billiards, quadrilaterals and moduli...

11
Billiards, quadrilaterals and moduli spaces Curtis McMullen Harvard University coworkers Eskin, Mukamel and Wright Rigidity Renormalization Dynamics on moduli spaces We are still in the Age of Discovery Polygonal billiards Dynamics on moduli spaces There exists a totally geodesic complex surface F in Mg,n. Billiards in suitable darts have optimal dynamics. Rigidity Renormalization A Little History Z dx p 1 - x 2 = sin -1 x Z dx 3 p 1 - x 3 = 3 3 q x-1 1+ 3 p -1 +1 3 q x-1 1-(-1) 2/3 + 1(x - 1)F 1 2 3 ; 1 3 , 1 3 ; 5 3 ; - x-1 1-(-1) 2/3 , - x-1 1+ 3 p -1 2 3 p 1 - x 3 F 1 = Appel hypergeometric function Z dx Q(x) Z dx Q(x) 1/d Q(x) a polynomial

Upload: others

Post on 28-Aug-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Billiards, quadrilaterals and moduli spacespeople.math.harvard.edu/~ctm/expositions/home/text/talks/...Billiards, quadrilaterals and moduli spaces Curtis McMullen Harvard University

Billiards, quadrilaterals and moduli spaces

Curtis McMullenHarvard University

coworkers Eskin, Mukamel and Wright

RigidityRenormalization

Dynamics on moduli spaces

We are still in the Age of Discovery

Polygonal billiards

Dynamics on moduli spaces

•There exists a totally geodesic complex surface F in Mg,n.

• Billiards in suitable darts have optimal dynamics.

RigidityRenormalization

A Little History

Zdxp1� x

2= sin�1

x

Zdx

3p1� x

3=

3 3

qx�1

1+ 3p�1+ 1 3

qx�1

1�(�1)2/3+ 1(x� 1)F1

⇣23 ;

13 ,

13 ;

53 ;�

x�11�(�1)2/3

,� x�11+ 3p�1

2 3p1� x

3

F1 = Appel hypergeometric function

Zdx

Q(x)

Zdx

Q(x)1/d

Q(x) a polynomial

Page 2: Billiards, quadrilaterals and moduli spacespeople.math.harvard.edu/~ctm/expositions/home/text/talks/...Billiards, quadrilaterals and moduli spaces Curtis McMullen Harvard University

Zdx

Q(x)1/dA Little History

Zdxp1� x

2= sin�1

x

(X,ω) = (The curve yd = Q(x), the form dx/y)

periods of (X,ω) = {∫ ω }C

↝ Riemann surfaces, homology, Hodge theory, automorphic forms, ...

Moduli space

-- a complex variety, dimension 3g-3

{ }

The exceptional triangular billiard tables

2/9

1/4

5/12

4/9

7/15

1/3

1/5

1/3

1/3

7EE

8EE

6EE

Mg = moduli space of Riemann surfaces X of genus g

f : H2 �Mg

Teichmüller metric: every holomorphic map

is distance-decreasing.

Static

How to describe X in Mg ?

g>1: X = ? Uniformization Theorem

Every X in Mg can be built from a polygon in C

g=1: X = C/Λ

P

X = P / gluing by translations

How to describe X in Mg ?

g>1: X = ? Uniformization Theorem

Every (X,ω) in ΩMg can be built from a polygon in C

g=1: X = C/Λ

P

(X,ω) = (P,dz) / gluing by translations

Mg

Page 3: Billiards, quadrilaterals and moduli spacespeople.math.harvard.edu/~ctm/expositions/home/text/talks/...Billiards, quadrilaterals and moduli spaces Curtis McMullen Harvard University

Moduli space ΩMg

SL2(R) acts on ΩMg

Dynamic:

Polygon for A ⋅ (X,ω) = A ⋅ (Polygon for (X,ω))

Complex geodesics f : H ⟶ Mg

τ1

τ2

f(τ1) f(τ2)

Teichmüller curves

The complex geodesic generated by (X,ω) factors:

V = H / SL(X,ω)

Hf

Mg

SL(X,ω) lattice ⇔ f : V → Mg is an algebraic,

isometrically immersed Teichmüller curve.

stabilizer of (X,ω)

in SL2(R)

Are there any examples of

Teichmüller curves?

Billiards in polygons

Neither periodic nor evenly distributed

Page 4: Billiards, quadrilaterals and moduli spacespeople.math.harvard.edu/~ctm/expositions/home/text/talks/...Billiards, quadrilaterals and moduli spaces Curtis McMullen Harvard University

Optimal Billiards

Theorem. In a regular n-gon, every billiard path is eitherperiodic or uniformly distributed.

(Veech)

Billiards and Riemann surfaces

P

X has genus 2ω has just one zero!

(X,ω) = P/~

Theorem (Veech, Masur):

If P is a lattice polygon, then billiards in P is optimal.

P is a Lattice Polygon

⇔ SL(X,ω) is a lattice

⇔ (X,ω) generates a Teichmüller curve

(Renormalization)V ⊂ Mg

Every geodesic on V is either recurrent orexits a cusp

Optimal Billiards

CorollaryBilliards in a regular polygon

has optimal dynamics.

Theorem (Veech, 1989): Any regular polygon generatesa Teichmüller curve in moduli space.

Page 5: Billiards, quadrilaterals and moduli spacespeople.math.harvard.edu/~ctm/expositions/home/text/talks/...Billiards, quadrilaterals and moduli spaces Curtis McMullen Harvard University

Beyond Teichmüller curves?

Mg ⊂ PN is a projective variety

PROBLEM

Are there any totally geodesic* subvarieties V ⊂ Mg with dim(V)>1?

Almost all subvarieties V ⊂ Mg arecontracted.

(*Every complex geodesic tangent to V is contained in V.)

The flex locus F

Main Theorem

There is a primitive, totally geodesic complexsurface F ⊂ M1,3.

•T is not isomorphic to any traditionalTg,n.

• T is not a symmetric space (Antonakoudis)

The universal cover T → F: a new type of Teichmüller space?

A TREATISE

ON THE

HIGHER PLAM CURVES :

INTENDED AS A SEQUEL

TO

A TREATISE ON CONIC SECTIONS.

BY

GEORGE SALMON, D.D., D.C.L., LL.D., F.R.S.,REGIUS PROFESSOR OF DIVINITY IN THE UNIVERSITY OP DUBLIN.

THIRD EDITION.

HODGES, FOSTER, AND FIGGIS, GKAFTON STREET,BOOKSELLERS TO THE UNIVERSITY.

MJDCCCLXXIX,

1879

-4 -2 0 2 4

-4

-2

0

2

4

-4 -2 0 2 4

-4

-2

0

2

4

-4 -2 0 2 4

-4

-2

0

2

4

The Polar Conic

A

Polar(S,A)

S

Page 6: Billiards, quadrilaterals and moduli spacespeople.math.harvard.edu/~ctm/expositions/home/text/talks/...Billiards, quadrilaterals and moduli spaces Curtis McMullen Harvard University

-4 -2 0 2 4

-4

-2

0

2

4

-4 -2 0 2 4

-4

-2

0

2

4

HA

The Hessian

A

HA = {S : Pol(A,S) is 2 lines}

= Z(det D2f)

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6 The Solar Configuration

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

Sun

The Solar Configuration

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

SunDawn

Dusk

The Solar Configuration

Page 7: Billiards, quadrilaterals and moduli spacespeople.math.harvard.edu/~ctm/expositions/home/text/talks/...Billiards, quadrilaterals and moduli spaces Curtis McMullen Harvard University

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

SunDawn

Codaw

n

F = {(A,P=Codawn) : A is in M1}

The Solar Configuration

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6 The Space QF(A,P)

P = Codaw

n

QF(A,P) ⇔ {q : (q) = Ray - P)}

Ray

Sun

A

The gothic locus ΩG ⊂ ΩM4

(X, ω) in ΩG ⟺ (A,q) = (X/J, ω2/J) in QF

Definition: ΩG = √QF

Theorem: ΩG is an SL2(R) invariant subvariety of

ΩM4 of dimension 4

Cor:G is geodesically ruled

From G back to F

(X, ω) in ΩG → (A,q) = (X/J, ω2/J) in QF

Corollary: F is totally geodesic

Gruled

F

Page 8: Billiards, quadrilaterals and moduli spacespeople.math.harvard.edu/~ctm/expositions/home/text/talks/...Billiards, quadrilaterals and moduli spaces Curtis McMullen Harvard University

Proof of SL2(R) invariance of ΩG:

• Variety ΩG is linear and defined/R in period coordinates on ΩM4 !

B

2

3X

A

P1

3

2g=4

g=1

g=0

Jac(X) ~ A x B x C

4 = 1 + 1 + 2

ω

solar

Cathedral polygons

a a2a

1 2

1b

b

1

Complement. We have a new infinite series of Teichmüller curves GD ⊂G ⊂ M4.

Known Teichmüller curves

M3

M2

M6

M5

M4

Veech 1989

. . .. .

.

. . . Calta, M 2002(Jacobian)

. . .

. . .

M 2005(Prym)

. . . MMW 2016

?

Bouw-Möller 2006

. . .

E6, E7, E8

Does the flex surface fit into

a broader pattern?

Page 9: Billiards, quadrilaterals and moduli spacespeople.math.harvard.edu/~ctm/expositions/home/text/talks/...Billiards, quadrilaterals and moduli spaces Curtis McMullen Harvard University

Classical perspective: Triangles

(1,1,n)

(1,2,n)

(3,4,5)

(2,3,4)

(3,5,7)

(1,4,7)

These generate Teichmüller curves

1989 Veech, Ward, Vorobets, Kenyon-Smillie, Hooper 2013

New perspective: Quadrilaterals

P→ (X,ω) = (P,dz)/~

in ΩM4

X : y6 = x (x-1) (x-t) ω : C dx/y5

Q(1,1,1,9)

New perspectives on ΩG:

• The gothic locus is the closure of the SL2(R) orbits of the (1,1,1,9) quadrilateral forms.

• A Zariski open subset of ΩG coincides with an explicit space of dihedral forms.

• The variety of dihedral forms is linear in period coordinates.

(Z/6 symmetry)

(D12 symmetry)

1

y √3

New optimal billiards

• Suitable (1,1,1,9) quadrilaterals have optimal dynamics and generate Teichmüller curves in M4.

y2 + (3c+1)y + c = 0

Shown: y = 1 +√2

some c in Q

Page 10: Billiards, quadrilaterals and moduli spacespeople.math.harvard.edu/~ctm/expositions/home/text/talks/...Billiards, quadrilaterals and moduli spaces Curtis McMullen Harvard University

Does the (1,1,1,9) quadrilateral

fit into a broader pattern?

(1,1,1,7)

(1,2,2,11)(1,1,2,12)

(1,1,1,9)

(1,2,2,15)

(1,1,2,8)

A suite of quadrilaterals

(1,1,1,7)

(1,2,2,11)(1,1,2,12)

(1,1,1,9)

(1,2,2,15)

(1,1,2,8)

Six SL2(R) invariant 4-folds ΩG ⊂ ΩMg

(1,1,1,7)

(1,2,2,11)(1,1,2,12)

(1,1,1,9)

(1,2,2,15)

(1,1,2,8)

Two series of optimal billiard tables / V ⊂ M4

(cf. Bouw-Möller)

Page 11: Billiards, quadrilaterals and moduli spacespeople.math.harvard.edu/~ctm/expositions/home/text/talks/...Billiards, quadrilaterals and moduli spaces Curtis McMullen Harvard University

(1,1,1,7)

(1,2,2,11)(1,1,2,12)

(1,1,1,9)

(1,2,2,15)

(1,1,2,8)

Three totally geodesic surfaces

M2,1M1,4

M1,3

Pentagons, reprise

• The closure of the SL2(R) orbits of the (1,1,2,2,12) pentagonal forms gives a new, 6-dimensional

invariant subvariety of ΩM4.