bayesian inference in fmri · 2016. 2. 4. · choice of priors l m harrison, w penny, j daunizeau,...

65
Bayesian Inference in fMRI Will Penny Bayesian Approaches in Neuroscience Karolinska Institutet, Stockholm February 2016

Upload: others

Post on 30-Aug-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Bayesian Inference in fMRI · 2016. 2. 4. · Choice of Priors L M Harrison, W Penny, J Daunizeau, and K J Friston. Diffusion-based spatial priors for functional magnetic resonance

Bayesian Inference in fMRI

Will Penny Bayesian Approaches in Neuroscience

Karolinska Institutet, Stockholm

February 2016

Page 2: Bayesian Inference in fMRI · 2016. 2. 4. · Choice of Priors L M Harrison, W Penny, J Daunizeau, and K J Friston. Diffusion-based spatial priors for functional magnetic resonance
Page 3: Bayesian Inference in fMRI · 2016. 2. 4. · Choice of Priors L M Harrison, W Penny, J Daunizeau, and K J Friston. Diffusion-based spatial priors for functional magnetic resonance
Page 4: Bayesian Inference in fMRI · 2016. 2. 4. · Choice of Priors L M Harrison, W Penny, J Daunizeau, and K J Friston. Diffusion-based spatial priors for functional magnetic resonance

• Posterior Probability Maps

• Hemodynamic Response Functions

• Population Receptive Fields

• Computational fMRI

• Multivariate Decoding

• Dynamic Causal Modelling

Overview

Page 5: Bayesian Inference in fMRI · 2016. 2. 4. · Choice of Priors L M Harrison, W Penny, J Daunizeau, and K J Friston. Diffusion-based spatial priors for functional magnetic resonance

• Posterior Probability Maps

• Hemodynamic Response Functions

• Population Receptive Fields

• Computational fMRI

• Multivariate Decoding

• Dynamic Causal Modelling

Overview

Page 6: Bayesian Inference in fMRI · 2016. 2. 4. · Choice of Priors L M Harrison, W Penny, J Daunizeau, and K J Friston. Diffusion-based spatial priors for functional magnetic resonance

Bayes Rule for Gaussians

Likelihood and Prior

(1) (1) (1)

(1) (2) (2)

( | ) ( , )

( ) ( , )

p y N

p N

(1)

(1) (2)

(1) (2)(1) (2)

( | ) ( , )p y N m P

P

mP P

Posterior

)2( m )1(

Relative Precision Weighting

Prior

Likelihood Posterior

Page 7: Bayesian Inference in fMRI · 2016. 2. 4. · Choice of Priors L M Harrison, W Penny, J Daunizeau, and K J Friston. Diffusion-based spatial priors for functional magnetic resonance

Global Shrinkage Priors

observations

GLM

prior precision

of GLM coeff

Observation

noise

Y

INp 1,0

XY

K.J. Friston and W.D. Penny. Posterior probability maps and SPMs.

NeuroImage, 19(3):1240-1249, 2003.

Page 8: Bayesian Inference in fMRI · 2016. 2. 4. · Choice of Priors L M Harrison, W Penny, J Daunizeau, and K J Friston. Diffusion-based spatial priors for functional magnetic resonance

ths

)|( yp thth pysp )|(

Posterior distribution: probability of the effect given the data

Posterior Probability Map: images of the probability that an

activation exceeds some specified threshold sth, given the

data y

)|( yp

Two thresholds:

• activation threshold sth : percentage of whole brain mean

signal (physiologically relevant size of effect)

• probability pth that voxels must exceed to be displayed

(e.g. 95%)

Posterior

Page 9: Bayesian Inference in fMRI · 2016. 2. 4. · Choice of Priors L M Harrison, W Penny, J Daunizeau, and K J Friston. Diffusion-based spatial priors for functional magnetic resonance

Mean (Cbeta_*.img)

Std dev (SDbeta_*.img)

activation

threshold

ths

Posterior density q(βn)

Probability mass pn

probability of getting an effect, given the data

),()( nnn Nq mean: size of effect

covariance: uncertainty

thpp

Display only voxels

that exceed e.g. 95%

PPM (spmP_*.img)

)( thsqp

PPM

Page 10: Bayesian Inference in fMRI · 2016. 2. 4. · Choice of Priors L M Harrison, W Penny, J Daunizeau, and K J Friston. Diffusion-based spatial priors for functional magnetic resonance

Choice of Priors

L M Harrison, W Penny, J Daunizeau, and K J Friston.

Diffusion-based spatial priors for functional magnetic resonance

images. Neuroimage, 41(2):408-23, 2008.

Nonstationary smoothness:

W.D. Penny, N. Trujillo-Barreto, and K.J. Friston. Bayesian fMRI time

series analysis with spatial priors. NeuroImage, 24(2):350-362, 2005.

Stationary smoothness:

K.J. Friston and W.D. Penny. Posterior probability maps and SPMs.

NeuroImage, 19(3):1240-1249, 2003.

Global Shrinkage:

Page 11: Bayesian Inference in fMRI · 2016. 2. 4. · Choice of Priors L M Harrison, W Penny, J Daunizeau, and K J Friston. Diffusion-based spatial priors for functional magnetic resonance

AR coeff

(correlated noise)

prior precision

of AR coeff

A

Posterior ML

aMRI Smooth Y

Stationary Smoothness Priors

observations

GLM

prior precision

of GLM coeff

Observation

noise

Y

LNp 1,0 XY

Page 12: Bayesian Inference in fMRI · 2016. 2. 4. · Choice of Priors L M Harrison, W Penny, J Daunizeau, and K J Friston. Diffusion-based spatial priors for functional magnetic resonance

• Posterior Probability Maps

• Hemodynamic Response Functions

• Population Receptive Fields

• Computational fMRI

• Multivariate Decoding

• Dynamic Causal Modelling

Overview

Page 13: Bayesian Inference in fMRI · 2016. 2. 4. · Choice of Priors L M Harrison, W Penny, J Daunizeau, and K J Friston. Diffusion-based spatial priors for functional magnetic resonance

Canonical

K Friston et al. Event-Related fMRI: Characterizing differential

responses, Neuroimage 7, 30-40, 1998

Two Gamma functions

fitted to data from

auditory cortex.

“Canonical” function

f(w,t) with w width and

t time.

Page 14: Bayesian Inference in fMRI · 2016. 2. 4. · Choice of Priors L M Harrison, W Penny, J Daunizeau, and K J Friston. Diffusion-based spatial priors for functional magnetic resonance

Canonical

Temporal

Hemodynamic Response Functions

Temporal derivative,

df/dt

Page 15: Bayesian Inference in fMRI · 2016. 2. 4. · Choice of Priors L M Harrison, W Penny, J Daunizeau, and K J Friston. Diffusion-based spatial priors for functional magnetic resonance

Canonical

Temporal

Dispersion

Hemodynamic Response Functions

Dispersion derivative,

df/dw

Page 16: Bayesian Inference in fMRI · 2016. 2. 4. · Choice of Priors L M Harrison, W Penny, J Daunizeau, and K J Friston. Diffusion-based spatial priors for functional magnetic resonance

Canonical

Temporal

Dispersion

Hemodynamic Response Functions

These three functions

together comprise an

“Informed Basis Set”

Page 17: Bayesian Inference in fMRI · 2016. 2. 4. · Choice of Priors L M Harrison, W Penny, J Daunizeau, and K J Friston. Diffusion-based spatial priors for functional magnetic resonance

Informed (Inf)

Fourier (F) Finite Impulse Response (FIR)

Gamma

Page 18: Bayesian Inference in fMRI · 2016. 2. 4. · Choice of Priors L M Harrison, W Penny, J Daunizeau, and K J Friston. Diffusion-based spatial priors for functional magnetic resonance

Hemodynamic Response Functions

R Henson et al. Face repetition effects in implicit and explicit memory tests

as measured by fMRI. Cerebral Cortex, 12:178-186.

W.D. Penny, G Flandin and N. Trujillo-Barreto. Bayesian Comparison of

Spatially Regularised General Linear Models . HBM, 28:275-293, 2007.

Page 19: Bayesian Inference in fMRI · 2016. 2. 4. · Choice of Priors L M Harrison, W Penny, J Daunizeau, and K J Friston. Diffusion-based spatial priors for functional magnetic resonance

Bayesian Model Comparison

Prior Posterior

𝑝(𝑚|𝑦) = 𝑝 𝑦 𝑚 𝑝(𝑚)

𝑝 𝑦 𝑚′ 𝑝(𝑚′)𝑚′

Log Evidence = log p(y|m)

Page 20: Bayesian Inference in fMRI · 2016. 2. 4. · Choice of Priors L M Harrison, W Penny, J Daunizeau, and K J Friston. Diffusion-based spatial priors for functional magnetic resonance

Hemodynamic Response Functions

Left Occipital Cortex: Inf-2 is the preferred model

Page 21: Bayesian Inference in fMRI · 2016. 2. 4. · Choice of Priors L M Harrison, W Penny, J Daunizeau, and K J Friston. Diffusion-based spatial priors for functional magnetic resonance

Hemodynamic Response Functions

Right Occipital Cortex: Inf-3 is the preferred model

Page 22: Bayesian Inference in fMRI · 2016. 2. 4. · Choice of Priors L M Harrison, W Penny, J Daunizeau, and K J Friston. Diffusion-based spatial priors for functional magnetic resonance

Hemodynamic Response Functions

Sensorimotor Cortex: Inf-3 is the preferred model

Page 23: Bayesian Inference in fMRI · 2016. 2. 4. · Choice of Priors L M Harrison, W Penny, J Daunizeau, and K J Friston. Diffusion-based spatial priors for functional magnetic resonance

( , , )

( )

g z

y b

x x h

x

Hemodynamic

variables

[ , , , ]s f v qx

Hemodynamic

parameters

Dynamics

K Friston. Bayesian Estimation of Dynamical Systems: An application to

fMRI, Neuroimage 16, 513-530, 2002

Seconds

Page 24: Bayesian Inference in fMRI · 2016. 2. 4. · Choice of Priors L M Harrison, W Penny, J Daunizeau, and K J Friston. Diffusion-based spatial priors for functional magnetic resonance

Hemodynamic Response Functions

R Buxton et al. Dynamics of Blood Flow and Oxygenation Changes

During brain activation: The Balloon Model , Magnetic Resonance in Medicine,

39:855-864.

Page 25: Bayesian Inference in fMRI · 2016. 2. 4. · Choice of Priors L M Harrison, W Penny, J Daunizeau, and K J Friston. Diffusion-based spatial priors for functional magnetic resonance

• Posterior Probability Maps

• Hemodynamic Response Functions

• Population Receptive Fields

• Computational fMRI

• Multivariate Decoding

• Dynamic Causal Modelling

Overview

Page 26: Bayesian Inference in fMRI · 2016. 2. 4. · Choice of Priors L M Harrison, W Penny, J Daunizeau, and K J Friston. Diffusion-based spatial priors for functional magnetic resonance

S. Kumar and W. Penny (2014). Estimating Neural Response Functions from

fMRI. Frontiers in Neuroinformatics, 8th May, doi: 10.3389/fninf.2014.00048.

Population Receptive Fields

K Friston et al. (2007) Variational free energy and the Laplace approximation.

Neuroimage, 34, 220–234.

Page 27: Bayesian Inference in fMRI · 2016. 2. 4. · Choice of Priors L M Harrison, W Penny, J Daunizeau, and K J Friston. Diffusion-based spatial priors for functional magnetic resonance

Gaussian Population Receptive Fields

Page 28: Bayesian Inference in fMRI · 2016. 2. 4. · Choice of Priors L M Harrison, W Penny, J Daunizeau, and K J Friston. Diffusion-based spatial priors for functional magnetic resonance

Gaussian Population Receptive Fields

Page 29: Bayesian Inference in fMRI · 2016. 2. 4. · Choice of Priors L M Harrison, W Penny, J Daunizeau, and K J Friston. Diffusion-based spatial priors for functional magnetic resonance

Mexican-Hat Population Receptive Fields

Page 30: Bayesian Inference in fMRI · 2016. 2. 4. · Choice of Priors L M Harrison, W Penny, J Daunizeau, and K J Friston. Diffusion-based spatial priors for functional magnetic resonance

Mexican-Hat Population Receptive Fields

Page 31: Bayesian Inference in fMRI · 2016. 2. 4. · Choice of Priors L M Harrison, W Penny, J Daunizeau, and K J Friston. Diffusion-based spatial priors for functional magnetic resonance

Which Parametric Function is a Better Descriptor ?

Gaussian

Mexican-Hat

Page 32: Bayesian Inference in fMRI · 2016. 2. 4. · Choice of Priors L M Harrison, W Penny, J Daunizeau, and K J Friston. Diffusion-based spatial priors for functional magnetic resonance

• Posterior Probability Maps

• Hemodynamic Response Functions

• Population Receptive Fields

• Computational fMRI

• Multivariate Decoding

• Dynamic Causal Modelling

Overview

Page 33: Bayesian Inference in fMRI · 2016. 2. 4. · Choice of Priors L M Harrison, W Penny, J Daunizeau, and K J Friston. Diffusion-based spatial priors for functional magnetic resonance

Computational fMRI

1 2 40

trials

1 4 3 2

Subjects pressed 1 of 4 buttons depending on

the category of visual stimulus.

The 4 categories of stimuli occurred with

different frequencies over a session.

Brain responses are then hypothesised to be

proportional to the surprise, S, associated

with each stimulus where S=log(1/p).

But over what time scale is the probability p

estimated ? And do different brain regions

use different time scales ?

L. Harrison, S Bestmann, M. Rosa, W. Penny and G. Green (2011). Time scales of

representation in the human brain: weighing past information to predict

future events. Frontiers in Human Neuroscience, 5, 00037.

Page 34: Bayesian Inference in fMRI · 2016. 2. 4. · Choice of Priors L M Harrison, W Penny, J Daunizeau, and K J Friston. Diffusion-based spatial priors for functional magnetic resonance

Long Time Scale (LTS)

Short Time Scale (STS)

Enter surprise as a Parametric Modulator in first level GLM analysis.

Which surprise variable (STS or LTS) underlies the best model of fMRI responses?

Page 35: Bayesian Inference in fMRI · 2016. 2. 4. · Choice of Priors L M Harrison, W Penny, J Daunizeau, and K J Friston. Diffusion-based spatial priors for functional magnetic resonance

kr

k

BMS maps

PPM

EPM

model k Compute log-evidence map

for each model/subject

model 1

model K

subject 1

subject N

)( krq

kr

941.0)5.0( krq

Probability that model k

generated data

M Rosa, S.Bestmann, L. Harrison, and W Penny. Bayesian model selection

maps for group studies. Neuroimage, Jan 1 2010; 49(1):217-24.

Page 36: Bayesian Inference in fMRI · 2016. 2. 4. · Choice of Priors L M Harrison, W Penny, J Daunizeau, and K J Friston. Diffusion-based spatial priors for functional magnetic resonance

L. Harrison, S Bestmann, M. Rosa, W. Penny and G. Green (2011). Time scales of

representation in the human brain: weighing past information to predict future events.

Frontiers in Human Neuroscience, 5, 00037.

Exceedance Probability Maps

Page 37: Bayesian Inference in fMRI · 2016. 2. 4. · Choice of Priors L M Harrison, W Penny, J Daunizeau, and K J Friston. Diffusion-based spatial priors for functional magnetic resonance

• Posterior Probability Maps

• Hemodynamic Response Functions

• Population Receptive Fields

• Computational fMRI

• Multivariate Decoding

• Dynamic Causal Modelling

Overview

Page 38: Bayesian Inference in fMRI · 2016. 2. 4. · Choice of Priors L M Harrison, W Penny, J Daunizeau, and K J Friston. Diffusion-based spatial priors for functional magnetic resonance

Relate Behavioural Descriptors, X, to fMRI data Y via voxel weights

As the number of voxels in a region will likely exceed the number of time

points in the fMRI time series, and only some combination of them will be useful

for prediction we need to select ‘features’

K Friston et al. (2008) Bayesian decoding of brain images.

Neuroimage, 39:181-205.

Which type of feature will be useful for decoding (1) voxels, (2) clusters,

(3) singular vectors, (4) support vectors ?

Page 39: Bayesian Inference in fMRI · 2016. 2. 4. · Choice of Priors L M Harrison, W Penny, J Daunizeau, and K J Friston. Diffusion-based spatial priors for functional magnetic resonance

Multivariate Decoding

1.Voxels

2.Clusters

Which type of feature will be useful for decoding (1) voxels, (2) clusters,

(3) singular vectors, (4) support vectors ?

Page 40: Bayesian Inference in fMRI · 2016. 2. 4. · Choice of Priors L M Harrison, W Penny, J Daunizeau, and K J Friston. Diffusion-based spatial priors for functional magnetic resonance

A Morcom and K Friston (2012) Decoding episodic memory in ageing: A Bayesian

Analysis of activity patterns predicting memory. Neuroimage 59, 1772-1782.

Clustered

Distributed

Clusters

Voxels

Page 41: Bayesian Inference in fMRI · 2016. 2. 4. · Choice of Priors L M Harrison, W Penny, J Daunizeau, and K J Friston. Diffusion-based spatial priors for functional magnetic resonance

A Morcom and K Friston (2012) Decoding episodic memory in ageing: A Bayesian

analysis of activity patterns predicting memory. Neuroimage 59, 1772-1782.

The more clustered the representation the better the memory

Page 42: Bayesian Inference in fMRI · 2016. 2. 4. · Choice of Priors L M Harrison, W Penny, J Daunizeau, and K J Friston. Diffusion-based spatial priors for functional magnetic resonance

Multivariate Decoding

Q. With what sort of neural code

is motion represented with in V5 ?

A. Voxels

Voxels Clusters

Page 43: Bayesian Inference in fMRI · 2016. 2. 4. · Choice of Priors L M Harrison, W Penny, J Daunizeau, and K J Friston. Diffusion-based spatial priors for functional magnetic resonance

Multivariate Decoding

Q. Which brain region can motion best

be decoded from: V5 or PFC ?

A. V5.

Page 44: Bayesian Inference in fMRI · 2016. 2. 4. · Choice of Priors L M Harrison, W Penny, J Daunizeau, and K J Friston. Diffusion-based spatial priors for functional magnetic resonance

Multivariate Decoding

Voxels

Page 45: Bayesian Inference in fMRI · 2016. 2. 4. · Choice of Priors L M Harrison, W Penny, J Daunizeau, and K J Friston. Diffusion-based spatial priors for functional magnetic resonance

A Maas et al (2014) Laminar activity in the

hippocampus and entorhinal cortex

related to novelty and episodic encoding

Nature Communications, 5:5547.

Page 46: Bayesian Inference in fMRI · 2016. 2. 4. · Choice of Priors L M Harrison, W Penny, J Daunizeau, and K J Friston. Diffusion-based spatial priors for functional magnetic resonance

A Maas et al (2014) Laminar activity in the

hippocampus and entorhinal cortex

related to novelty and episodic encoding

Nature Communications, 5:5547.

Novelty

Subsequent

Memory

Page 47: Bayesian Inference in fMRI · 2016. 2. 4. · Choice of Priors L M Harrison, W Penny, J Daunizeau, and K J Friston. Diffusion-based spatial priors for functional magnetic resonance

• Posterior Probability Maps

• Hemodynamic Response Functions

• Population Receptive Fields

• Computational fMRI

• Multivariate Decoding

• Dynamic Causal Modelling

Overview

Page 48: Bayesian Inference in fMRI · 2016. 2. 4. · Choice of Priors L M Harrison, W Penny, J Daunizeau, and K J Friston. Diffusion-based spatial priors for functional magnetic resonance

Single region

1 11 1 1z a z cu

u2

u1

z1

z2

z1

u1

a11 c

Page 49: Bayesian Inference in fMRI · 2016. 2. 4. · Choice of Priors L M Harrison, W Penny, J Daunizeau, and K J Friston. Diffusion-based spatial priors for functional magnetic resonance

Multiple regions

1 11 1 1

2 21 22 2 2

0

0

z a z uc

z a a z u

u2

u1

z1

z2

z1

z2

u1

a11

a22

c

a21

Page 50: Bayesian Inference in fMRI · 2016. 2. 4. · Choice of Priors L M Harrison, W Penny, J Daunizeau, and K J Friston. Diffusion-based spatial priors for functional magnetic resonance

Modulatory inputs

1 11 1 1 1

2

2 21 22 2 21 2 2

0 0 0

0 0

z a z z ucu

z a a z b z u

u2

u1

z1

z2

u2

z1

z2

u1

a11

a22

c

a21

b21

Page 51: Bayesian Inference in fMRI · 2016. 2. 4. · Choice of Priors L M Harrison, W Penny, J Daunizeau, and K J Friston. Diffusion-based spatial priors for functional magnetic resonance

Reciprocal connections

1 11 12 1 1 1

2

2 21 22 2 21 2 2

0 0

0 0

z a a z z ucu

z a a z b z u

u2

u1

z1

z2

u2

z1

z2

u1

a11

a22

c

a12

a21

b21

Page 52: Bayesian Inference in fMRI · 2016. 2. 4. · Choice of Priors L M Harrison, W Penny, J Daunizeau, and K J Friston. Diffusion-based spatial priors for functional magnetic resonance

Neurodynamics

i i

i

z Az u B z Cu

Inputs Change in

Neuronal

Activity

Neuronal

Activity

Intrinsic

Connectivity

Matrix

Modulatory

Connectivity

Matrices

Input

Connectivity

Matrix

Page 53: Bayesian Inference in fMRI · 2016. 2. 4. · Choice of Priors L M Harrison, W Penny, J Daunizeau, and K J Friston. Diffusion-based spatial priors for functional magnetic resonance

Rowe et al. 2010, Dynamic causal modelling of effective connectivity from fMRI:

Are results reproducible and sensitive to Parkinson’s disease and its treatment?

NeuroImage, 52:1015-1026.

Age-matched

controls

PD patients

on medication

PD patients

off medication

DA-dependent functional

disconnection of the SMA

Selection of action modulates

connections between PFC and SMA

Page 54: Bayesian Inference in fMRI · 2016. 2. 4. · Choice of Priors L M Harrison, W Penny, J Daunizeau, and K J Friston. Diffusion-based spatial priors for functional magnetic resonance

Brodersen et al. 2011, Generative Embedding for Model-Based

Classification of fMRI data. PLoS Comput. Biol. 7(6):e1002079.

step 2 —

kernel construction

step 1 —

model inversion

measurements

from an individual

subject

subject-specific

inverted DCM

subject representation in the

generative score space

A →

B

A →

C

B →

B

B →

C

A

C B

step 3 —

support vector classification

separating hyperplane

fitted to discriminate

between groups

A

C B

jointly discriminative

model parameters

step 4 —

interpretation

Page 55: Bayesian Inference in fMRI · 2016. 2. 4. · Choice of Priors L M Harrison, W Penny, J Daunizeau, and K J Friston. Diffusion-based spatial priors for functional magnetic resonance

Model-based decoding of disease status:

mildly aphasic patients (N=11) vs. controls (N=26)

Connectional fingerprints

from a 6-region DCM of

auditory areas during speech

perception

MGB

PT

HG

(A1)

S

MGB

PT

HG

(A1)

S

Page 56: Bayesian Inference in fMRI · 2016. 2. 4. · Choice of Priors L M Harrison, W Penny, J Daunizeau, and K J Friston. Diffusion-based spatial priors for functional magnetic resonance

Model-based decoding of disease status:

aphasic patients (N=11) vs. controls (N=26)

Classification accuracy

MGB

PT

HG

(A1)

MGB

PT

HG

(A1)

auditory stimuli

Page 57: Bayesian Inference in fMRI · 2016. 2. 4. · Choice of Priors L M Harrison, W Penny, J Daunizeau, and K J Friston. Diffusion-based spatial priors for functional magnetic resonance

-10

0

10

-0.5

0

0.5

-0.1

0

0.1

0.2

0.3

0.4

-0.4

-0.2

0 -0.5

0

0.5-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-10

0

10

-0.5

0

0.5

-0.1

0

0.1

0.2

0.3

0.4

-0.4

-0.2

0 -0.5

0

0.5-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

gen

era

tive

em

bed

din

g

L.H

G

L.H

G

Vo

xel (6

4,-

24,4

) m

m

L.MGB L.MGBVoxel (-42,-26,10) mm

Voxel (-56,-20,10) mm R.HG L.HG

controlspatients

Voxel-based feature space Generative score space

Multivariate searchlight

classification analysis

Generative embedding

using DCM

Page 58: Bayesian Inference in fMRI · 2016. 2. 4. · Choice of Priors L M Harrison, W Penny, J Daunizeau, and K J Friston. Diffusion-based spatial priors for functional magnetic resonance

• Posterior Probability Maps

• Hemodynamic Response Functions

• Population Receptive Fields

• Computational fMRI

• Multivariate Bayes

• Dynamic Causal Modelling

Summary

Page 59: Bayesian Inference in fMRI · 2016. 2. 4. · Choice of Priors L M Harrison, W Penny, J Daunizeau, and K J Friston. Diffusion-based spatial priors for functional magnetic resonance

Savage-Dickey Ratios

Bayesian equivalent of inference using F-tests implemented

using Savage-Dickey approximations to the log Bayes Factor.

W. Penny and G. Ridgway (2013). Efficient Posterior Probability Mapping

using Savage-Dickey Ratios. PLoS One 8(3), e59655

Page 60: Bayesian Inference in fMRI · 2016. 2. 4. · Choice of Priors L M Harrison, W Penny, J Daunizeau, and K J Friston. Diffusion-based spatial priors for functional magnetic resonance

Faces versus scrambled faces

RFX analysis

on 18 subjects.

Data from

Rik Henson.

Page 61: Bayesian Inference in fMRI · 2016. 2. 4. · Choice of Priors L M Harrison, W Penny, J Daunizeau, and K J Friston. Diffusion-based spatial priors for functional magnetic resonance

Faces versus scrambled faces: Evidence for Null

Using command line call to spm_bms_test_null.m

Probability of

Null Hypothesis

Page 62: Bayesian Inference in fMRI · 2016. 2. 4. · Choice of Priors L M Harrison, W Penny, J Daunizeau, and K J Friston. Diffusion-based spatial priors for functional magnetic resonance

One parameter

Likelihood and Prior

(1) (1) (1)

(1) (2) (2)

( | ) ( , )

( ) ( , )

p y N

p N

(1)

(1) (2)

(1) (2)(1) (2)

( | ) ( , )p y N m P

P

mP P

Posterior

)2( m )1(

Relative Precision Weighting

Prior

Likelihood Posterior

Page 63: Bayesian Inference in fMRI · 2016. 2. 4. · Choice of Priors L M Harrison, W Penny, J Daunizeau, and K J Friston. Diffusion-based spatial priors for functional magnetic resonance

Two parameters

Page 64: Bayesian Inference in fMRI · 2016. 2. 4. · Choice of Priors L M Harrison, W Penny, J Daunizeau, and K J Friston. Diffusion-based spatial priors for functional magnetic resonance

Bayes Rule for Gaussians

Likelihood:

Prior:

Bayes rule:

Page 65: Bayesian Inference in fMRI · 2016. 2. 4. · Choice of Priors L M Harrison, W Penny, J Daunizeau, and K J Friston. Diffusion-based spatial priors for functional magnetic resonance

Model comparison

“Occam’s razor” :

mo

de

l e

vid

en

ce

p(y

|m)

space of all data sets

y=f(

x)

y =

f(x

)

x

Model evidence: