basic theory of antiferromagnets i - uni-mainz.de · basic theory of antiferromagnets i september...

81
Basic Theory of Antiferromagnets I September 26, 2016 Antiferromagnetic Spintronics Waldhausen Schloss Helen Gomonay Johannes Gutenberg Universität Mainz

Upload: others

Post on 14-Jun-2020

6 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Basic Theory of Antiferromagnets I - uni-mainz.de · Basic Theory of Antiferromagnets I September 26, 2016 Antiferromagnetic Spintronics Waldhausen Schloss Helen Gomonay Johannes

Basic Theory of Antiferromagnets I

September 26, 2016 Antiferromagnetic Spintronics

Waldhausen Schloss

Helen Gomonay Johannes Gutenberg Universität Mainz

Page 2: Basic Theory of Antiferromagnets I - uni-mainz.de · Basic Theory of Antiferromagnets I September 26, 2016 Antiferromagnetic Spintronics Waldhausen Schloss Helen Gomonay Johannes

Take-home message

2

• Antiferromagnets: Neel order parameter, distinguish between micro- and macro description!

• Two types of exchange, exchange enhancement

• Newtonian-like dynamics vs gyrotropic dynamics in FM

Page 3: Basic Theory of Antiferromagnets I - uni-mainz.de · Basic Theory of Antiferromagnets I September 26, 2016 Antiferromagnetic Spintronics Waldhausen Schloss Helen Gomonay Johannes

Application

• High frequencies • Zero magnetization • Magnetomechanical coupling • Combined with

semiconductors

New physics

• Variety of structures • Nontrivial dynamics • Spin-orbit coupling • Complicated, less studied

FM ⇒ AFM

3

Motivation

Page 4: Basic Theory of Antiferromagnets I - uni-mainz.de · Basic Theory of Antiferromagnets I September 26, 2016 Antiferromagnetic Spintronics Waldhausen Schloss Helen Gomonay Johannes

Outline

4

• Basics of antiferromagnetism: exchange interactions,Neel states, magnetic sublattices

• Phenomenological description, spin-flop transitions • Magneto elastic effects • Basics of dynamics: equation of motion

Page 5: Basic Theory of Antiferromagnets I - uni-mainz.de · Basic Theory of Antiferromagnets I September 26, 2016 Antiferromagnetic Spintronics Waldhausen Schloss Helen Gomonay Johannes

Outline

5

• Basics of antiferromagnetism: exchange interactions,Neel states, magnetic sublattices

• Phenomenological description, spin-flop transitions • Magneto elastic effects • Basics of dynamics: equation of motion

Page 6: Basic Theory of Antiferromagnets I - uni-mainz.de · Basic Theory of Antiferromagnets I September 26, 2016 Antiferromagnetic Spintronics Waldhausen Schloss Helen Gomonay Johannes

Hierarchy of atomic interactions

6

 

1µeV

1 meV

1 eV

energy, eV

 

 k k

Page 7: Basic Theory of Antiferromagnets I - uni-mainz.de · Basic Theory of Antiferromagnets I September 26, 2016 Antiferromagnetic Spintronics Waldhausen Schloss Helen Gomonay Johannes

AF exchange interactions

Co80Ni20 / Ru / Co80Ni20

Parkin et al., Phys.Rev. B 44, 7131 (1991) 7

• Superexchange (insulators) • RKKY (4-f metals) • Exchange in 3-d metals • Double exchange (transition metal oxides) • DMI (anisotropic exchange)

Page 8: Basic Theory of Antiferromagnets I - uni-mainz.de · Basic Theory of Antiferromagnets I September 26, 2016 Antiferromagnetic Spintronics Waldhausen Schloss Helen Gomonay Johannes

Quantum state vs Neel state

,

ˆ ˆˆjk j k

j k

H J=∑ S S

Quantum state, T=0

 

8

Page 9: Basic Theory of Antiferromagnets I - uni-mainz.de · Basic Theory of Antiferromagnets I September 26, 2016 Antiferromagnetic Spintronics Waldhausen Schloss Helen Gomonay Johannes

Quantum state vs Neel state

,

ˆ ˆˆjk j k

j k

H J=∑ S S

Neel state, T≠0

s1 s2

1 2= −S S

{s1, s2,…, sj, sj+1}

9

Page 10: Basic Theory of Antiferromagnets I - uni-mainz.de · Basic Theory of Antiferromagnets I September 26, 2016 Antiferromagnetic Spintronics Waldhausen Schloss Helen Gomonay Johannes

Different experimental technique

ARPES

XMLD

RIXS

Raman spectroscopy

ND

10

Bryan Gallagher: afternoon session

Page 11: Basic Theory of Antiferromagnets I - uni-mainz.de · Basic Theory of Antiferromagnets I September 26, 2016 Antiferromagnetic Spintronics Waldhausen Schloss Helen Gomonay Johannes

Sublattices

Sublattice magnetizations (Neel, 1948)

( ) ( )j

k k jgN τ

τ= +∑M r S r

r

τ•Physically small volumes •Macroscopic vectors •Field variables

11

Page 12: Basic Theory of Antiferromagnets I - uni-mainz.de · Basic Theory of Antiferromagnets I September 26, 2016 Antiferromagnetic Spintronics Waldhausen Schloss Helen Gomonay Johannes

and order parameters

NiO, IrMn

M2

M1

Symmetry relations: 2[110] : M1 ↔ M2

Order parameter (Neel vector):

Magnetization: MAF= M1+M2 ≈0

L ⊥ MAF ,⏐L⏐ ≈2Ms

M1

M2

MAF

L

12

M1

M2

L= M1—M2

Page 13: Basic Theory of Antiferromagnets I - uni-mainz.de · Basic Theory of Antiferromagnets I September 26, 2016 Antiferromagnetic Spintronics Waldhausen Schloss Helen Gomonay Johannes

Noncollinear structures

IrMn, Mn3NiN

M2

M3

M1

2[110] : M1 ↔ M2, M3 ↔ M3

3[111] : M1 → M2 → M3

Order parameters (Neel vectors):

Magnetization: MAF= M1+ M2 + M3 ≈0

M1

M3

M2

L1

L2

L1= M1+M2 - 2M3 L2= M1- M2

13

Page 14: Basic Theory of Antiferromagnets I - uni-mainz.de · Basic Theory of Antiferromagnets I September 26, 2016 Antiferromagnetic Spintronics Waldhausen Schloss Helen Gomonay Johannes

Variety of AFM structures

α-Mn

NiONiMn

Mn3NiN

 

14

Page 15: Basic Theory of Antiferromagnets I - uni-mainz.de · Basic Theory of Antiferromagnets I September 26, 2016 Antiferromagnetic Spintronics Waldhausen Schloss Helen Gomonay Johannes

Take-home messages

15

• AF = variety of exchange mechanisms • AF = metals,insulators and in between • AF = variety of structures • Macroscopic description = sublattice

magnetizations

Page 16: Basic Theory of Antiferromagnets I - uni-mainz.de · Basic Theory of Antiferromagnets I September 26, 2016 Antiferromagnetic Spintronics Waldhausen Schloss Helen Gomonay Johannes

Outline

16

• Basics of antiferromagnetism: exchange interactions,Neel states, magnetic sublattices

• Phenomenological description, spin-flop transitions • Magneto elastic effects • Basics of dynamics: equation of motion

Page 17: Basic Theory of Antiferromagnets I - uni-mainz.de · Basic Theory of Antiferromagnets I September 26, 2016 Antiferromagnetic Spintronics Waldhausen Schloss Helen Gomonay Johannes

Hierarchy of interactions

1 T

100 T

1000 T

H, T

intra NJ T⇔

inter 1/J χ⊥∝

s-f inter anisH J H∝

17

Page 18: Basic Theory of Antiferromagnets I - uni-mainz.de · Basic Theory of Antiferromagnets I September 26, 2016 Antiferromagnetic Spintronics Waldhausen Schloss Helen Gomonay Johannes

Free energy, Landau approach

18

Symmetry-based modeling

Low temperature T,H ⌧ Jinter

w =1

2JinterM

2AF �MAFH+

1

2A (rL)2

+1

2K(2)

anisL2z

� 1

4K(4)

anis

�L4x

+ L4y

MAF ⌧ L, L = 2Ms ⇡ const

Page 19: Basic Theory of Antiferromagnets I - uni-mainz.de · Basic Theory of Antiferromagnets I September 26, 2016 Antiferromagnetic Spintronics Waldhausen Schloss Helen Gomonay Johannes

Equilibrium state

19

0F wdVδ δ= =∫Principle of energy minimum:

Exchange approximation: excluding MAF

( )2inter

14 sJ M

= × ×M L H L

M1

H=0

M2

L

H

L M1

M2

MAF

wZeeman = � (L⇥H)2

8JinterMs

Page 20: Basic Theory of Antiferromagnets I - uni-mainz.de · Basic Theory of Antiferromagnets I September 26, 2016 Antiferromagnetic Spintronics Waldhausen Schloss Helen Gomonay Johannes

Spin-flop transition

20

w =H

kanis

8Ms

L2z

� H?anis

32Ms

�L4x

+ L4y

LLM1

M1M2 M2

Possibility for information coding!

Page 21: Basic Theory of Antiferromagnets I - uni-mainz.de · Basic Theory of Antiferromagnets I September 26, 2016 Antiferromagnetic Spintronics Waldhausen Schloss Helen Gomonay Johannes

Spin-flop transition

21

w =H

kanis

8Ms

L2z

�H2L2

y

8JinterMs

� H?anis

32Ms

�L4x

+ L4y

H Hsf =q2JinterH?

anis

L

HH

LMAF

MAF=0

Page 22: Basic Theory of Antiferromagnets I - uni-mainz.de · Basic Theory of Antiferromagnets I September 26, 2016 Antiferromagnetic Spintronics Waldhausen Schloss Helen Gomonay Johannes

Spin-flop transition

22

H

L MAF

H > Hsf =q2JinterH?

anis

Exchange enhancement

Page 23: Basic Theory of Antiferromagnets I - uni-mainz.de · Basic Theory of Antiferromagnets I September 26, 2016 Antiferromagnetic Spintronics Waldhausen Schloss Helen Gomonay Johannes

Take-home messages

23

• Macroscopic description: order parameters and magnetization vector

• Inter-sublattice exchange – exchange enhancement

• Static magnetic field – quadratic effects • Equivalent states– information coding • Spin-flop transition – information control

Page 24: Basic Theory of Antiferromagnets I - uni-mainz.de · Basic Theory of Antiferromagnets I September 26, 2016 Antiferromagnetic Spintronics Waldhausen Schloss Helen Gomonay Johannes

Outline

24

• Basics of antiferromagnetism: exchange interactions,Neel states, magnetic sublattices

• Phenomenological description, spin-flop transitions • Magneto elastic effects • Basics of dynamics: equation of motion

Page 25: Basic Theory of Antiferromagnets I - uni-mainz.de · Basic Theory of Antiferromagnets I September 26, 2016 Antiferromagnetic Spintronics Waldhausen Schloss Helen Gomonay Johannes

Hierarchy of atomic interactions

25

 

1µeV

1 meV

1 eV

energy, eV

 

 k k

Page 26: Basic Theory of Antiferromagnets I - uni-mainz.de · Basic Theory of Antiferromagnets I September 26, 2016 Antiferromagnetic Spintronics Waldhausen Schloss Helen Gomonay Johannes

Magnetoelastic interactions

Covalent bonds ⇒ spin-orbit coupling ⇒ mag.-el.

Spontaneous striction:

26

uspon

= � �me

c0L⌦ L

wel =1

2cjklmujlukm

wme = �jklmujlLkLm

Page 27: Basic Theory of Antiferromagnets I - uni-mainz.de · Basic Theory of Antiferromagnets I September 26, 2016 Antiferromagnetic Spintronics Waldhausen Schloss Helen Gomonay Johannes

Spontaneous striction

L

L

27

uspon

= �⇤

c0L2

uspon

=⇤

c0L2

uspon

= 0

uspon

= � �me

c0L⌦ L

Page 28: Basic Theory of Antiferromagnets I - uni-mainz.de · Basic Theory of Antiferromagnets I September 26, 2016 Antiferromagnetic Spintronics Waldhausen Schloss Helen Gomonay Johannes

Magnetoelastic anisotropy

•Additional 4-th order anisotropy

•Variation of potential barrier

28

uspon

= � �me

c0L⌦ L wme = �jklmujlLkLm

w =H

kanis

8Ms

L2z

�H?

anis

32Ms

+�2

c0

� �L4x

+ L4y

Page 29: Basic Theory of Antiferromagnets I - uni-mainz.de · Basic Theory of Antiferromagnets I September 26, 2016 Antiferromagnetic Spintronics Waldhausen Schloss Helen Gomonay Johannes

Example: domain walls

spon1u

spon2u

L1 L2

X

ψ

ϕLY x

y

29

�Ad2�

dz2+

Kanis +

�2

c0f(z)

�sin� cos� = 0

Page 30: Basic Theory of Antiferromagnets I - uni-mainz.de · Basic Theory of Antiferromagnets I September 26, 2016 Antiferromagnetic Spintronics Waldhausen Schloss Helen Gomonay Johannes

Elastic dipoles: long-range forces

1 23

1 2

ˆ ˆ( ) ( )Φ ∝

in in

ddu ur rr r2ˆ( )u r

1ˆ( )u r

30

uspon

= � �me

c0L⌦ L

Page 31: Basic Theory of Antiferromagnets I - uni-mainz.de · Basic Theory of Antiferromagnets I September 26, 2016 Antiferromagnetic Spintronics Waldhausen Schloss Helen Gomonay Johannes

Shape-induced effects

2shape 2 2destr x y

aW K L L

b⎛ ⎞= −⎜ ⎟⎝ ⎠

Inhomogeneous sample, destressing energypy

31

Page 32: Basic Theory of Antiferromagnets I - uni-mainz.de · Basic Theory of Antiferromagnets I September 26, 2016 Antiferromagnetic Spintronics Waldhausen Schloss Helen Gomonay Johannes

Magnetostriction and stress

T>TN T<TN

σin

32

Page 33: Basic Theory of Antiferromagnets I - uni-mainz.de · Basic Theory of Antiferromagnets I September 26, 2016 Antiferromagnetic Spintronics Waldhausen Schloss Helen Gomonay Johannes

Take-home message

33

• Magnetostriction = source of additional anisotropy

• Orientation domains = magnetoelastic • Shape anisotropy = magnetoelastic • Different effects in nano and macro-

samples

Page 34: Basic Theory of Antiferromagnets I - uni-mainz.de · Basic Theory of Antiferromagnets I September 26, 2016 Antiferromagnetic Spintronics Waldhausen Schloss Helen Gomonay Johannes

Outline

34

• Basics of antiferromagnetism: exchange interactions,Neel states, magnetic sublattices

• Phenomenological description, spin-flop transitions • Magneto elastic effects • Basics of dynamics: equation of motion

Page 35: Basic Theory of Antiferromagnets I - uni-mainz.de · Basic Theory of Antiferromagnets I September 26, 2016 Antiferromagnetic Spintronics Waldhausen Schloss Helen Gomonay Johannes

Spin Torques in antiferromagnet

35

dM1

dt= �M1 ⇥H1 + ⇤M1 ⇥ p1 ⇥M1

dM2

dt= �M2 ⇥H2 + ⇤M2 ⇥ p2 ⇥M2

Page 36: Basic Theory of Antiferromagnets I - uni-mainz.de · Basic Theory of Antiferromagnets I September 26, 2016 Antiferromagnetic Spintronics Waldhausen Schloss Helen Gomonay Johannes

Hierarchy of interactions

1 T

100 T

1000 T

H, T

intra NJ T⇔

inter 1/J χ⊥∝

s-f inter anisH J H∝

36

Page 37: Basic Theory of Antiferromagnets I - uni-mainz.de · Basic Theory of Antiferromagnets I September 26, 2016 Antiferromagnetic Spintronics Waldhausen Schloss Helen Gomonay Johannes

Exchange enhancement

37

𝜞1N

𝜞2N

𝜞ex

𝜞ex

M1

M2

BN1

BN2

Page 38: Basic Theory of Antiferromagnets I - uni-mainz.de · Basic Theory of Antiferromagnets I September 26, 2016 Antiferromagnetic Spintronics Waldhausen Schloss Helen Gomonay Johannes

Solid-like dynamics

38

inter, JHT <<

Page 39: Basic Theory of Antiferromagnets I - uni-mainz.de · Basic Theory of Antiferromagnets I September 26, 2016 Antiferromagnetic Spintronics Waldhausen Schloss Helen Gomonay Johannes

Equations of motion

39

Dynamic magnetisation

M ⌘ 1

Hex

L⇥ L = �L⇥HL

Magnetisation balance

M =1

Hex

L⇥ L+1

Hex

L⇥H⇥ L

Page 40: Basic Theory of Antiferromagnets I - uni-mainz.de · Basic Theory of Antiferromagnets I September 26, 2016 Antiferromagnetic Spintronics Waldhausen Schloss Helen Gomonay Johannes

Equation of motion

AF dynamics: Newton-like

FM dynamics: precession

40

L|{z}acc

= � �⇣H⇥ L+ 2H⇥ L

| {z }gyroforce

+ �2Jinter

HL| {z }potent.force

Page 41: Basic Theory of Antiferromagnets I - uni-mainz.de · Basic Theory of Antiferromagnets I September 26, 2016 Antiferromagnetic Spintronics Waldhausen Schloss Helen Gomonay Johannes

Take-home messages

41

• AF: dynamics magnetisation • AF: inertia due to exchange • Dynamics = balance equation for

magnetizations

Page 42: Basic Theory of Antiferromagnets I - uni-mainz.de · Basic Theory of Antiferromagnets I September 26, 2016 Antiferromagnetic Spintronics Waldhausen Schloss Helen Gomonay Johannes

Conclusions

42

• AF different from FM • Field effects => weak • Exchange interaction => important for dynamics • Strong magneto elastic effects

Page 43: Basic Theory of Antiferromagnets I - uni-mainz.de · Basic Theory of Antiferromagnets I September 26, 2016 Antiferromagnetic Spintronics Waldhausen Schloss Helen Gomonay Johannes

Thank you!

Page 44: Basic Theory of Antiferromagnets I - uni-mainz.de · Basic Theory of Antiferromagnets I September 26, 2016 Antiferromagnetic Spintronics Waldhausen Schloss Helen Gomonay Johannes

Surface vs bulk anisotropy

xy

44

Wsurf = Ksurf

Z

S(L · n)2dS

Wbulk = �1

4Kbulk

Z

V

�L4x

+ L4y

�dV

Page 45: Basic Theory of Antiferromagnets I - uni-mainz.de · Basic Theory of Antiferromagnets I September 26, 2016 Antiferromagnetic Spintronics Waldhausen Schloss Helen Gomonay Johannes

Shape-induced effects

( ) ( )anis 4 4 shape 2/x y xW V K L L K a b L⊥⎡ ⎤= + +⎣ ⎦

Homogeneous sample, shape-induced anisotropy

M

L

a=b

M

L

a>>b

45

Kbias > Kshape

⇣ab

⌘= 0 Kbias < Kshape

⇣ab

Page 46: Basic Theory of Antiferromagnets I - uni-mainz.de · Basic Theory of Antiferromagnets I September 26, 2016 Antiferromagnetic Spintronics Waldhausen Schloss Helen Gomonay Johannes

Magnetoelastic interactions

m-e jklm jk l mw u L Lλ=

Covalent bonds ⇒ spin-orbit coupling ⇒ mag.-el.

Spontaneous striction:

L

L

x

y y

x46

uspon

= � �me

c0L⌦ L

Page 47: Basic Theory of Antiferromagnets I - uni-mainz.de · Basic Theory of Antiferromagnets I September 26, 2016 Antiferromagnetic Spintronics Waldhausen Schloss Helen Gomonay Johannes

Basic Theory of Antiferromagnets II

September 26, 2016 Antiferromagnetic Spintronics

Waldhausen Schloss

Helen Gomonay Johannes Gutenberg Universität Mainz

Page 48: Basic Theory of Antiferromagnets I - uni-mainz.de · Basic Theory of Antiferromagnets I September 26, 2016 Antiferromagnetic Spintronics Waldhausen Schloss Helen Gomonay Johannes

Take-home message

2

• Exchange enhancement ⇒fast antiferromagnetic dynamics

• Antiferromagnetic states can be effectively manipulated by spin and charge current

Page 49: Basic Theory of Antiferromagnets I - uni-mainz.de · Basic Theory of Antiferromagnets I September 26, 2016 Antiferromagnetic Spintronics Waldhausen Schloss Helen Gomonay Johannes

Motivation

3

19th century physics

• All-electrical control and manipulation of AF states

• Information and data storage with AF

Page 50: Basic Theory of Antiferromagnets I - uni-mainz.de · Basic Theory of Antiferromagnets I September 26, 2016 Antiferromagnetic Spintronics Waldhausen Schloss Helen Gomonay Johannes

Outline

4

• Dynamics: spin-waves

• Dynamics: domain walls • Current-induced dynamics • Switching and STO

Page 51: Basic Theory of Antiferromagnets I - uni-mainz.de · Basic Theory of Antiferromagnets I September 26, 2016 Antiferromagnetic Spintronics Waldhausen Schloss Helen Gomonay Johannes

Outline

5

• Dynamics: spin-waves • Dynamics: domain walls • Current-induced dynamics • What is beyond?

Page 52: Basic Theory of Antiferromagnets I - uni-mainz.de · Basic Theory of Antiferromagnets I September 26, 2016 Antiferromagnetic Spintronics Waldhausen Schloss Helen Gomonay Johannes

Hierarchy of interactions

1 T

100 T

1000 T

H, T

intra NJ T⇔

inter 1/J χ⊥∝

s-f inter anisH J H∝

6

Page 53: Basic Theory of Antiferromagnets I - uni-mainz.de · Basic Theory of Antiferromagnets I September 26, 2016 Antiferromagnetic Spintronics Waldhausen Schloss Helen Gomonay Johannes

Spin waves as “classical” excitations

7

L⇥ L = �2JinterL⇥HL

L = L(0) + lei(kr�!t)

x

y

z

!AFMR = �pJinterHanis

!sw =q!2AFMR + c2k2

L(0)kz, lky

M / i!

JinterL(0) ⇥ le�i!t kx

Page 54: Basic Theory of Antiferromagnets I - uni-mainz.de · Basic Theory of Antiferromagnets I September 26, 2016 Antiferromagnetic Spintronics Waldhausen Schloss Helen Gomonay Johannes

Circular polarised modes

8

M / i!l2

JinterM / � i!l2

Jinter

!± = ±�H + !AFMR

Page 55: Basic Theory of Antiferromagnets I - uni-mainz.de · Basic Theory of Antiferromagnets I September 26, 2016 Antiferromagnetic Spintronics Waldhausen Schloss Helen Gomonay Johannes

Magnetoelastic gap

Large sample: “frozen” lattice

soundds

τ ∝ d= 1 mm, τsound∝10-6 sec, d= 30 nm, τsound ∝10-11 sec

τmag∝10-12 sec

sponˆ

ˆ'

u constcλ

= − ⊗ =L L

( )

sponanis anis

sponAFMR inter anis

2

2

s

s

H H M u

J H M u

λ

ω γ λ

→ +

= +

9

Page 56: Basic Theory of Antiferromagnets I - uni-mainz.de · Basic Theory of Antiferromagnets I September 26, 2016 Antiferromagnetic Spintronics Waldhausen Schloss Helen Gomonay Johannes

Magnetoelastic waves

( ) ( )(0) ,i t i tje eω ω− −= + =kr krL L l u u

10

!21,2(k) = !2

AFMR + s2k2 ±q(!2

AFMR � s2k2)2+ 4�Jinter�2k2

Page 57: Basic Theory of Antiferromagnets I - uni-mainz.de · Basic Theory of Antiferromagnets I September 26, 2016 Antiferromagnetic Spintronics Waldhausen Schloss Helen Gomonay Johannes

Take-home messages

11

• Spin-wave spectra: many modes • Spin waves transfer magnetization • Exchange enhancement • Magneto elastic gap, size effects

Page 58: Basic Theory of Antiferromagnets I - uni-mainz.de · Basic Theory of Antiferromagnets I September 26, 2016 Antiferromagnetic Spintronics Waldhausen Schloss Helen Gomonay Johannes

Outline

12

• Dynamics: spin-waves • Dynamics: domain walls • Current-induced dynamics • Switching and STO

Page 59: Basic Theory of Antiferromagnets I - uni-mainz.de · Basic Theory of Antiferromagnets I September 26, 2016 Antiferromagnetic Spintronics Waldhausen Schloss Helen Gomonay Johannes

Below Walker breakdown in FM

13

Velo

city

Field

B

x

N. L. Schryer, L. R. Walker, JAP, 1972µ

FM ⌘dv

FMsteady

dBZee=

�xDW

↵G

Page 60: Basic Theory of Antiferromagnets I - uni-mainz.de · Basic Theory of Antiferromagnets I September 26, 2016 Antiferromagnetic Spintronics Waldhausen Schloss Helen Gomonay Johannes

Anatomy of FM DW motion

14

𝜞an

𝜞ZM

BZ

⌧FM =1

�↵GHan

MFMDW =MsS

�2HanxDW

MFMDW

⌧FM=

↵GMsS

�xDW

Page 61: Basic Theory of Antiferromagnets I - uni-mainz.de · Basic Theory of Antiferromagnets I September 26, 2016 Antiferromagnetic Spintronics Waldhausen Schloss Helen Gomonay Johannes

Above Walker breakdown in FM

15

Velo

city

Field

Page 62: Basic Theory of Antiferromagnets I - uni-mainz.de · Basic Theory of Antiferromagnets I September 26, 2016 Antiferromagnetic Spintronics Waldhausen Schloss Helen Gomonay Johannes

No Walker breakdown in AFM

16

Velo

city

Field

I.V. Bar’yakhtar, B.A. Ivanov, Solid State Comm., 1980

Page 63: Basic Theory of Antiferromagnets I - uni-mainz.de · Basic Theory of Antiferromagnets I September 26, 2016 Antiferromagnetic Spintronics Waldhausen Schloss Helen Gomonay Johannes

Anatomy of AF DW motion

17

𝜞1N

𝜞2N

𝜞ex

𝜞ex

M1

M2

BN1

BN2

MAFDW

=MsS

�2Hex

xDW

MAFDW

⌧AF=

↵GMsS

�xDW

⌧AF

=1

�↵GHex

Page 64: Basic Theory of Antiferromagnets I - uni-mainz.de · Basic Theory of Antiferromagnets I September 26, 2016 Antiferromagnetic Spintronics Waldhausen Schloss Helen Gomonay Johannes

Dynamics of DW in AF and FM

18

Velo

city

Field

Page 65: Basic Theory of Antiferromagnets I - uni-mainz.de · Basic Theory of Antiferromagnets I September 26, 2016 Antiferromagnetic Spintronics Waldhausen Schloss Helen Gomonay Johannes

DW motion: “relativistic” dynamics

19

dPx

dt= �↵

G

�Hex

Px

+ Fx

P

x

/ �Z

@✓

@x

✓dx

Px

/ vp1� v2/c2

c2@2✓

@x2

� ¨✓ � �2Hex

Han

sin ✓ cos ✓ = ↵G�Hex

˙✓ + �2Hex

BNeel

sin ✓

Page 66: Basic Theory of Antiferromagnets I - uni-mainz.de · Basic Theory of Antiferromagnets I September 26, 2016 Antiferromagnetic Spintronics Waldhausen Schloss Helen Gomonay Johannes

Take-home messages

20

• No Walker breakdown • Small mass and exchange enhancement • Relativistic dynamics

Ulrich Rössler: today and tomorrow session

Page 67: Basic Theory of Antiferromagnets I - uni-mainz.de · Basic Theory of Antiferromagnets I September 26, 2016 Antiferromagnetic Spintronics Waldhausen Schloss Helen Gomonay Johannes

Outline

21

• Dynamics: spin-waves • Dynamics: domain walls • Current-induced dynamics • Switching and STO

Page 68: Basic Theory of Antiferromagnets I - uni-mainz.de · Basic Theory of Antiferromagnets I September 26, 2016 Antiferromagnetic Spintronics Waldhausen Schloss Helen Gomonay Johannes

Hierarchy of interactions

1 T

100 T

1000 T

H, T

intra NJ T⇔

inter 1/J χ⊥∝

s-f inter anisH J H∝

22

Page 69: Basic Theory of Antiferromagnets I - uni-mainz.de · Basic Theory of Antiferromagnets I September 26, 2016 Antiferromagnetic Spintronics Waldhausen Schloss Helen Gomonay Johannes

Spintronic: sd-exchange in FM

Polarization:

Scattering:

Effective field:

mH δsdsd J= Hsd

23

⇧in

� ⇧out

/ f(Jsd

)�m⌦ je

Hsd = �JsdX

j

sj · Sj ) �Jsd�m ·M

�m / hsjikM

Page 70: Basic Theory of Antiferromagnets I - uni-mainz.de · Basic Theory of Antiferromagnets I September 26, 2016 Antiferromagnetic Spintronics Waldhausen Schloss Helen Gomonay Johannes

AF: sd-exchange?

Polarization:

Scattering:

Effective field:

mH δsdsd J= Hsd

24

⇧in

� ⇧out

/ f(Jsd

)�m⌦ je

Hsd = �JsdX

j

sj · Sj ) �Jsd�m ·MAF

�m / hsjikMAF ! 0

Page 71: Basic Theory of Antiferromagnets I - uni-mainz.de · Basic Theory of Antiferromagnets I September 26, 2016 Antiferromagnetic Spintronics Waldhausen Schloss Helen Gomonay Johannes

Equations of motion

25

Dynamic magnetisation

M ⌘ 1

Hex

L⇥ L = �L⇥HL

Magnetisation balance

M =1

Hex

L⇥ L+1

Hex

L⇥H⇥ L

Page 72: Basic Theory of Antiferromagnets I - uni-mainz.de · Basic Theory of Antiferromagnets I September 26, 2016 Antiferromagnetic Spintronics Waldhausen Schloss Helen Gomonay Johannes

Magnetization⇒ rotation

const=+ AFMmδ

26

MAF

�m ! MAF / L⇥ L ! L(t)

MAF

Page 73: Basic Theory of Antiferromagnets I - uni-mainz.de · Basic Theory of Antiferromagnets I September 26, 2016 Antiferromagnetic Spintronics Waldhausen Schloss Helen Gomonay Johannes

Spin transfer in AF and spin balance

( ) sinkˆˆAF +⋅Π−Π= NMoutindt

d

H.Gomonay, V.Loktev,2008

 

27

L� �2JinterHL =

✓�dI

dt+ JinterI�

◆s⇥ L� �↵GJinterL⇥ L

Page 74: Basic Theory of Antiferromagnets I - uni-mainz.de · Basic Theory of Antiferromagnets I September 26, 2016 Antiferromagnetic Spintronics Waldhausen Schloss Helen Gomonay Johannes

Outline

28

• Dynamics: spin-waves • Dynamics: domain walls • Current-induced dynamics • Switching and STO

Page 75: Basic Theory of Antiferromagnets I - uni-mainz.de · Basic Theory of Antiferromagnets I September 26, 2016 Antiferromagnetic Spintronics Waldhausen Schloss Helen Gomonay Johannes

Dynamics in the dc spin current

29

II

L

anerint

AFMRAFcr H

JI γ

σ

α

γσ

ωγ==

s

L� �2JinterHL = JinterI�s⇥ L� �↵GJinterL⇥ L

s

Page 76: Basic Theory of Antiferromagnets I - uni-mainz.de · Basic Theory of Antiferromagnets I September 26, 2016 Antiferromagnetic Spintronics Waldhausen Schloss Helen Gomonay Johannes

Critical current

I

anerint

AFMRAFcr H

JI γ

σ

α

γσ

ωγ==

0 10 20 30 40 50

-2

0

2

4

6

8

10

t

-10

1

-10

1-1

0

1

lXlY

l Z

-10

1

-10

1-1

0

1

lXlY

l Z

0 10 20 30 40 50-0.5

0

0.5

1

t

l Z

epol

30

Page 77: Basic Theory of Antiferromagnets I - uni-mainz.de · Basic Theory of Antiferromagnets I September 26, 2016 Antiferromagnetic Spintronics Waldhausen Schloss Helen Gomonay Johannes

Critical current

FM

AFM, uniaxial

anGFMSTT HH α=

AFM, cubic

31

HAFSTT = ↵G

pHanJinter

HAFSTT =

r↵2GHanJinter +

⇣H

kan �H?

an

⌘2

Page 78: Basic Theory of Antiferromagnets I - uni-mainz.de · Basic Theory of Antiferromagnets I September 26, 2016 Antiferromagnetic Spintronics Waldhausen Schloss Helen Gomonay Johannes

FM vs AFM, possible dynamics near the critical current

32

Page 79: Basic Theory of Antiferromagnets I - uni-mainz.de · Basic Theory of Antiferromagnets I September 26, 2016 Antiferromagnetic Spintronics Waldhausen Schloss Helen Gomonay Johannes

Take-home messages

33

• Spin transfer = magnetisation = dynamics • Exchange enhancement of spin • Different dynamics of FM and AF

Page 80: Basic Theory of Antiferromagnets I - uni-mainz.de · Basic Theory of Antiferromagnets I September 26, 2016 Antiferromagnetic Spintronics Waldhausen Schloss Helen Gomonay Johannes

What’s beyond?

34

• Quantum fluctuations, quantum excitations • Large fields ~ intersublattice exchange • Ultrafast dynamics, magnetooptics • Small AF particles (mesoscales)

Page 81: Basic Theory of Antiferromagnets I - uni-mainz.de · Basic Theory of Antiferromagnets I September 26, 2016 Antiferromagnetic Spintronics Waldhausen Schloss Helen Gomonay Johannes

Welcome to AF spintronics!