"biochar infused" soil aggregates

23
“Biochar-Infused” Soil Aggregates Melissa K. Erickson Michigan State Universi Photo by Dr. Saran Paul Sohi, UKBRC

Upload: melissa-erickson

Post on 22-Nov-2014

2.057 views

Category:

Education


4 download

DESCRIPTION

Presentation for 2013 Sigma Xi presentation competition.

TRANSCRIPT

Page 1: "Biochar Infused" Soil Aggregates

“Biochar-Infused” Soil Aggregates

Melissa K. EricksonMichigan State University

Photo by Dr. Saran Paul Sohi, UKBRC

Page 2: "Biochar Infused" Soil Aggregates

Carbon-Poor Soil vs. Native Carbon-Rich Soil

Nutrient-PoorOxisol

Oxisol AmendedInto Terra Preta

Photo courtesy of Bruno Glaser, 2000

Page 3: "Biochar Infused" Soil Aggregates

Hokkaido,Japan

Uganda, Africa

Background: Charcoal Amended Soils Around the World

Orissa, India

Photos by Dr. N. Sai Bhaskar Reddy

Page 4: "Biochar Infused" Soil Aggregates

Why Amend Soil with Charcoal?

-Increased seed germination (~30% enhancement)

-Increased plant growth (~24% greater shoot height)

-Greater crop yields

Norman (1979)ZechUNCCD.pdf, published by Dr. Bruno Glaser

Page 5: "Biochar Infused" Soil Aggregates

Enhances Soil Biologically, Chemically and Physically

1. Prevents leaching of nutrients out of soil

2. Increases available nutrients for plant growth

3. Increases water retention

4. Reduces the amount of fertilizer required

5. Decreases N2O, CH4 and other greenhouse gas

emissions from the soil

Advantages of Bio-char in Soil

Page 6: "Biochar Infused" Soil Aggregates

Animal Feed

1. Provides additional minerals

2. Helps maintain a healthy digestive system

3. Reduces animal methane production

4. Reduces odor and ammonia emissions from manure slurry

Advantages of Bio-char Amendment - Continued

Page 7: "Biochar Infused" Soil Aggregates

Advantages of Natural Charcoal Amendment

Researchers at Iowa State investigating using charcoal and bio-oil to produce a charcoal/anhydrous ammonia fertilizer. They expect three significant results from their studies:

1. Farmers producing their own renewable energy to manufacture fertilizer for their fields.

2. Farming that improves soils because the added charcoal to promote soil organisms.

3. The charcoal sequestering carbon in the soil, thus reducing the amount of greenhouse gases in the atmosphere. It is estimated a 640-acre farm could retain the equivalent of 1,800 tons of carbon dioxide in the soil. That's the annual emissions created by about 340 cars.

Page 8: "Biochar Infused" Soil Aggregates

Types of Charcoal and Soil Analyzed

1. Charcoal: SAFFE, B.C. 550°C (500 grams), Lots 11 and 12

2. Soil texture: Wooster silt loam (fine-loamy, well-drained, mesic Typic Fragiudalf).

3. Soil aggregates were sampled at depths of 0 to 5 cm from fields subjected to conventional till (CT), no till (NT), and native forest (NF) ecosystems of a Wooster silt loam using the following aggregate sizes:

NF (Native Forest): 1.0 – 5cm, > 9.5mm

NT (No Till): 0 – 5cm, > 9.5mm

CT (Conventional Till): 0 – 5cm, > 9.5mm

Research Approaches:

Page 9: "Biochar Infused" Soil Aggregates

Wooster Soils Amended with Charcoal (wet/dry cycle-formed, 30% Charcoal shown)

1. Added mixtures of ground soil and 30% charcoal by weight.

2. Filled sample cups with mixture and added six ml of water to 57mm aluminum dish.

3. Hydrated sample mixtures with water for 48 hours.

4. Removed water from samples and air dried for 24 hours.

5. Repeated steps two through four nine more times, for a total of ten cycles.

6. Inspected aggregate for structural integrity.

Creation of aggregates from NF, NT and CT treatments mixed with

30% charcoal.

Page 10: "Biochar Infused" Soil Aggregates

Wooster Soils Amended with Charcoal (Molded, Conventional Till Soil as shown)

1. Added mixtures of powdered soil and 0%, 10%, 30%, 50%, 90%, and 100% charcoal by weight.

2. Added distilled water to create a slurry.

3. Filled molds with slurry from each percent sample through holes in the top.

4. Dried in 60 oven for 48 hours.

5. Removed from molds and stored in petri dish till used. Molded synthetic aggregates from CT

treatments mixed with 0%, 10%, 30%, 50%, 90%, and 100% charcoal using a

rubber candy mold.

Page 11: "Biochar Infused" Soil Aggregates

Soil aggregate Stability by Two methods

Display of soil aggregates containing 30% charcoal; constructed after 10 wetting/drying cycles.

Synthetic aggregates constructed by wetting and drying cycles (right) and molded samples (left).

Page 12: "Biochar Infused" Soil Aggregates

Farming that Improves the Environment

Robert C. Brown, Iowa State’s Bergles Professor in Thermal Science is also studying charcoal amendment of soils with the aim of implementing farming practices that actually improve the environment through responsible, sustainable soil amendment techniques. In his words:

“The conventional goal of good land stewardship is to minimize soil degradation and the amount of carbon released from the soil.”

“This new approach to agriculture has the goal of actually improving soils.”

Source: http://www.buyactivatedcharcoal.om/natural_fertilizer

“In other words, producing and applying bio-char to soil would not only dramatically improve the soil and increase crop production, but also could provide a novel approach to establishing a significant, long-term sink for atmospheric carbon dioxide”

Johannes Lehman, in “Muck and Mystery: Bio-Char” website

Page 13: "Biochar Infused" Soil Aggregates

Current Studies of Charcoal Effectiveness as an Organic Fertilizer

Growth and Harvest of Soybeans

ITEM

Areas not using Fertilizer nor

Charcoal

Areas using Charcoal for

Compost

Areas Using Chemical fertilizer

No. of leaves 64 139 71

Avg. Leaf Length cm 5.76 7.68 6.04

Avg. of Leaf Width cm 3.25 4.08 3.26

Germination Rate (%) 80 90 85

Root Length cm 22 24 25.5

Stem Length cm 14.66 17.19 18.23

Stem Diameter cm 1.2 1.35 1.33

No. of Seeds 26 89 37

Weight of 100 Seeds g 28.1 44.25 33.85

Utilization Experiment of Charcoal Tested in Indonesia Data Provided by the Japanese Forestry Agency

Page 14: "Biochar Infused" Soil Aggregates

Carbon Respiration Sample Preparation Method

1. Convert vacuum tube into micro-respirometer. Place glass wool in the bottom, then the aggregate, and seal with the top with septum.

2. Add 12% distilled water to each vial being analyzed, using a syringe.

3. Equilibrate water within soil aggregate sample.

4. Flush respirometer with CO2 free air.

5. Maintain constant temperature during CO2 analysis of sample. Micro-respirometer chamber

with soil aggregate.

Page 15: "Biochar Infused" Soil Aggregates

1. Using a 1 ml syringe, pull the plunger past the 0.5 ml mark, then push fully forward. Repeat this process at least two more times, to ensure the syringe is completely evacuated. 

2. Insert needle through rubber septum of respirometer containing aggregate sample. Gently pull the plunger back past the 1.0 ml mark, then push forward to extract exactly 1.0 ml of gas in sample tube.

3. In a slow, smooth motion, inject the full 1.0 ml sample into the injection port of the Infrared Gas Analyzer (IRGA).

4. The IRGA results are correlated to CO2 gas standards with accuracies of 1 microgram (µg). Repeat steps 1 through 3 for each sample to be evaluated.

Carbon Respiration Sample Evaluation Method

Page 16: "Biochar Infused" Soil Aggregates

5. After completing the test run, flush each sample tube with dry CO2 free compressed air. 

6. Incubate samples at 23 C for the time determined in the sampling schedule. Repeat steps 1 through 5 at each sample interval.

Carbon Respiration Sample Evaluation Method

Sample flushing manifold IRGA Setup

Page 17: "Biochar Infused" Soil Aggregates

Carbon Dioxide Respiration Results

Page 18: "Biochar Infused" Soil Aggregates

Carbon Dioxide Respiration Results, Continued

Page 19: "Biochar Infused" Soil Aggregates

Carbon Dioxide Respiration Results, Continued

Page 20: "Biochar Infused" Soil Aggregates

The Wooster Silt Loam soil from the Conventional Tillage (CT) areas sampled exhibited a finer soil aggregate structure, compared to the compaction seen in Native Forest (NF) and No-Till (NT) soil samples.

The finer CT soil structure allowed for greater penetration of the introduced charcoal into the soil matrix than was observed with the NF and NT soils.

The charcoal added to the soil matrix increased aggregate stability and improved erosion resistance.

Aggregate Stability Conclusions

Page 21: "Biochar Infused" Soil Aggregates

For 10% to 90% charcoal/soil aggregates, no significant variation in CO2 respiration was observed for the first 24 hours of respiration data collection, regardless of charcoal content or aggregate formation method.

For 10%, 30% and 50% charcoal/soil aggregates, molded sample CO2 respiration after 48 hours exceeded that of the wet/dry cycle-formed aggregates.

For pure charcoal aggregates in the same time frame, and 90% charcoal/soil aggregates after 144 hours, wet/dry cycle-formed CO2 respiration rate exceeded that of the molded samples.

It was observed that molded aggregates exhibited a more compact nature, while wet/dry cycle-formed aggregates were looser and more porous at all charcoal concentrations.

CO2 Respiration Conclusions

Page 22: "Biochar Infused" Soil Aggregates

Acknowledgements

The researcher is very grateful for the cooperation and interest of Dr. Alvin Smucker and the Soil Biophysics Laboratory, who supported and guided this study.

This research was supported and funded by Michigan State University College of Agriculture and Natural Resources Undergraduate Research program.

The researcher wishes to thank her committee; Professor Alvin Smucker, Professor Karen Renner, and Professor Sasha Kravchenko, and also her colleague and peer, Hyen Chun, for their many hours of review and suggestions to the report and presentation.

Page 23: "Biochar Infused" Soil Aggregates

References

Cosentino, Diego Julian. (2006). “Organic matter contribution to aggregate stability in silty loam cultivated soils. carbon input effects,” PhD thesis Matières organiques du sol, AgroParistech 2006INAP0041 p.186.

Cosentino, D., Claire Chenu, C., and Yves Le Bissonnais. (2006). “Aggregate stability and microbial community dynamics under drying–wetting cycles in a silt loam soil,” Soil Biology and Biochemistry, Volume 38, Issue 8, August 2006, Pages 2053-2062

Lehmann, J. (2007). “Bio-energy in the Black,” Front Ecol Environ 5(7): 381-387 (2007)

Lehmann, J., and M. Rondon. (2006). Biological Approaches to Sustainable Soil Systems .http://soil.scijournals.org/cgi/content/full/69/6/1912

Liang, B., Lehmann, J., Solomona, D., Kinyangia, J., Grossman, J., O'Neilla, B., Skjemstadb, J.O., Thiesa, J., Luizãoc, F.J., Petersend, J., and E. G. Nevese. (2006). “Black Carbon Increases Cation Exchange Capacity in Soils,” Soil Science Society of American Journal 70:1719-1730 (2006) http://soil.scijournals.org/cgi/content/full/70/5/1719

Park, E.J., and A.J.M. Smucker. (2005). “Erosive Strengths of Concentric Regions within Soil Macroaggregates,” Soil Science Society of American Journal 69:1912-1921 (2005). http://soil.scijournals.org/cgi/content/full/69/6/1912

Park, E.J., and A.J.M. Smucker. (2005). “Saturated Hydraulic Conductivity and Porosity within Macroaggregates Modified by Tillage,” Soil Science Society of American Journal 69:38–45 (2005).http://soil.scijournals.org/cgi/reprint/69/1/38.pdf