqs.)  are  followed  by  

•  Solutions of Diff. Equations - allow System Response and performance to be analyzed and designed

 

Ø   Diff.  Equation  for  LTIC  (Linear  Time-­‐Invariant  Continuous)  System:                                  f(t)-­‐input;  y(t)-­‐output        Ø     Solution  to  Diff.  Eq.                Total  response    =    zero-­‐input  response    +    zero-­‐state  response  

                                       

)()()()( tfDPtyDQ =

011

1

012

21

1

.....)(

.....)(

bDbDbDbDPaDaDaDaDDQ

mm

mm

nn

nn

n

+++=

++++=−

−−

−−

)( nm ≤

Page 12: BIOE 162 Final Review 2014 HO

Review  of  Lecture  9    •  Impulse  response  is  the  zero-­‐input  or  natural  

response  with  specific  ini;al  condi;ons  

•  Given Impulse response of a system, h(t), the system’s response to any input f(t) can be obtained from the convolution of h(t) and f(t)

•  Convolu;on  proper;es  and  the  given  table    

τττ∫ −=t

dthfthtf0

)()()(*)( (For causal systems)

Page 13: BIOE 162 Final Review 2014 HO

)(tf )(ty)(th

Arbitrary  Input                                                                              System  Response  

h(t):    Impulse  Response  

Time-­‐domain  Representation  of  System  Input-­‐Output    

)(*)()( thtfty =

The Convolution Integral

Page 14: BIOE 162 Final Review 2014 HO
Page 15: BIOE 162 Final Review 2014 HO

)( τ−tf )( τ−ty)(th

Time-­‐domain  Representation  of  System  Input-­‐Output    

)(*)()( thtfty ττ −=−

The Convolution shift property

)(tf )(ty)(th

Arbitrary  Input                                                                              System  Response  

h(t):    Impulse  Response  

Page 16: BIOE 162 Final Review 2014 HO

6  

Prac;ce  problem  6  

g(t) = e−tu(t)Consider function Time-delayed by 1: Let y1(t) = g(t)*h(t) Then y1(t-1) = g(t-1)*h(t) and y(t)=y1(t-1)/e

g(t −1) = e−(t−1)u(t −1)

f (t) = e−tu(t −1) = 1eg(t −1)

Page 17: BIOE 162 Final Review 2014 HO

g(t) y1(t))(th

g(t −1) y1(t −1))(th

f (t) = 1eg(t −1) 1

ey(t −1) = y(t)

)(thInput   Response  

Page 18: BIOE 162 Final Review 2014 HO

•  Transfer Function of a system is the LT of the Impulse Response Definition of Laplace Transform: Inverse transform:

H (s) = L[h(t)]

L[h(t)]= h(t)e−st0

∫ dt

h(t) = L−1[H (s)]

Page 19: BIOE 162 Final Review 2014 HO

•  Transfer Function of a system is the LT of the Impulse Response •  Transfer Function: the ratio of the LT of the output y(t) to the LT of the input x(t)

)()()(sXsYsH =

H (s) = L[h(t)]

Assume  ini+al  condi+ons  =  0                                                            when  determine  transfer  func+on  !  

Page 20: BIOE 162 Final Review 2014 HO

           

Ø     Diff.  Equation  for  LTIC  (Linear  Time-­‐Invariant  Continuous)  System:                                x(t)-­‐input;      y(t)-­‐output                                            

)()()()( txDPtyDQ =

011

1

012

21

1

.....)(

.....)(

bDbDbDbDPaDaDaDaDDQ

mm

mm

nn

nn

n

+++=

++++=−

−−

−−

)( nm ≤

Apply Laplace Transform to the diff. eq. and obtain: or Transfer Function:

)()()()( sYsPsYsQ =

)()(

)()()(

sQsP

sXsYsH ==

Page 21: BIOE 162 Final Review 2014 HO

Common  System  Types  

•  First-­‐order  

•  Second-­‐order  

•  Integra;on            •  Time-­‐Delay    

)()()( tKxtydttdy

=+τ

)()( tKxdttdy=

)()()(2)(12

2

2tKxty

dttdy

dttyd

nn

=++ως

ω

)()( DtKxty −=

Page 22: BIOE 162 Final Review 2014 HO

Transfer  Func;ons  for  Common  System  Types  

•  First-­‐order  

 •  Second-­‐order    

•  Integra;on          •  Time-­‐Delay    

1)()(

+=sK

sXsY

τ

)121(

1)()(

22 ++

=sssX

sY

nn ως

ω

sK

sXsY

=)()(

sDesXsY −=)()(

Page 23: BIOE 162 Final Review 2014 HO

Example:    determine  the  impulse  response  of  a  second-­‐order  system:                                                                                                                                                                                                      

1. Transfer function form:

2. Find inverse LT of H(s)

)()4()()2( 2 txDtyDD +=+

sss

sXsYsH

24

)()()(

2 +

+==

Partial fraction expansion & L.T. table

h(t) = L−1[H (s)]= L−1[ s+ 4s2 + 2s

]

Page 24: BIOE 162 Final Review 2014 HO

Example:    determine  the  impulse  response  of  a  second-­‐order  system:                                                                                                                                                                                                      

1. Transfer function form:

2. Find inverse LT of H(s)

)()4()()2( 2 txDtyDD +=+

sss

sXsYsH

24

)()()(

2 +

+==

h(t) = L−1[H (s)]= L−1[ s+ 4s2 + 2s

] = L−1[2s−

1(s+ 2)

]

Poles  (roots  of  the  denominator):  0,  -­‐2                                                              Factors:  s,  s+2  

h(t) = (2− e−2t )u(t)

Page 25: BIOE 162 Final Review 2014 HO

In  case  of    complex  conjugate    factors  

Non-­‐repeated    or  repeated  real  factors  

Laplace Transform Table

Page 26: BIOE 162 Final Review 2014 HO

)()()()( txDPtyDQ =

)()()()( sXsPsYsQ =

)()()( sXsHsY =

Diff. Eq. Algebraic eq.

)]([)( 1 sYLty −=

LT

Inverse LT

S-domain

Assuming zero initial conditions

)()(

)()()(

sQsP

sXsYsH ==

Substitute transform of input X(s) and solve for Y(s) Obtain time-domain Solution y(t) (zero-state response)

Page 27: BIOE 162 Final Review 2014 HO

Find  zero-­‐state  response:  Example:    determine  the  unit  step  response  of  a  second-­‐order  system:  (assuming  zero  initial  conditions)                                                                                                                                                                                                      1. Transfer function form:

2. Find LT of the input: X(s) = L[u(t)]=1/ s

)()4()()2( 2 txDtyDD +=+

Y (s) = s+ 4s2 + 2s

X(s) = s+ 4s(s2 + 2s)

sss

sXsYsH

24

)()()(

2 +

+==

3. Find Y(s):

Page 28: BIOE 162 Final Review 2014 HO

Example:    determine  the  impulse  response  of  a  second-­‐order  system:  (assuming  zero  initial  conditions)                                                                                                                                                                                                      4. Find y(t) from inverse L.T. and partial fraction expansion

)()4()()2( 2 txDtyDD +=+

y(t) = L−1[ s+ 4s(s2 + 2s)

]= L−1[− 0.5s+2s2+0.5(s+ 2)

]

Poles  (roots  of  the  denominator):  0,0,  -­‐2                                                              Factors:  s  repeated,  s+2  

y(t) = (−0.5+ 2t + 0.5e−2t )u(t)

(Continue)  

Page 29: BIOE 162 Final Review 2014 HO

aa  

Prac0ce  Ques0on  #  8:  

Page 30: BIOE 162 Final Review 2014 HO

Define:  τ    =    t  –  D                        

LT of a time delayed function

for  t  <  D:  f(t-­‐D)    =    0  

t  

f(t)  

f(t-­‐D)  

0  

L[ f (t −D)]= f (t −D)e−st0

∫ dt

L[ f (t −D)]= e−sD f (τ )e−sτ0

∫ dτ

L[ f (t −D)]= e−sDL[ f (t)]

Page 31: BIOE 162 Final Review 2014 HO

aa  

Prac0ce  Ques0on  #  9:  

L[x(t − 2)]= e−2sL[x(t)]

X(s)

L−1[F(s)]= x(t − 2)

X(s) = 2s+ 5s2 + 5s+ 6

x(t) = L−1[X(s)]

L[x(t − 2)]= F(s)

Step  1  

Step  2  

Page 32: BIOE 162 Final Review 2014 HO

Lecture 10 Review: •  Fourier theory: any periodic signal can be

represented as a sum of sine and cosine waves with harmonic frequencies

Page 33: BIOE 162 Final Review 2014 HO

     Fourier  Transform  (FT)  

   

•  A  non-­‐periodic  func;on  f(t)  can  be  represented  as  a  sum  of  sin’s  and  cos’s  of  (possibly)  all  frequencies:  

                     

∫∞

∞−= ωω

πω deFtf tj)(

21)(

∫∞

∞−

−= dtetfF tjωω )()(Fourier  Transform  (FT)  :    

Inverse  Fourier  Transform  (IFT)  

Page 34: BIOE 162 Final Review 2014 HO

   Prac0ce  ques0on  #2  Let  x(t)  denotes  a  rectangular  pulse  shown  in  the  figure  below,  find  the  Fourier  Transform  of  this  signal,  X(ω).                                                                                                                  

X(ω) = x(t)e− jωt dt−∞

∫ = e− jωt dt−1

1∫

=1− jω

(e− jω − e jω )

=2sinωω

Page 35: BIOE 162 Final Review 2014 HO

Sampling  Theorem    •  If  a  signal  contains  the  highest  frequency  fmax,  the  

sampling  frequency  (rate)                                (fs)  >=  2  fmax    

•   Nyquist  frequency:  fNyquist  =  2  fmax              

•  The  sampling  theory  insures  that  the  digi;zed  signal  truly  represents  the  original  analog  signal  (No  loss  of  informa+on,  No  aliasing)      

Page 36: BIOE 162 Final Review 2014 HO

Prac0ce  Ques0on  #  9: