biochemistry of membrane lipids

Upload: bhaskar-ganguly

Post on 06-Jul-2018

231 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/17/2019 Biochemistry of Membrane Lipids

    1/21

    Bhaskar Ganguly

    Ph.D. , M.V.Sc. , B.V.Sc. A.H.

  • 8/17/2019 Biochemistry of Membrane Lipids

    2/21

  • 8/17/2019 Biochemistry of Membrane Lipids

    3/21

    Overton {1890s}:Lipids are present on cell surfaces; cell coats are probably mixtures

    of cholesterol & lecithin

    Langmuir {1900s}:Phospholipid monolayer

    • Gorter & Grendel {1925}:Lipid Bilayer

  • 8/17/2019 Biochemistry of Membrane Lipids

    4/21

    Davson & Danielli {1935}:Biological membranes consist of lipid bilayers coated on both sides

    by thin sheets of proteins

    • Robertson {1960}:

    All cellular membranes share a common underlying structure viz. 

    Unit Membrane

  • 8/17/2019 Biochemistry of Membrane Lipids

    5/21

    Singer & Nicolson {1972}:Biological membranes consist of a mosaic of proteins in a lipid

    bilayer; ‘The Fluid-Mosaic Model’ 

  • 8/17/2019 Biochemistry of Membrane Lipids

    6/21

  • 8/17/2019 Biochemistry of Membrane Lipids

    7/21

    • Behavior of lipid matrix depends on the properties ofindividual lipid components

    • Lipid matrix interacts with proteins and influences activity ofthe proteins

    • Depending on duration of interactions, lipids are classified as

    Restricted lipids:  long residence time, slow exchange withsurrounding lipids

    Interfacial lipids: form coat or ring around the circumferenceof proteins, exchange rapidly with surrounding lipids

    • Restricted and Interfacial lipids may be necessary for proteinfunction

  • 8/17/2019 Biochemistry of Membrane Lipids

    8/21

    • Form structural and environmental framework for cell function

    • Phosphatidylcholine (PC),  phosphatidylserine (PS) &phosphatidylinositol (PI): provide hydrated or chargedmembrane surfaces, allowing water/ ions to bind

    • Phosphatidylethanolamine (PE): hydrophobic, promotes

    surface interactions without protein-protein interactions,promotes formation of non-bilayer structures; necessary formembrane fusion

    • Asymmetrical distribution between inner and outer leaflets

    Outer leaflet: rich in PC & sphingomyelinInner leaflet: rich in PE & PS

    • Asymmetrical distribution is achieved & maintained by ATP-dependent Aminophospholipid Translocase; translocates PE &

    PS between leaflets

  • 8/17/2019 Biochemistry of Membrane Lipids

    9/21

    Differential distribution of lipids in leaflets

  • 8/17/2019 Biochemistry of Membrane Lipids

    10/21

    Per cent distribution of phospholipids in erythrocyte membrane

    Role of translocases/ flippases in maintaining membrane asymmetry

  • 8/17/2019 Biochemistry of Membrane Lipids

    11/21

    • Reduces freedom of movement of phospholipids, rigidifyingeffect on membrane viz. ‘Condensing effect’ 

    Non-uniform distribution in different cell membranes• Decreases fluidity at high temperatures; increases fluidity at

    low temperatures

    • Decreases permeability to ions & small polar molecules

  • 8/17/2019 Biochemistry of Membrane Lipids

    12/21

    At low temperatures, cholesterol disallows close packing of hydrocarbon chains; at high

    temperatures, the rigid molecule restricts freedom of the acyl chains

  • 8/17/2019 Biochemistry of Membrane Lipids

    13/21

  • 8/17/2019 Biochemistry of Membrane Lipids

    14/21

    • A state of change achieved by the motions of individualmembrane components & their interrelationships in non-repeating units of the membrane

    • Asymmetric distribution of different lipids adds anotherdimension to Membrane Dynamics

    • Re-distribution (lateral &/ or transverse) influences membraneproperties, and allows differential regulation of membraneproteins

    •Biological case studies:

    PLATELETS, & PHOTORECEPTORS

  • 8/17/2019 Biochemistry of Membrane Lipids

    15/21

    (%) lipids in plasma membrane

    PC

    PE

    PI

    PS

    Sphingomyelin

    • PC & Sphingomyelin in

    outer leaflet; PE & PS ininner leaflet

    • Cholesterol : Phospholipid≈ 0.50

    • Platelets cannot synthesizecholesterol; derived frommegakaryocyte progenitor

    • Membrane cholesterol concentration represents plasmacholesterol concentration

    • Membrane cholesterol is also acquired from plasmalipoproteins

  • 8/17/2019 Biochemistry of Membrane Lipids

    16/21

    • Upon stimulus for aggregation, asymmetry of phospholipiddistribution is lost

    • PE is rapidly translocated from inner to outer leaflet

    • Aminophospholipid translocase is not inhibited; instead,‘Scramblase’ is involved (induced by high intracellular Ca++)

    Cholesterol translocates from outer to inner leaflet;thermodynamic exclusion of cholesterol due to unfavorableentropy of co-existence with PE

    • Higher cholesterol results in stronger response to stimulus

    • High membrane cholesterol platelets are more sensitive toepinephrine, ADP, collagen & thromboxane A2

    • Cholesterol enrichment increases signaling events viz. releaseof arachidonic acid, increased adrenergic & thrombin

    receptors, and higher Ca++ & inositol phosphate levels

  • 8/17/2019 Biochemistry of Membrane Lipids

    17/21

    • Cholesterol behaves both as a restricted and interfacial lipid

    •Platelet stimulation increases rigidity & decrease fluidity

    • Activation of platelets alters platelet membrane to create acatalytic site for conversion of factor X to factor X-a, and ofprothrombin to thrombin, leading to fibrinogen formation

    • Creation of catalytic site requires surfacing of PS from theinner leaflet

  • 8/17/2019 Biochemistry of Membrane Lipids

    18/21

    • Biochemical events initiating the impulse occur in membranoussacs called ‘disks’ in the ROS

    • New disks form from the ROS plasma membrane; old disks

    displaced apically are shed off & phagocytosed by retinalepithelium (≈ 10 days)

       R   o    d   O   u   t   e   r   S   e   g   m   e   n   t

        (   R   O

       S    )

    Plasma

    Membrane

    Disk

  • 8/17/2019 Biochemistry of Membrane Lipids

    19/21

    • Disks & Plasma membranes differin lipid composition

    • Plasma membrane: richer incholesterol & squalene (sterolprecursor), PE:PC = 0.16,docosahexaenoic acid (DHA) ~5 %

    • Disks: PE:PC = 0.92, DHA ~ 35 %

    11-cis retinal ↓ all trans  retinal 

    Rhodopsin ↓Metarhodopsin I ↓Metarhodopsin II

    Metarhodopsin II ↓ Transducin ↓

    cGMP dependentPhosphodiesterase (PDEase)

    • Basal disk ~ 30 mol% cholesterol, apical disk ~ 5 mol%; samemechanism as platelets (exclusion from PE-rich disk membrane)

    •Cholesterol influences rhodopsin function; ↑ cholesterol inhibitsactivation of PDEase by rhodopsin

    • Conversion of Metarhodopsin I to larger  Metarhodopsin II requires kinking of unsaturated acyl chains; cholesterol resists

    these free volume changes

  • 8/17/2019 Biochemistry of Membrane Lipids

    20/21

    • Cholesterol also interacts directly with rhodopsin

    • DHA influences regeneration of rhodopsin

    • DHA can contribute as six cis-  bonds; cis- bonds increasekinking within membrane bilayer thereby increasing free

    volume • Rhodopsin is maintained in a relatively inactive state in plasma

    membrane; ↑ cholesterol (= inhibition of activation), ↓  DHA (=slow regeneration), i.e., ↑ Cholesterol/DHA favors inactivity

    • In disk membrane, ↓  Cholesterol/DHA favors rapid activationand regeneration necessary for proper vision

  • 8/17/2019 Biochemistry of Membrane Lipids

    21/21

       t   t  p

      :   /   /  s   i   t  e  s .  g  o  o  g   l  e .  c  o

      m   /  s   i   t  e   /  v  e   t   b   h  a  s   k

      a  r

    http://sites.google.com/site/vetbhaskarhttp://sites.google.com/site/vetbhaskarhttp://sites.google.com/site/vetbhaskarhttp://sites.google.com/site/vetbhaskarhttp://sites.google.com/site/vetbhaskarhttp://sites.google.com/site/vetbhaskarhttp://sites.google.com/site/vetbhaskarhttp://sites.google.com/site/vetbhaskarhttp://sites.google.com/site/vetbhaskarhttp://sites.google.com/site/vetbhaskarhttp://sites.google.com/site/vetbhaskarhttp://sites.google.com/site/vetbhaskarhttp://sites.google.com/site/vetbhaskarhttp://sites.google.com/site/vetbhaskarhttp://sites.google.com/site/vetbhaskarhttp://sites.google.com/site/vetbhaskarhttp://sites.google.com/site/vetbhaskarhttp://sites.google.com/site/vetbhaskarhttp://sites.google.com/site/vetbhaskarhttp://sites.google.com/site/vetbhaskarhttp://sites.google.com/site/vetbhaskarhttp://sites.google.com/site/vetbhaskarhttp://sites.google.com/site/vetbhaskarhttp://sites.google.com/site/vetbhaskarhttp://sites.google.com/site/vetbhaskarhttp://sites.google.com/site/vetbhaskarhttp://sites.google.com/site/vetbhaskarhttp://sites.google.com/site/vetbhaskarhttp://sites.google.com/site/vetbhaskarhttp://sites.google.com/site/vetbhaskarhttp://sites.google.com/site/vetbhaskarhttp://sites.google.com/site/vetbhaskarhttp://sites.google.com/site/vetbhaskarhttp://sites.google.com/site/vetbhaskarhttp://sites.google.com/site/vetbhaskarhttp://sites.google.com/site/vetbhaskarhttp://sites.google.com/site/vetbhaskarhttp://sites.google.com/site/vetbhaskarhttp://sites.google.com/site/vetbhaskarhttp://sites.google.com/site/vetbhaskar