j. daunizeau brain and spine institute, paris, france

26
J. Daunizeau Brain and Spine Institute, Paris, France Wellcome Trust Centre for Neuroimaging, London, UK Bayesian inference

Upload: debbie

Post on 24-Feb-2016

26 views

Category:

Documents


0 download

DESCRIPTION

J. Daunizeau Brain and Spine Institute, Paris, France Wellcome Trust Centre for Neuroimaging, London, UK. Bayesian inference. Overview of the talk. 1 Probabilistic modelling and representation of uncertainty 1.1 Bayesian paradigm 1.2 Hierarchical models - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: J.  Daunizeau Brain and Spine Institute, Paris, France

J. Daunizeau

Brain and Spine Institute, Paris, FranceWellcome Trust Centre for Neuroimaging, London, UK

Bayesian inference

Page 2: J.  Daunizeau Brain and Spine Institute, Paris, France

Overview of the talk

1 Probabilistic modelling and representation of uncertainty1.1 Bayesian paradigm1.2 Hierarchical models1.3 Frequentist versus Bayesian inference

2 Numerical Bayesian inference methods2.1 Sampling methods2.2 Variational methods (ReML, EM, VB)

3 SPM applications3.1 aMRI segmentation3.2 Decoding of brain images3.3 Model-based fMRI analysis (with spatial priors)3.4 Dynamic causal modelling

Page 3: J.  Daunizeau Brain and Spine Institute, Paris, France

Overview of the talk

1 Probabilistic modelling and representation of uncertainty1.1 Bayesian paradigm1.2 Hierarchical models1.3 Frequentist versus Bayesian inference

2 Numerical Bayesian inference methods2.1 Sampling methods2.2 Variational methods (ReML, EM, VB)

3 SPM applications3.1 aMRI segmentation3.2 Decoding of brain images3.3 Model-based fMRI analysis (with spatial priors)3.4 Dynamic causal modelling

Page 4: J.  Daunizeau Brain and Spine Institute, Paris, France

Degree of plausibility desiderata:- should be represented using real numbers (D1)- should conform with intuition (D2)- should be consistent (D3)

a=2b=5

a=2

• normalization:

• marginalization:

• conditioning :(Bayes rule)

Bayesian paradigmprobability theory: basics

Page 5: J.  Daunizeau Brain and Spine Institute, Paris, France

Bayesian paradigmderiving the likelihood function

- Model of data with unknown parameters:

y f e.g., GLM: f X

- But data is noisy: y f

- Assume noise/residuals is ‘small’:

22

1exp2

p

4 0.05P

→ Distribution of data, given fixed parameters:

2

2

1exp2

p y y f

f

Page 6: J.  Daunizeau Brain and Spine Institute, Paris, France

Likelihood:

Prior:

Bayes rule:

Bayesian paradigmlikelihood, priors and the model evidence

generative model m

Page 7: J.  Daunizeau Brain and Spine Institute, Paris, France

Bayesian paradigmforward and inverse problems

,p y m

forward problem

likelihood

,p y m

inverse problem

posterior distribution

Page 8: J.  Daunizeau Brain and Spine Institute, Paris, France

Principle of parsimony :« plurality should not be assumed without necessity »

y=f(x

)y

= f(

x)

x

“Occam’s razor” :

mod

el e

vide

nce

p(y|

m)

space of all data sets

Model evidence:

Bayesian paradigmmodel comparison

Page 9: J.  Daunizeau Brain and Spine Institute, Paris, France

••• inference

causality

Hierarchical modelsprinciple

Page 10: J.  Daunizeau Brain and Spine Institute, Paris, France

Hierarchical modelsdirected acyclic graphs (DAGs)

Page 11: J.  Daunizeau Brain and Spine Institute, Paris, France

t t Y t *

0*P t t H

0p t H

0*P t t H if then reject H0

• estimate parameters (obtain test stat.)

H0 : 0• define the null, e.g.:

• apply decision rule, i.e.:

classical SPM

• define two alternative models, e.g.:

• apply decision rule, e.g.:

Bayesian Model Comparison

Frequentist versus Bayesian inferencea (quick) note on hypothesis testing

Y y

1p Y m

0p Y m

space of all datasets

if then accept m0

0

1

P m yP m y

0 0

1 1

1 if 0:

0 otherwise

: 0,

m p m

m p m N

Page 12: J.  Daunizeau Brain and Spine Institute, Paris, France

Family-level inferencetrading model resolution against statistical power

A B A B

A B

u

A B

u

P(m1|y) = 0.04 P(m2|y) = 0.25

P(m2|y) = 0.7P(m2|y) = 0.01

1 1 max

0.3m

P e y P m y

model selection error risk:

Page 13: J.  Daunizeau Brain and Spine Institute, Paris, France

Family-level inferencetrading model resolution against statistical power

A B A B

A B

u

A B

u

P(m1|y) = 0.04 P(m2|y) = 0.25

P(m2|y) = 0.7P(m2|y) = 0.01

1 1 max

0.3m

P e y P m y

model selection error risk:

P(f2|y) = 0.95P(f1|y) = 0.05

1 1 max

0.05f

P e y P f y

family inference(pool statistical evidence)

m f

P f y P m y

Page 14: J.  Daunizeau Brain and Spine Institute, Paris, France

Overview of the talk

1 Probabilistic modelling and representation of uncertainty1.1 Bayesian paradigm1.2 Hierarchical models1.3 Frequentist versus Bayesian inference

2 Numerical Bayesian inference methods2.1 Sampling methods2.2 Variational methods (ReML, EM, VB)

3 SPM applications3.1 aMRI segmentation3.2 Decoding of brain images3.3 Model-based fMRI analysis (with spatial priors)3.4 Dynamic causal modelling

Page 15: J.  Daunizeau Brain and Spine Institute, Paris, France

Sampling methodsMCMC example: Gibbs sampling

Page 16: J.  Daunizeau Brain and Spine Institute, Paris, France

Variational methodsVB / EM / ReML

→ VB : maximize the free energy F(q) w.r.t. the approximate posterior q(θ) under some (e.g., mean field, Laplace) simplifying constraint

1 or 2q

1 or 2 ,p y m

1 2, ,p y m

1

2

Page 17: J.  Daunizeau Brain and Spine Institute, Paris, France

Overview of the talk

1 Probabilistic modelling and representation of uncertainty1.1 Bayesian paradigm1.2 Hierarchical models1.3 Frequentist versus Bayesian inference

2 Numerical Bayesian inference methods2.1 Sampling methods2.2 Variational methods (ReML, EM, VB)

3 SPM applications3.1 aMRI segmentation3.2 Decoding of brain images3.3 Model-based fMRI analysis (with spatial priors)3.4 Dynamic causal modelling

Page 18: J.  Daunizeau Brain and Spine Institute, Paris, France

realignment smoothing

normalisation

general linear model

template

Gaussian field theory

p <0.05

statisticalinference

segmentationand normalisation

dynamic causalmodelling

posterior probabilitymaps (PPMs)

multivariatedecoding

Page 19: J.  Daunizeau Brain and Spine Institute, Paris, France

grey matter CSFwhite matter

yi ci

k

2

1

1 2 k

class variances

classmeans

ith voxelvalue

ith voxellabel

classfrequencies

aMRI segmentationmixture of Gaussians (MoG) model

Page 20: J.  Daunizeau Brain and Spine Institute, Paris, France

Decoding of brain imagesrecognizing brain states from fMRI

+

fixation cross

>>

paceresponse

log-evidence of X-Y sparse mappings:effect of lateralization

log-evidence of X-Y bilateral mappings:effect of spatial deployment

Page 21: J.  Daunizeau Brain and Spine Institute, Paris, France

fMRI time series analysisspatial priors and model comparison

PPM: regions best explainedby short-term memory model

PPM: regions best explained by long-term memory model

fMRI time series

GLM coeff

prior varianceof GLM coeff

prior varianceof data noise

AR coeff(correlated noise)

short-term memorydesign matrix (X)

long-term memorydesign matrix (X)

Page 22: J.  Daunizeau Brain and Spine Institute, Paris, France

m2m1 m3 m4

V1 V5stim

PPC

attention

V1 V5stim

PPC

attention

V1 V5stim

PPC

attention

V1 V5stim

PPC

attention

m1 m2 m3 m4

15

10

5

0

V1 V5stim

PPC

attention

1.25

0.13

0.46

0.39 0.26

0.26

0.10estimated

effective synaptic strengthsfor best model (m4)

models marginal likelihoodln p y m

Dynamic Causal Modellingnetwork structure identification

Page 23: J.  Daunizeau Brain and Spine Institute, Paris, France

1 2

31 2

31 2

3

1 2

3

time

( , , )x f x u

32

21

13

0t

t t

t t

tu

13u 3

u

DCMs and DAGsa note on causality

Page 24: J.  Daunizeau Brain and Spine Institute, Paris, France

m1

m2

diffe

renc

es in

log-

mod

el e

vide

nces

1 2ln lnp y m p y m

subjects

fixed effect

random effect

assume all subjects correspond to the same model

assume different subjects might correspond to different models

Dynamic Causal Modellingmodel comparison for group studies

Page 25: J.  Daunizeau Brain and Spine Institute, Paris, France

I thank you for your attention.

Page 26: J.  Daunizeau Brain and Spine Institute, Paris, France

A note on statistical significancelessons from the Neyman-Pearson lemma

• Neyman-Pearson lemma: the likelihood ratio (or Bayes factor) test

1

0

p y Hu

p y H

is the most powerful test of size to test the null. 0p u H

MVB (Bayes factor) u=1.09, power=56%

CCA (F-statistics)F=2.20, power=20%

error I rate

1 - e

rror

II ra

te

ROC analysis

• what is the threshold u, above which the Bayes factor test yields a error I rate of 5%?