bill dewey presentation on ocean acidification

16
Preliminary lessons from the oyster “seed crisis” Taylor Shellfish hatchery on Dabob Bay, Washington By Brad Warren What can the rest of the seafood industry learn from the first producers to suffer (and partly overcome) severe impacts associated with “corrosive” highCO 2 seawater?

Upload: northwest-indian-fisheries-commission

Post on 21-Jan-2015

2.052 views

Category:

Documents


0 download

DESCRIPTION

 

TRANSCRIPT

Page 1: Bill Dewey presentation on ocean acidification

Preliminary  lessons  from    the  oyster  “seed  crisis”  

Taylor  Shellfish  hatchery  on  Dabob  Bay,  Washington  

By  Brad  Warren  

What  can  the  rest  of  the  seafood  industry  learn  from  the  first  producers  to  suffer  (and  partly  overcome)  severe  impacts    associated  with  “corrosive”  high-­‐CO2  seawater?  

Page 2: Bill Dewey presentation on ocean acidification

Taylor  &  Whiskey  Creek    •  TAYLOR  SHELLFISH  FARMS:  Largest  U.S.  shellfish  grower.    ~12,000  acres  under  culOvaOon  (owned  or  leased)  in  Washington,  Mexico,  BriOsh  Columbia,  a  pearl  farm  in  Fiji.  Two  company-­‐owned  hatcheries  (Hawaii,  Washington)  supply  its  own  farms.  

•  Whiskey  Creek  Shellfish  Hatchery:  largest  oyster  seed  supplier  on  West  Coast,  supplies  ~75%  of  farms.  

•  Together,  they  provide  lion’s  share  of  producOon  on  West  Coast.  

Page 3: Bill Dewey presentation on ocean acidification

Oyster  seed  crisis  arrives  Pacific  oyster  larvae  fail  

         70-­‐80%  loss  of  producOon  in  2007-­‐2008  at  both  major  hatcheries.  At  Whiskey  Creek,  oyster  larvae  dissolved,  vanished  in  tanks.  Even  hard-­‐fouling  of  intake  pipes  ceased.  

       Li]le  or  no  commercial-­‐scale  wild  “set”  of  oysters  in  Willapa  Bay  since  2005.  

 Industry  hunts  for  culprits:    vibrio  tubiashi?    

L:  Pacific  oyster    larvae  growing  at  Taylor.  Billions    of  these  were  lost.  R:  Larval  clams    dissolve  at  pH  7.5  in  lab  (Green)  

Page 4: Bill Dewey presentation on ocean acidification

Paradigm  shiH    Feely  et  al  2008  

Researchers  at  Whiskey  Creek  (Barton,  others)  confirm  strong  link  to  larval  death.  

Page 5: Bill Dewey presentation on ocean acidification

How  hatcheries  rebounded  (for  now)  

•  Whiskey  Creek  is  near  peak  producOon  levels  through  July  2010,  by  dodging  frequent  episodes  of  “bad  water,”  working  overOme  to  produce  in  “good  water”  periods.  

•  Taylor  also  going  strong  through  July  2010,  enjoying  “good  water”  from  shallow  intake  (30  d);  but  deep  intake  (100  d)  now  yields  high  CO2  levels  that  they  avoid.  

•  Two  criNcal  tools  enabled  this  rebound:  

Page 6: Bill Dewey presentation on ocean acidification

1.  Monitoring  &  research  If  you  can  see  what’s  coming  at  you,  

you  can  dodge  

New  monitoring  systems,  OOS  buoys  permit  frequent  sampling  of  water  quality  parameters  (e.g.  pCO2,  pH):    Hatcheries  avoid  spawning  in  high-­‐CO2  water.    Bioassays,  calcificaOon  studies,  physiological  &  geneOc  analyses  underway  at  several  labs.  

Page 7: Bill Dewey presentation on ocean acidification

1.  A  well-­‐defended  posiNon  

Hatcheries          Control  of  most  

vulnerable  life-­‐stage  enabled  them  to  defend  larvae  <  120  microns.  

Page 8: Bill Dewey presentation on ocean acidification

Industry’s  three-­‐Phase  response  

1)  Short  term:  monitoring  &  research  enable  producers  to  dodge  “bad  water.”  (operaOons  +  policy)  

2)  Medium  term:  culOvate  more  resilient  broodstock.  (operaOons  +  policy)  

3)  Long-­‐term:  promote  policies  to  reduce  emissions,  strengthen  research  &  monitoring  (policy)  

Page 9: Bill Dewey presentation on ocean acidification

STEP  1  Monitoring  in  order  to  avoid  exposure  to  “bad  water.”  

Sensors:  pH,  T,  S,  depth,  turbidity  

     

Page 10: Bill Dewey presentation on ocean acidification

pCO2  readout  at  100  d:  ~1,000  ppm  

Taylor’s  deepwater  intake:    pH  here  measured  ~  7.5  

At  Whiskey  Creek,  pCO2    is  now  key  predictor  of    larval  survival.  For  gigas  larvae  in  first  2  days,    hatchery  owners  say    200-­‐300  ppm  is  opOmal,    with  low  end  best;  older  larvae  can  handle  up  to    400  ppm.    “Over  600  we  back  off.”  (Wiegardt,  pers.    comm  with  BW  7.27.2010)  

Page 11: Bill Dewey presentation on ocean acidification

pCO2  at  30  d:  332  ppm  

Taylor’s  shallow  water  intake:  pH  here  measured  ~8.2  

To  avoid  high  CO2  water,    Taylor  mainly  now  relies    on  shallow  intake  for  oysters.    

This  increases  exposure  to  algal  blooms,  etc,  which  were    the  reason  they  developed  a    deepwater  intake  at  100  d.    

Now  elevated  CO2  is  pushing    Taylor  to  risk  that  exposure,  esp.  for  young  Pacific  oyster  (c.  Gigas)  

Page 12: Bill Dewey presentation on ocean acidification

Managing  around  the  problem  

•   Put  small  larvae  into  tanks  filled      in  the  aHernoon  or  overnight                -­‐  Works  if  the  sun  is  out  

•   24  hour  noOce-­‐  Upwelling  takes        a  day  or  two  to  start  up,  so  when        winds  from  the  North,  fill  tanks        late  in  the  day  and  spawn  like        crazy  

   SPAWN!  

 DON’T  SPAWN!  Slide:  Alan  Barton  

Page 13: Bill Dewey presentation on ocean acidification

Step  2:  breeding  for  resistance  

Molluscan  Broodstock    Program  at  OSU  increased  oyster  yield    (sum  of  survival  +  growth)    by  41%  over  2    generaOons.  

Can  broodstock  work  boost    resistance  to  high  CO2?  

Preliminary  signs  of  promise:  a  few  families  show  be]er  resistance;    some  species  too  (Olympia).  

Growth  rates,  yields,  quality?  

OSU  MBP    

Broodstock  research  has  increased  oyster  yield  in  the  past  (see  graph):  Can  it  help  now?  

Page 14: Bill Dewey presentation on ocean acidification

Step  3:  Policy  engagement  •  Key  aims  :    Support  research  &  monitoring,  protect  producOvity.  

•  Oyster  producers  talk  to  Congress  about  acidificaOon,  need  for  research;  some  support  prevenOve  emissions-­‐reducOon  policies.  

•  Sen.  Cantwell  secures  $500,000  for  hatchery  retrofits,  including  monitoring.  

•  HR  989:  Taylor  &  others  worked  it,  got  58%  yes  vote.  

•  OOS  systems  beginning  to  monitor  pCO2  etc,  

Page 15: Bill Dewey presentation on ocean acidification

ImplicaOons  for  seafood  industry  •  ProducNve  zones  are  most  vulnerable:  highly  enriched    

           seawater    closer  “Opping  points.”  

•  First  blow  can  hit  hard:  70-­‐80%  loss  of  producOon  in  2007-­‐2008  at  two  major  hatcheries  (supplying  lion’s  share  of  producOon).  

•  Technical  and  poliNcal  savvy  allowed  shellfish  industry  to  meet  the  challenge:  Taylor,  Whiskey  Creek  found  ways  to  dodge  impacts,  win  needed  scienOfic  &  poliOcal  support,  and  rebuild  producOon  (for  now).  Other  growers,  reliant  on  Whiskey  Creek,  pitched  in.  PoliOcians  too.  (3  Congressmen  a]ended  our  workshop  in  March).  

•  Impacts  are  uneven:  Species,  families,  &  local  environmental  condiOons  can  either  miOgate  or  aggravate  effects.  

•  Victory  probably  temporary:  ConOnued  rise  in  emissions    more  trouble  ahead:  more  severe  acidificaOon,  likely  wider  impacts.  

Page 16: Bill Dewey presentation on ocean acidification

Thanks.  

•  Benoit  Eudeline  &  Bill  Dewey  at  Taylor  Shellfish  Farms.  

•  Mark  Wiegardt,  Sue  Cudd,  Alan  Barton  at  Whiskey  Creek.  

•  Richard  Feely,  Vicky  Fabry,  Joanie  Kleypas,  Jeremy  Mathis,  Sco]  Doney,  Mark  Green,  Jeff  and  many  others.  

•  Bulli]  &  Oak  foundaOons,  Rockefeller  Brothers  Fund,  other  donors.