bart verlaat

24
[email protected] Overview of recent CO2 cooling developments As an example for LHCb-Velo and UT cooling? Kick-off meeting 28 may 14 Bart Verlaat 1

Upload: hansel

Post on 16-Feb-2016

70 views

Category:

Documents


1 download

DESCRIPTION

Overview of recent CO 2 cooling developments As an example for LHCb -Velo and UT cooling? Kick-off meeting 28 may 14. Bart Verlaat . CO2 cooling overview. At CERN 2 on-detector cooling systems are under development. Atlas IBL CO2 cooling system. 3kW@-40’C Constructed, under commissioning - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Bart Verlaat

[email protected]

Overview of recent CO2 cooling developments

As an example for LHCb-Velo and UT cooling?Kick-off meeting 28 may 14

Bart Verlaat

1

Page 2: Bart Verlaat

[email protected]

CO2 cooling overview

• At CERN 2 on-detector cooling systems are under development.– Atlas IBL CO2 cooling system.

• 3kW@-40’C• Constructed, under commissioning

– CMS pixel CO2 cooling system.• 15kW@-20’C• Under construction, working prototype build

• Both systems are based on the LHCb-Velo1 2PACL principle– But many new lessons were learned in the development of both Atlas and CMS.– The upgrade cooling of LHCb gets the best out of both.

• New technologies used: – PVSS/Unicos PLC control (CERN standard for control of cooling systems)– 2-stage chiller– Remote head pumps– Vacuum insulation– Off the shelve high pressure components

• In the LHCb-Velo1 era many high pressure components had to be custom designed.– More connection with industry

2

Page 3: Bart Verlaat

[email protected]

Cooling method used in detector cooling:The 2-Phase Accumulator Controlled Loop (2PACL)

2PACL principle ideal for detector cooling:

- Liquid overflow => no mass flow control and good heat transfer

- No local evaporator control, evaporator is passive in detector.

- System not sensitive for heat load changes- Very stable evaporator temperature control at a

distance (P4-5 ≈ P7)- Large operational temperature range (+20’C to -

40’C)

Con

dens

er

Pump Transfer line (Heat exchanger)

Evaporator inside detector (4-5)

2-Phase Accumulator

Heat in

Detector heat

1

2 3

4

5

6

P7

P4-5

Long distance (50-100m)

HFC Chiller

Shielding wall

Capillaries (3-4) for flow distribution

Liquid Vapor

2-phase

Enthalpy

Pressure

1

2 3

4 56

P7

Page 4: Bart Verlaat

[email protected]

Atlas IBL cooling

• 14 staves of 70W each connected via concentric 29m long loops to manifolds in the muon area.

• 100m concentric transfer line from manifolds to plant in service cavern.

• 2 redundant cooling plants

• 1 Accumulator with redundant control.

• Vacuum insulated lines4

Junction box

Connectiontube bundle14x 3x0.5mm

Tracking

LAR

Tile Calorie

Manifold boxes

Vacuum insulated concentric tubes(7x1.6x0.3mm inlet inside 4x0.5mm outlet)

ID end plate dry volume

Vacuum terminal and concentricsplit

Vacuum insulated transfer line Vacuum line

Page 5: Bart Verlaat

34DCS: TTa24 - TTn24

EH122TS122

22

MVa24 - MVn2404

06

FL018

⅜”

AV017

20

36

BD016PT116 / PT316TT116 / TT316

26 32

28 30

Tracking detectors

Tile calorie meter

LAR calorie meter

MV018MV036

14 IBL staves (a-g),(7 flow pairs) (7x A-›C flow / 7x C-›A flow)

Detector boundaryJunction box @ Muon Sector 5 (Accessible)

Dry volume

LAR Cryo area

HX036

½”

¾”x5/16”

⅜”

Dummy load (testing only)

BD020PT120 / PT320TT120 / TT320

DCS: TTa28 – TTn28 DCS: TTa30 – TTn30

BD036PT136 / PT336TT136 / TT336

MV035

EH117TT117TS117

26

2830

32

HX012

FL017

MV017

Manifold box (S5)

08

USA-15

USX-15

DN40 vacuum Vacuum system(LAR Cryo area)

DN40

⅜”

¼”

½”

BV,28-01-2014

Transfer tubes (~92m)CO2: 10x1mm inside 21.3x2.11mm outside

16

A200 A100 B400 B300 C042

D012

Flow

dir

Stav

e #

Flow

dir

a 12 C-A

b 13 A-C

c 14 C-A

d 1 A-C

e 2 C-A

f 3 A-C

g 4 C-A

h 5 A-C

i 6 C-A

j 7 A-C

k 8 C-A

l 9 A-C

m 10 C-A

n 11 A-C

TTz20 (DCS)

24

TTz36 (DCS)

Page 6: Bart Verlaat

AC042

LP101

ventevacuate

6

8

FT106

⅜”

EH106TT106TS106

EH101 / EH102 / EH103TT101 / TT102 / TT103TS101 / TS102 / TS103PT101 / PT102 / PT103

HX150

CO2 system A100 labels

LT142LT342

FT306

FL304

⅜”

FL306

VP05

6

50

40

12

4444

46

48

PV110

PT150/ TT150/ SC150

¼”

BD108PT108TT108

CO2 from experiment

CO2 to experiment

42

PT142

PV108PV144

HX148

TT148BD148

SV042 SV043MV042

FL144

MV041

TT146

AV108

Freon chiller A

200

CO2 system B300 labels

10

LP101EH301 / EH302 / EH303TT301 / TT302 / TT303TS301 / TS302 / TS303PT301 / PT302 / PT303

4

FL344

PT304TT304

MV306

6

8

EH306TT306TS306

BD308PT308TT308

AV308

PV308

PV310

PV344

46 TT346

HX350

HX348

LP301

Fill port

nc

nc

no

nc

nonc

MV050

MV054MV052 MV056BD054

PT054

EV148 EV348

nc nc

50

PT350/ TT350/ SC350

SV040 MV040

SV041 BD01210

MV058

NV110

MV110 MV310nc

CV142

nc

CV342

ncnc

nc nc

nc

nc

Cold CO2 lineCold R404a lineWarm service line(Cold lines require 32mm insulation)

no

NV310

no

¼” ¼”

½”½”

½”

½” ½”

48 TT348BD348

Freon chiller B

400

MV043

PT342

BV, 28-01-2014

PT040

PT042

PT056

PRC142 controlling CV142, EH142/143(PT142 & SC150)

PRC342 controlling CV342, EH342/143(PT342 & SC350)

PT050 PT058

no

FL104

4 PT104TT104

nc

FL106

Fill port

MV106

EH142/143TT142/143TS142/143

FL042

EH342/343TT342/343TS342/343

MV012

MV039

AV012

Page 7: Bart Verlaat

cooling water

R404A 2-stage compressor GP250

AC042

CV205

48GP246 GP248

PS250

MV202 SG202

TT248PT248

SR248

HX208

HX205

Air cooled condenser

AC210

2

HX201

HX216

HX212

MV222

MV224

MV246

MV228

MV230

4

BR234PRC234 (PT234)

12

16

38

22

26

28

30

34 36

TT202AC202

NV202

AC244HX220 /HX244CV222

SHC224(SH224)

CV238PRC244 (PT244)

TX212

PT224TT224SH224

PT244 & PT250TT244SH244

24

TT2066

8TT210 10

TT220

TT21818

20

44

14

TT24242

TT228

TT246

46

MV248

MV210

SG216

FL216

HX142 / HX230

HX226

HX348

HX150

7/8”

28

½”

⅜”

½”¼”

⅜”

½”

⅜”

½”

⅜” ½”

¼”

½”½”

28

nc

nc

nc

nc

nc

no

HX206 / HX207

chiller A (200 series) BV, 19-11-2013

TX226 EV348

MV226

CV142PRC142

(PT142&SC150)

no

MV208

⅜”

SR206

½”

½” PT234

EV208

PT142

GP250PRC250(PT250)

32

TT232

MV232

CO2 A rack

CO2 B rack

CO2 Accumulator rack

PT208TT208CV240

SHC244(SH244)

40

HX222

nc

EV206

FL212SG212

SG210

SV210

PT202

EH250

FL244

EV212

Page 8: Bart Verlaat

IBL CO2 coolingHardware status

8Needed for system commissioning via dummy load

Needed after IBL installation

Plant & control @ USA-15Installed

Transfer line USA-UX, Installed

Transfer line in detector, Installed

Junction box in sector 5, Installed

Vacuum system, Installed

Manifold box Installed

Under installation

Page 9: Bart Verlaat

Plants @ USA15 L3

9

Page 10: Bart Verlaat

Plant B and accu rack

10

R404a 2-stage chillerCO2 unit Accumulator

unit

Page 11: Bart Verlaat

IBL R404a 2-stage chiller unit

11

Front side with control cabinet and air condenser Back side with piping

Electronic cabinet Frequency inverter

Air condenser 2-stage compressor

Water cooling

Freon connections

Page 12: Bart Verlaat

CO2 unit

12

Front side with foam box Back side components

CO2 pipes

Pump foam box Pump pallet CO2 pump

Flow meter

3kW heater

Valve

Valve

Back-up cooling

Main cooling

Page 13: Bart Verlaat

Accumulator unit

13

Back side with accumulator and pipingFront side maintenance control box

Maintenance box

Accumulator vesselVacuum pump Service valves

Cooling

Heaters

Level probes

Page 14: Bart Verlaat

Vacuum transfer line status

14

Plant Side

UX15

Page 15: Bart Verlaat

Junction installation

15

3kW dummy load heater

Manual valves

Page 16: Bart Verlaat

[email protected]

Flexible vacuum insulated lines=> cooling loop routing is like cabling

Tracking

LAR

Tile Calorie

Concentric pipes

• 11 m long concentric lines 1.6x0.3 inside 4x0.5mm tube.• Vacuum shield 17mm flex hose• Bending radius >10cm• Up to 300 Watt tested

Page 17: Bart Verlaat

[email protected]

Pressurization of the system

Cooldown

-40’C set-point reached

1kW 2kW 3kW

-35’C setpoint

In current configuration is 3kW to much for -40’C operation, unable to hold set-point (green line)

Commissioning results – cooling starts

Page 18: Bart Verlaat

[email protected]

Capable of maintaining set point from 0 to 3kW

0W 500W1000W 1500W 2000W

2500W

0W

Compressor at full speed, temperature of liquid increases

Margin of sub cooling must be maintained. >10’C for safe operation

Chiller temperature and CO2 liquid

Junction box temperature

Commissioning resultsSP = -35’C operation

Page 19: Bart Verlaat

[email protected]

• New Pixel detector for CMS to arrive in 2016

• 15 kW total cooling power @ -20°C

• One full scale mock up of the system ready in 2013 @ TIF

• Full cooling system at P5 end of 2014

CMS pixel cooling

125 M silicon pixels (x2 compared to present detector)

4 Barrel layers3 Forward discs on

each side

Page 20: Bart Verlaat

[email protected]

20

2 kW

12.5 kW12 kW

10 kW

8 kW

6 kW

4 kW

13 kW

-20 degC setpoint

BPR Manually opened to 100%

Pump Stopped because of too low

subcooling

Manifold Inlet Temp

Manifold Return Temp

Accu Tsat

Dummy load Heater1 Temp

Dummy load Heater2 Temp

Pump Subcooling

Pump Suction Temp

Return Temp before HEX

Page 21: Bart Verlaat

[email protected] development

path for LHCb (IBL model)

21

Velo UT

Conceptual design suitable for both

detectors

Requirements Requirements

Cooling loop design

feedback / define

interfaces Cooling loop design

feedback / define

interfaces

P&IDFunctional Analyses /

DCS interface

System designPlant / transfer lines / On detector hardware

Electronics design

System construction

Electronics construction

Pre-commissioning

Full system commissioning

1. Each blue box will be represented by a live document, constantly updated until commissioning is finished.

2. Each green arrow is typically a review

Page 22: Bart Verlaat

[email protected] IBL cooling requirements

22

• Conclusion:– A CO2 system with an evaporator

capacity of 1.5kW, operational from +20°C to -40°C

– Accessible manifolds– Redundant cooling plant– Fail safe operational during back-out

(blow system)https://edms.cern.ch/document/1204776/1

Page 23: Bart Verlaat

[email protected]

Typical IBL documents

23

1. P&I document https://edms.cern.ch/file/1233482/2/PID_document28jan14_EDMS1233482v3.pdf2. Functional analyses https://edms.cern.ch/file/1233462/1/Functional_Analysis_IBL_CCS_v1.3.pdf 3. DCS interface https://edms.cern.ch/file/1233464/4/Control_interface_between_CCS_and_DCS.pdf4. Electrical schematics https://edms.cern.ch/file/1352063/1/IBL_A_04.pdf

Page 24: Bart Verlaat

[email protected]

Next steps

• Hopefully after todays kick-off meeting a picture can be shaped what would be the best approach for a common development of the Velo and UT cooling systems

• It is important that both the Velo abnd UT are writing down their requirements.

• Close interaction is needed between the groups (Velo/ UT / Cooling) is needed such that the on detector cooling loops are designed according to typical cooling system behavior.

24