banach function lattices with the daugavet property · abramovich and aliprantis, an invitation to...

70
Banach function lattices with the Daugavet property María D. Acosta (joint work with A. Kami ´ nska and M. Mastylo) Departamento de Análisis Matemático Universidad de Granada María D. Acosta (Universidad de Granada) The Daugavet property Valencia, 05/06/2013 1 / 11

Upload: others

Post on 15-Aug-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Banach function lattices with the Daugavet property · Abramovich and Aliprantis, An invitation to operator theory, AMS, 2002. María D. Acosta (Universidad de Granada) The Daugavet

Banach function lattices withthe Daugavet property

María D. Acosta(joint work with

A. Kaminska and M. Mastyło)

Departamento de Análisis MatemáticoUniversidad de Granada

María D. Acosta (Universidad de Granada) The Daugavet property Valencia, 05/06/2013 1 / 11

Page 2: Banach function lattices with the Daugavet property · Abramovich and Aliprantis, An invitation to operator theory, AMS, 2002. María D. Acosta (Universidad de Granada) The Daugavet

Introduction

X Banach space, X ∗ its topological dual,

L(X ) := T : X −→ X : T is bounded and linear ,

F (X ) := T ∈ L(X ) : T is a finite-rank operator

DefinitionX does have the Daugavet property (DP) if

‖I + T‖ = 1 + ‖T‖, ∀T ∈ F (X ) .

Examples

C(K ), K perfect (Daugavet, 1963)L1(0,1) µ atomless and σ-finite (Lozanovskii, 1966)L∞(µ) µ atomless

References:D. Werner, Irish Math. Soc. Bull. (2001).Abramovich and Aliprantis, An invitation to operator theory, AMS, 2002.

María D. Acosta (Universidad de Granada) The Daugavet property Valencia, 05/06/2013 2 / 11

Page 3: Banach function lattices with the Daugavet property · Abramovich and Aliprantis, An invitation to operator theory, AMS, 2002. María D. Acosta (Universidad de Granada) The Daugavet

IntroductionX Banach space, X ∗ its topological dual,

L(X ) := T : X −→ X : T is bounded and linear ,

F (X ) := T ∈ L(X ) : T is a finite-rank operator

DefinitionX does have the Daugavet property (DP) if

‖I + T‖ = 1 + ‖T‖, ∀T ∈ F (X ) .

Examples

C(K ), K perfect (Daugavet, 1963)L1(0,1) µ atomless and σ-finite (Lozanovskii, 1966)L∞(µ) µ atomless

References:D. Werner, Irish Math. Soc. Bull. (2001).Abramovich and Aliprantis, An invitation to operator theory, AMS, 2002.

María D. Acosta (Universidad de Granada) The Daugavet property Valencia, 05/06/2013 2 / 11

Page 4: Banach function lattices with the Daugavet property · Abramovich and Aliprantis, An invitation to operator theory, AMS, 2002. María D. Acosta (Universidad de Granada) The Daugavet

IntroductionX Banach space, X ∗ its topological dual,

L(X ) := T : X −→ X : T is bounded and linear ,

F (X ) := T ∈ L(X ) : T is a finite-rank operator

DefinitionX does have the Daugavet property (DP) if

‖I + T‖ = 1 + ‖T‖, ∀T ∈ F (X ) .

Examples

C(K ), K perfect (Daugavet, 1963)L1(0,1) µ atomless and σ-finite (Lozanovskii, 1966)L∞(µ) µ atomless

References:D. Werner, Irish Math. Soc. Bull. (2001).Abramovich and Aliprantis, An invitation to operator theory, AMS, 2002.

María D. Acosta (Universidad de Granada) The Daugavet property Valencia, 05/06/2013 2 / 11

Page 5: Banach function lattices with the Daugavet property · Abramovich and Aliprantis, An invitation to operator theory, AMS, 2002. María D. Acosta (Universidad de Granada) The Daugavet

IntroductionX Banach space, X ∗ its topological dual,

L(X ) := T : X −→ X : T is bounded and linear ,

F (X ) := T ∈ L(X ) : T is a finite-rank operator

DefinitionX does have the Daugavet property (DP) if

‖I + T‖ = 1 + ‖T‖, ∀T ∈ F (X ) .

Examples

C(K ), K perfect (Daugavet, 1963)L1(0,1) µ atomless and σ-finite (Lozanovskii, 1966)L∞(µ) µ atomless

References:D. Werner, Irish Math. Soc. Bull. (2001).Abramovich and Aliprantis, An invitation to operator theory, AMS, 2002.

María D. Acosta (Universidad de Granada) The Daugavet property Valencia, 05/06/2013 2 / 11

Page 6: Banach function lattices with the Daugavet property · Abramovich and Aliprantis, An invitation to operator theory, AMS, 2002. María D. Acosta (Universidad de Granada) The Daugavet

IntroductionX Banach space, X ∗ its topological dual,

L(X ) := T : X −→ X : T is bounded and linear ,

F (X ) := T ∈ L(X ) : T is a finite-rank operator

DefinitionX does have the Daugavet property (DP) if

‖I + T‖ = 1 + ‖T‖, ∀T ∈ F (X ) .

Examples

C(K ), K perfect (Daugavet, 1963)L1(0,1) µ atomless and σ-finite (Lozanovskii, 1966)L∞(µ) µ atomless

References:D. Werner, Irish Math. Soc. Bull. (2001).Abramovich and Aliprantis, An invitation to operator theory, AMS, 2002.

María D. Acosta (Universidad de Granada) The Daugavet property Valencia, 05/06/2013 2 / 11

Page 7: Banach function lattices with the Daugavet property · Abramovich and Aliprantis, An invitation to operator theory, AMS, 2002. María D. Acosta (Universidad de Granada) The Daugavet

IntroductionX Banach space, X ∗ its topological dual,

L(X ) := T : X −→ X : T is bounded and linear ,

F (X ) := T ∈ L(X ) : T is a finite-rank operator

DefinitionX does have the Daugavet property (DP) if

‖I + T‖ = 1 + ‖T‖, ∀T ∈ F (X ) .

Examples

C(K ), K perfect (Daugavet, 1963)L1(0,1) µ atomless and σ-finite (Lozanovskii, 1966)L∞(µ) µ atomless

References:D. Werner, Irish Math. Soc. Bull. (2001).Abramovich and Aliprantis, An invitation to operator theory, AMS, 2002.

María D. Acosta (Universidad de Granada) The Daugavet property Valencia, 05/06/2013 2 / 11

Page 8: Banach function lattices with the Daugavet property · Abramovich and Aliprantis, An invitation to operator theory, AMS, 2002. María D. Acosta (Universidad de Granada) The Daugavet

IntroductionX Banach space, X ∗ its topological dual,

L(X ) := T : X −→ X : T is bounded and linear ,

F (X ) := T ∈ L(X ) : T is a finite-rank operator

DefinitionX does have the Daugavet property (DP) if

‖I + T‖ = 1 + ‖T‖, ∀T ∈ F (X ) .

ExamplesC(K ), K perfect (Daugavet, 1963)

L1(0,1) µ atomless and σ-finite (Lozanovskii, 1966)L∞(µ) µ atomless

References:D. Werner, Irish Math. Soc. Bull. (2001).Abramovich and Aliprantis, An invitation to operator theory, AMS, 2002.

María D. Acosta (Universidad de Granada) The Daugavet property Valencia, 05/06/2013 2 / 11

Page 9: Banach function lattices with the Daugavet property · Abramovich and Aliprantis, An invitation to operator theory, AMS, 2002. María D. Acosta (Universidad de Granada) The Daugavet

IntroductionX Banach space, X ∗ its topological dual,

L(X ) := T : X −→ X : T is bounded and linear ,

F (X ) := T ∈ L(X ) : T is a finite-rank operator

DefinitionX does have the Daugavet property (DP) if

‖I + T‖ = 1 + ‖T‖, ∀T ∈ F (X ) .

ExamplesC(K ), K perfect (Daugavet, 1963)L1(0,1) µ atomless and σ-finite (Lozanovskii, 1966)

L∞(µ) µ atomless

References:D. Werner, Irish Math. Soc. Bull. (2001).Abramovich and Aliprantis, An invitation to operator theory, AMS, 2002.

María D. Acosta (Universidad de Granada) The Daugavet property Valencia, 05/06/2013 2 / 11

Page 10: Banach function lattices with the Daugavet property · Abramovich and Aliprantis, An invitation to operator theory, AMS, 2002. María D. Acosta (Universidad de Granada) The Daugavet

IntroductionX Banach space, X ∗ its topological dual,

L(X ) := T : X −→ X : T is bounded and linear ,

F (X ) := T ∈ L(X ) : T is a finite-rank operator

DefinitionX does have the Daugavet property (DP) if

‖I + T‖ = 1 + ‖T‖, ∀T ∈ F (X ) .

ExamplesC(K ), K perfect (Daugavet, 1963)L1(0,1) µ atomless and σ-finite (Lozanovskii, 1966)L∞(µ) µ atomless

References:D. Werner, Irish Math. Soc. Bull. (2001).Abramovich and Aliprantis, An invitation to operator theory, AMS, 2002.

María D. Acosta (Universidad de Granada) The Daugavet property Valencia, 05/06/2013 2 / 11

Page 11: Banach function lattices with the Daugavet property · Abramovich and Aliprantis, An invitation to operator theory, AMS, 2002. María D. Acosta (Universidad de Granada) The Daugavet

IntroductionX Banach space, X ∗ its topological dual,

L(X ) := T : X −→ X : T is bounded and linear ,

F (X ) := T ∈ L(X ) : T is a finite-rank operator

DefinitionX does have the Daugavet property (DP) if

‖I + T‖ = 1 + ‖T‖, ∀T ∈ F (X ) .

ExamplesC(K ), K perfect (Daugavet, 1963)L1(0,1) µ atomless and σ-finite (Lozanovskii, 1966)L∞(µ) µ atomless

References:D. Werner, Irish Math. Soc. Bull. (2001).Abramovich and Aliprantis, An invitation to operator theory, AMS, 2002.

María D. Acosta (Universidad de Granada) The Daugavet property Valencia, 05/06/2013 2 / 11

Page 12: Banach function lattices with the Daugavet property · Abramovich and Aliprantis, An invitation to operator theory, AMS, 2002. María D. Acosta (Universidad de Granada) The Daugavet

IntroductionX Banach space, X ∗ its topological dual,

L(X ) := T : X −→ X : T is bounded and linear ,

F (X ) := T ∈ L(X ) : T is a finite-rank operator

DefinitionX does have the Daugavet property (DP) if

‖I + T‖ = 1 + ‖T‖, ∀T ∈ F (X ) .

ExamplesC(K ), K perfect (Daugavet, 1963)L1(0,1) µ atomless and σ-finite (Lozanovskii, 1966)L∞(µ) µ atomless

References:D. Werner, Irish Math. Soc. Bull. (2001).Abramovich and Aliprantis, An invitation to operator theory, AMS, 2002.

María D. Acosta (Universidad de Granada) The Daugavet property Valencia, 05/06/2013 2 / 11

Page 13: Banach function lattices with the Daugavet property · Abramovich and Aliprantis, An invitation to operator theory, AMS, 2002. María D. Acosta (Universidad de Granada) The Daugavet

Definitions

Definition

(Ω,A, µ) complete and σ-finite measure space,L0(µ) is the set of all real valued µ-measurable functions.

X is a Banach function lattice on (Ω,A, µ) if it is subspace of L0(µ), endowedwith a complete norm ‖ · ‖X , such that there exists u ∈ X with u > 0 and thefollowing condition is satisfied:

y ∈ L0(µ), x ∈ X , |y | ≤ |x | a.e. ⇒ y ∈ X and ‖y‖X ≤ ‖x‖X .

X ′ is the Kothe dual of X , i.e., G ∈ X ′ iff there is g ∈ L0(µ) such that

G(f ) :=

∫Ω

gf dµ, ∀f ∈ X

An element x ∈ X is called order continuous if for every 0 ≤ xn ≤ |x | such that(xn)↓ 0 a.e. it holds

(‖xn‖

)→ 0.

Xa= subset of order continuous elements of X .

X is order continuous if Xa = X .

María D. Acosta (Universidad de Granada) The Daugavet property Valencia, 05/06/2013 3 / 11

Page 14: Banach function lattices with the Daugavet property · Abramovich and Aliprantis, An invitation to operator theory, AMS, 2002. María D. Acosta (Universidad de Granada) The Daugavet

DefinitionsDefinition

(Ω,A, µ) complete and σ-finite measure space,L0(µ) is the set of all real valued µ-measurable functions.

X is a Banach function lattice on (Ω,A, µ) if it is subspace of L0(µ), endowedwith a complete norm ‖ · ‖X , such that there exists u ∈ X with u > 0 and thefollowing condition is satisfied:

y ∈ L0(µ), x ∈ X , |y | ≤ |x | a.e. ⇒ y ∈ X and ‖y‖X ≤ ‖x‖X .

X ′ is the Kothe dual of X , i.e., G ∈ X ′ iff there is g ∈ L0(µ) such that

G(f ) :=

∫Ω

gf dµ, ∀f ∈ X

An element x ∈ X is called order continuous if for every 0 ≤ xn ≤ |x | such that(xn)↓ 0 a.e. it holds

(‖xn‖

)→ 0.

Xa= subset of order continuous elements of X .

X is order continuous if Xa = X .

María D. Acosta (Universidad de Granada) The Daugavet property Valencia, 05/06/2013 3 / 11

Page 15: Banach function lattices with the Daugavet property · Abramovich and Aliprantis, An invitation to operator theory, AMS, 2002. María D. Acosta (Universidad de Granada) The Daugavet

DefinitionsDefinition

(Ω,A, µ) complete and σ-finite measure space,L0(µ) is the set of all real valued µ-measurable functions.

X is a Banach function lattice on (Ω,A, µ) if it is subspace of L0(µ), endowedwith a complete norm ‖ · ‖X , such that there exists u ∈ X with u > 0 and thefollowing condition is satisfied:

y ∈ L0(µ), x ∈ X , |y | ≤ |x | a.e. ⇒ y ∈ X and ‖y‖X ≤ ‖x‖X .

X ′ is the Kothe dual of X , i.e., G ∈ X ′ iff there is g ∈ L0(µ) such that

G(f ) :=

∫Ω

gf dµ, ∀f ∈ X

An element x ∈ X is called order continuous if for every 0 ≤ xn ≤ |x | such that(xn)↓ 0 a.e. it holds

(‖xn‖

)→ 0.

Xa= subset of order continuous elements of X .

X is order continuous if Xa = X .

María D. Acosta (Universidad de Granada) The Daugavet property Valencia, 05/06/2013 3 / 11

Page 16: Banach function lattices with the Daugavet property · Abramovich and Aliprantis, An invitation to operator theory, AMS, 2002. María D. Acosta (Universidad de Granada) The Daugavet

DefinitionsDefinition

(Ω,A, µ) complete and σ-finite measure space,L0(µ) is the set of all real valued µ-measurable functions.

X is a Banach function lattice on (Ω,A, µ) if it is subspace of L0(µ), endowedwith a complete norm ‖ · ‖X , such that there exists u ∈ X with u > 0 and thefollowing condition is satisfied:

y ∈ L0(µ), x ∈ X , |y | ≤ |x | a.e. ⇒ y ∈ X and ‖y‖X ≤ ‖x‖X .

X ′ is the Kothe dual of X , i.e., G ∈ X ′ iff there is g ∈ L0(µ) such that

G(f ) :=

∫Ω

gf dµ, ∀f ∈ X

An element x ∈ X is called order continuous if for every 0 ≤ xn ≤ |x | such that(xn)↓ 0 a.e. it holds

(‖xn‖

)→ 0.

Xa= subset of order continuous elements of X .

X is order continuous if Xa = X .

María D. Acosta (Universidad de Granada) The Daugavet property Valencia, 05/06/2013 3 / 11

Page 17: Banach function lattices with the Daugavet property · Abramovich and Aliprantis, An invitation to operator theory, AMS, 2002. María D. Acosta (Universidad de Granada) The Daugavet

DefinitionsDefinition

(Ω,A, µ) complete and σ-finite measure space,L0(µ) is the set of all real valued µ-measurable functions.

X is a Banach function lattice on (Ω,A, µ) if it is subspace of L0(µ), endowedwith a complete norm ‖ · ‖X , such that there exists u ∈ X with u > 0 and thefollowing condition is satisfied:

y ∈ L0(µ), x ∈ X , |y | ≤ |x | a.e. ⇒ y ∈ X and ‖y‖X ≤ ‖x‖X .

X ′ is the Kothe dual of X , i.e., G ∈ X ′ iff there is g ∈ L0(µ) such that

G(f ) :=

∫Ω

gf dµ, ∀f ∈ X

An element x ∈ X is called order continuous if for every 0 ≤ xn ≤ |x | such that(xn)↓ 0 a.e. it holds

(‖xn‖

)→ 0.

Xa= subset of order continuous elements of X .

X is order continuous if Xa = X .

María D. Acosta (Universidad de Granada) The Daugavet property Valencia, 05/06/2013 3 / 11

Page 18: Banach function lattices with the Daugavet property · Abramovich and Aliprantis, An invitation to operator theory, AMS, 2002. María D. Acosta (Universidad de Granada) The Daugavet

DefinitionsDefinition

(Ω,A, µ) complete and σ-finite measure space,L0(µ) is the set of all real valued µ-measurable functions.

X is a Banach function lattice on (Ω,A, µ) if it is subspace of L0(µ), endowedwith a complete norm ‖ · ‖X , such that there exists u ∈ X with u > 0 and thefollowing condition is satisfied:

y ∈ L0(µ), x ∈ X , |y | ≤ |x | a.e. ⇒ y ∈ X and ‖y‖X ≤ ‖x‖X .

X ′ is the Kothe dual of X , i.e., G ∈ X ′ iff there is g ∈ L0(µ) such that

G(f ) :=

∫Ω

gf dµ, ∀f ∈ X

An element x ∈ X is called order continuous if for every 0 ≤ xn ≤ |x | such that(xn)↓ 0 a.e. it holds

(‖xn‖

)→ 0.

Xa= subset of order continuous elements of X .

X is order continuous if Xa = X .

María D. Acosta (Universidad de Granada) The Daugavet property Valencia, 05/06/2013 3 / 11

Page 19: Banach function lattices with the Daugavet property · Abramovich and Aliprantis, An invitation to operator theory, AMS, 2002. María D. Acosta (Universidad de Granada) The Daugavet

DefinitionsDefinition

(Ω,A, µ) complete and σ-finite measure space,L0(µ) is the set of all real valued µ-measurable functions.

X is a Banach function lattice on (Ω,A, µ) if it is subspace of L0(µ), endowedwith a complete norm ‖ · ‖X , such that there exists u ∈ X with u > 0 and thefollowing condition is satisfied:

y ∈ L0(µ), x ∈ X , |y | ≤ |x | a.e. ⇒ y ∈ X and ‖y‖X ≤ ‖x‖X .

X ′ is the Kothe dual of X , i.e., G ∈ X ′ iff there is g ∈ L0(µ) such that

G(f ) :=

∫Ω

gf dµ, ∀f ∈ X

An element x ∈ X is called order continuous if for every 0 ≤ xn ≤ |x | such that(xn)↓ 0 a.e. it holds

(‖xn‖

)→ 0.

Xa= subset of order continuous elements of X .

X is order continuous if Xa = X .

María D. Acosta (Universidad de Granada) The Daugavet property Valencia, 05/06/2013 3 / 11

Page 20: Banach function lattices with the Daugavet property · Abramovich and Aliprantis, An invitation to operator theory, AMS, 2002. María D. Acosta (Universidad de Granada) The Daugavet

Definitions

DefinitionX satisfies the weak Fatou property whenever for any xn, x ∈ X such that0 ≤ xn ≤ x ,

(xn)↑ x a.e. then

(‖xn‖

)X→ ‖x‖X .

X satisfies the Fatou property if for any x ∈ L0(µ), xn ∈ X such that 0 ≤ xn ≤ x ,(xn)↑ x a.e. and sup ‖xn‖X <∞ we have that x ∈ X and

(‖xn‖

)X→ ‖x‖X .

order continuous ⇒ Fatou property ⇒ weak Fatou property

María D. Acosta (Universidad de Granada) The Daugavet property Valencia, 05/06/2013 4 / 11

Page 21: Banach function lattices with the Daugavet property · Abramovich and Aliprantis, An invitation to operator theory, AMS, 2002. María D. Acosta (Universidad de Granada) The Daugavet

Definitions

DefinitionX satisfies the weak Fatou property whenever for any xn, x ∈ X such that0 ≤ xn ≤ x ,

(xn)↑ x a.e. then

(‖xn‖

)X→ ‖x‖X .

X satisfies the Fatou property if for any x ∈ L0(µ), xn ∈ X such that 0 ≤ xn ≤ x ,(xn)↑ x a.e. and sup ‖xn‖X <∞ we have that x ∈ X and

(‖xn‖

)X→ ‖x‖X .

order continuous ⇒ Fatou property ⇒ weak Fatou property

María D. Acosta (Universidad de Granada) The Daugavet property Valencia, 05/06/2013 4 / 11

Page 22: Banach function lattices with the Daugavet property · Abramovich and Aliprantis, An invitation to operator theory, AMS, 2002. María D. Acosta (Universidad de Granada) The Daugavet

Definitions

DefinitionX satisfies the weak Fatou property whenever for any xn, x ∈ X such that0 ≤ xn ≤ x ,

(xn)↑ x a.e. then

(‖xn‖

)X→ ‖x‖X .

X satisfies the Fatou property if for any x ∈ L0(µ), xn ∈ X such that 0 ≤ xn ≤ x ,(xn)↑ x a.e. and sup ‖xn‖X <∞ we have that x ∈ X and

(‖xn‖

)X→ ‖x‖X .

order continuous ⇒ Fatou property ⇒ weak Fatou property

María D. Acosta (Universidad de Granada) The Daugavet property Valencia, 05/06/2013 4 / 11

Page 23: Banach function lattices with the Daugavet property · Abramovich and Aliprantis, An invitation to operator theory, AMS, 2002. María D. Acosta (Universidad de Granada) The Daugavet

Definitions

DefinitionX satisfies the weak Fatou property whenever for any xn, x ∈ X such that0 ≤ xn ≤ x ,

(xn)↑ x a.e. then

(‖xn‖

)X→ ‖x‖X .

X satisfies the Fatou property if for any x ∈ L0(µ), xn ∈ X such that 0 ≤ xn ≤ x ,(xn)↑ x a.e. and sup ‖xn‖X <∞ we have that x ∈ X and

(‖xn‖

)X→ ‖x‖X .

order continuous ⇒ Fatou property ⇒ weak Fatou property

María D. Acosta (Universidad de Granada) The Daugavet property Valencia, 05/06/2013 4 / 11

Page 24: Banach function lattices with the Daugavet property · Abramovich and Aliprantis, An invitation to operator theory, AMS, 2002. María D. Acosta (Universidad de Granada) The Daugavet

Definitions

Let (Ω,A, µ) be a complete and σ-finite measure space.Definition

Given x ∈ L0(µ), its distribution function is defined by

µx (λ) = µt ∈ Ω : |x(t)| > λ (λ ∈ R+).

A Banach function lattice E on (Ω,A, µ) is a rearrangement invariant space(r.i.) if y ∈ E and ‖x‖E = ‖y‖E whenever µx = µy and x ∈ E . It is well knownthat for any r.i. space E we have

L1(µ) ∩ L∞(µ) ⊂ E ⊂ L1(µ) + L∞(µ)

If µ is atomless, the fundamental function of E (φE ) is given by

φE (t) = ‖χA‖E ,

where t ∈ R+ satisfies t ≤ µ(Ω) and A ∈ A satisfies µ(A) = t .

María D. Acosta (Universidad de Granada) The Daugavet property Valencia, 05/06/2013 5 / 11

Page 25: Banach function lattices with the Daugavet property · Abramovich and Aliprantis, An invitation to operator theory, AMS, 2002. María D. Acosta (Universidad de Granada) The Daugavet

DefinitionsLet (Ω,A, µ) be a complete and σ-finite measure space.

Definition

Given x ∈ L0(µ), its distribution function is defined by

µx (λ) = µt ∈ Ω : |x(t)| > λ (λ ∈ R+).

A Banach function lattice E on (Ω,A, µ) is a rearrangement invariant space(r.i.) if y ∈ E and ‖x‖E = ‖y‖E whenever µx = µy and x ∈ E . It is well knownthat for any r.i. space E we have

L1(µ) ∩ L∞(µ) ⊂ E ⊂ L1(µ) + L∞(µ)

If µ is atomless, the fundamental function of E (φE ) is given by

φE (t) = ‖χA‖E ,

where t ∈ R+ satisfies t ≤ µ(Ω) and A ∈ A satisfies µ(A) = t .

María D. Acosta (Universidad de Granada) The Daugavet property Valencia, 05/06/2013 5 / 11

Page 26: Banach function lattices with the Daugavet property · Abramovich and Aliprantis, An invitation to operator theory, AMS, 2002. María D. Acosta (Universidad de Granada) The Daugavet

DefinitionsLet (Ω,A, µ) be a complete and σ-finite measure space.Definition

Given x ∈ L0(µ), its distribution function is defined by

µx (λ) = µt ∈ Ω : |x(t)| > λ (λ ∈ R+).

A Banach function lattice E on (Ω,A, µ) is a rearrangement invariant space(r.i.) if y ∈ E and ‖x‖E = ‖y‖E whenever µx = µy and x ∈ E . It is well knownthat for any r.i. space E we have

L1(µ) ∩ L∞(µ) ⊂ E ⊂ L1(µ) + L∞(µ)

If µ is atomless, the fundamental function of E (φE ) is given by

φE (t) = ‖χA‖E ,

where t ∈ R+ satisfies t ≤ µ(Ω) and A ∈ A satisfies µ(A) = t .

María D. Acosta (Universidad de Granada) The Daugavet property Valencia, 05/06/2013 5 / 11

Page 27: Banach function lattices with the Daugavet property · Abramovich and Aliprantis, An invitation to operator theory, AMS, 2002. María D. Acosta (Universidad de Granada) The Daugavet

DefinitionsLet (Ω,A, µ) be a complete and σ-finite measure space.Definition

Given x ∈ L0(µ), its distribution function is defined by

µx (λ) = µt ∈ Ω : |x(t)| > λ (λ ∈ R+).

A Banach function lattice E on (Ω,A, µ) is a rearrangement invariant space(r.i.) if y ∈ E and ‖x‖E = ‖y‖E whenever µx = µy and x ∈ E .

It is well knownthat for any r.i. space E we have

L1(µ) ∩ L∞(µ) ⊂ E ⊂ L1(µ) + L∞(µ)

If µ is atomless, the fundamental function of E (φE ) is given by

φE (t) = ‖χA‖E ,

where t ∈ R+ satisfies t ≤ µ(Ω) and A ∈ A satisfies µ(A) = t .

María D. Acosta (Universidad de Granada) The Daugavet property Valencia, 05/06/2013 5 / 11

Page 28: Banach function lattices with the Daugavet property · Abramovich and Aliprantis, An invitation to operator theory, AMS, 2002. María D. Acosta (Universidad de Granada) The Daugavet

DefinitionsLet (Ω,A, µ) be a complete and σ-finite measure space.Definition

Given x ∈ L0(µ), its distribution function is defined by

µx (λ) = µt ∈ Ω : |x(t)| > λ (λ ∈ R+).

A Banach function lattice E on (Ω,A, µ) is a rearrangement invariant space(r.i.) if y ∈ E and ‖x‖E = ‖y‖E whenever µx = µy and x ∈ E . It is well knownthat for any r.i. space E we have

L1(µ) ∩ L∞(µ) ⊂ E ⊂ L1(µ) + L∞(µ)

If µ is atomless, the fundamental function of E (φE ) is given by

φE (t) = ‖χA‖E ,

where t ∈ R+ satisfies t ≤ µ(Ω) and A ∈ A satisfies µ(A) = t .

María D. Acosta (Universidad de Granada) The Daugavet property Valencia, 05/06/2013 5 / 11

Page 29: Banach function lattices with the Daugavet property · Abramovich and Aliprantis, An invitation to operator theory, AMS, 2002. María D. Acosta (Universidad de Granada) The Daugavet

DefinitionsLet (Ω,A, µ) be a complete and σ-finite measure space.Definition

Given x ∈ L0(µ), its distribution function is defined by

µx (λ) = µt ∈ Ω : |x(t)| > λ (λ ∈ R+).

A Banach function lattice E on (Ω,A, µ) is a rearrangement invariant space(r.i.) if y ∈ E and ‖x‖E = ‖y‖E whenever µx = µy and x ∈ E . It is well knownthat for any r.i. space E we have

L1(µ) ∩ L∞(µ) ⊂ E ⊂ L1(µ) + L∞(µ)

If µ is atomless, the fundamental function of E (φE ) is given by

φE (t) = ‖χA‖E ,

where t ∈ R+ satisfies t ≤ µ(Ω) and A ∈ A satisfies µ(A) = t .

María D. Acosta (Universidad de Granada) The Daugavet property Valencia, 05/06/2013 5 / 11

Page 30: Banach function lattices with the Daugavet property · Abramovich and Aliprantis, An invitation to operator theory, AMS, 2002. María D. Acosta (Universidad de Granada) The Daugavet

DefinitionsLet (Ω,A, µ) be a complete and σ-finite measure space.Definition

Given x ∈ L0(µ), its distribution function is defined by

µx (λ) = µt ∈ Ω : |x(t)| > λ (λ ∈ R+).

A Banach function lattice E on (Ω,A, µ) is a rearrangement invariant space(r.i.) if y ∈ E and ‖x‖E = ‖y‖E whenever µx = µy and x ∈ E . It is well knownthat for any r.i. space E we have

L1(µ) ∩ L∞(µ) ⊂ E ⊂ L1(µ) + L∞(µ)

If µ is atomless, the fundamental function of E (φE ) is given by

φE (t) = ‖χA‖E ,

where t ∈ R+ satisfies t ≤ µ(Ω) and A ∈ A satisfies µ(A) = t .María D. Acosta (Universidad de Granada) The Daugavet property Valencia, 05/06/2013 5 / 11

Page 31: Banach function lattices with the Daugavet property · Abramovich and Aliprantis, An invitation to operator theory, AMS, 2002. María D. Acosta (Universidad de Granada) The Daugavet

Results for rearrangement invariant spaces(Kaminska, Mastyło, A., J. Convex Anal., 2012)

Let (Ω,A, µ) be a complete, σ-finite and atomless measure space.

PropositionLet E be a r.i. space with the Fatou property on (Ω,A, µ).If E is order continuous and has the Daugavet property then L1(µ) → E .If µ(Ω) <∞ then E is L1(µ), endowed with an equivalent norm.

PropositionLet E be a r.i. space with the Fatou property on (Ω,A, µ) and assume that µ isfinite.If E has the Daugavet property and E ′ is order continuous, then E isisomorphic to L∞(µ).

María D. Acosta (Universidad de Granada) The Daugavet property Valencia, 05/06/2013 6 / 11

Page 32: Banach function lattices with the Daugavet property · Abramovich and Aliprantis, An invitation to operator theory, AMS, 2002. María D. Acosta (Universidad de Granada) The Daugavet

Results for rearrangement invariant spaces(Kaminska, Mastyło, A., J. Convex Anal., 2012)

Let (Ω,A, µ) be a complete, σ-finite and atomless measure space.

PropositionLet E be a r.i. space with the Fatou property on (Ω,A, µ).If E is order continuous and has the Daugavet property then L1(µ) → E .If µ(Ω) <∞ then E is L1(µ), endowed with an equivalent norm.

PropositionLet E be a r.i. space with the Fatou property on (Ω,A, µ) and assume that µ isfinite.If E has the Daugavet property and E ′ is order continuous, then E isisomorphic to L∞(µ).

María D. Acosta (Universidad de Granada) The Daugavet property Valencia, 05/06/2013 6 / 11

Page 33: Banach function lattices with the Daugavet property · Abramovich and Aliprantis, An invitation to operator theory, AMS, 2002. María D. Acosta (Universidad de Granada) The Daugavet

Results for rearrangement invariant spaces(Kaminska, Mastyło, A., J. Convex Anal., 2012)

Let (Ω,A, µ) be a complete, σ-finite and atomless measure space.

PropositionLet E be a r.i. space with the Fatou property on (Ω,A, µ).If E is order continuous and has the Daugavet property then L1(µ) → E .If µ(Ω) <∞ then E is L1(µ), endowed with an equivalent norm.

PropositionLet E be a r.i. space with the Fatou property on (Ω,A, µ) and assume that µ isfinite.If E has the Daugavet property and E ′ is order continuous, then E isisomorphic to L∞(µ).

María D. Acosta (Universidad de Granada) The Daugavet property Valencia, 05/06/2013 6 / 11

Page 34: Banach function lattices with the Daugavet property · Abramovich and Aliprantis, An invitation to operator theory, AMS, 2002. María D. Acosta (Universidad de Granada) The Daugavet

Results for rearrangement invariant spaces(Kaminska, Mastyło, A., J. Convex Anal., 2012)

Let (Ω,A, µ) be a complete, σ-finite and atomless measure space.

PropositionLet E be a r.i. space with the Fatou property on (Ω,A, µ).If E is order continuous and has the Daugavet property then L1(µ) → E .If µ(Ω) <∞ then E is L1(µ), endowed with an equivalent norm.

PropositionLet E be a r.i. space with the Fatou property on (Ω,A, µ) and assume that µ isfinite.

If E has the Daugavet property and E ′ is order continuous, then E isisomorphic to L∞(µ).

María D. Acosta (Universidad de Granada) The Daugavet property Valencia, 05/06/2013 6 / 11

Page 35: Banach function lattices with the Daugavet property · Abramovich and Aliprantis, An invitation to operator theory, AMS, 2002. María D. Acosta (Universidad de Granada) The Daugavet

Results for rearrangement invariant spaces(Kaminska, Mastyło, A., J. Convex Anal., 2012)

Let (Ω,A, µ) be a complete, σ-finite and atomless measure space.

PropositionLet E be a r.i. space with the Fatou property on (Ω,A, µ).If E is order continuous and has the Daugavet property then L1(µ) → E .If µ(Ω) <∞ then E is L1(µ), endowed with an equivalent norm.

PropositionLet E be a r.i. space with the Fatou property on (Ω,A, µ) and assume that µ isfinite.If E has the Daugavet property and E ′ is order continuous, then E isisomorphic to L∞(µ).

María D. Acosta (Universidad de Granada) The Daugavet property Valencia, 05/06/2013 6 / 11

Page 36: Banach function lattices with the Daugavet property · Abramovich and Aliprantis, An invitation to operator theory, AMS, 2002. María D. Acosta (Universidad de Granada) The Daugavet

Isometric results (Kadets, Martín, Merí, D. Werner,Canadian J. Math., 2013)

TheoremThe only separable r.i. space on [0,1] with the (DP) is L1[0,1], endowed withits canonical norm.

Indeed, if (Ω,A, µ) is a finite measure space and E is a separable r.i. spaceon it with the (DP), then E is isometric to L1(µ).

Question: What about L∞(µ)?

María D. Acosta (Universidad de Granada) The Daugavet property Valencia, 05/06/2013 7 / 11

Page 37: Banach function lattices with the Daugavet property · Abramovich and Aliprantis, An invitation to operator theory, AMS, 2002. María D. Acosta (Universidad de Granada) The Daugavet

Isometric results (Kadets, Martín, Merí, D. Werner,Canadian J. Math., 2013)

TheoremThe only separable r.i. space on [0,1] with the (DP) is L1[0,1], endowed withits canonical norm.

Indeed, if (Ω,A, µ) is a finite measure space and E is a separable r.i. spaceon it with the (DP), then E is isometric to L1(µ).

Question: What about L∞(µ)?

María D. Acosta (Universidad de Granada) The Daugavet property Valencia, 05/06/2013 7 / 11

Page 38: Banach function lattices with the Daugavet property · Abramovich and Aliprantis, An invitation to operator theory, AMS, 2002. María D. Acosta (Universidad de Granada) The Daugavet

Isometric results (Kadets, Martín, Merí, D. Werner,Canadian J. Math., 2013)

TheoremThe only separable r.i. space on [0,1] with the (DP) is L1[0,1], endowed withits canonical norm.

Indeed, if (Ω,A, µ) is a finite measure space and E is a separable r.i. spaceon it with the (DP), then E is isometric to L1(µ).

Question: What about L∞(µ)?

María D. Acosta (Universidad de Granada) The Daugavet property Valencia, 05/06/2013 7 / 11

Page 39: Banach function lattices with the Daugavet property · Abramovich and Aliprantis, An invitation to operator theory, AMS, 2002. María D. Acosta (Universidad de Granada) The Daugavet

Isometric results (Kadets, Martín, Merí, D. Werner,Canadian J. Math., 2013)

TheoremThe only separable r.i. space on [0,1] with the (DP) is L1[0,1], endowed withits canonical norm.

Indeed, if (Ω,A, µ) is a finite measure space and E is a separable r.i. spaceon it with the (DP), then E is isometric to L1(µ).

Question: What about L∞(µ)?

María D. Acosta (Universidad de Granada) The Daugavet property Valencia, 05/06/2013 7 / 11

Page 40: Banach function lattices with the Daugavet property · Abramovich and Aliprantis, An invitation to operator theory, AMS, 2002. María D. Acosta (Universidad de Granada) The Daugavet

Isometric results (Kaminska, Mastyło, A.Trans. Amer. Math. Soc.)

TheoremLet E be a r.i. space on a finite measure space (Ω,A, µ) with the weak Fatouproperty.If E has the Daugavet property then either E = L1(µ) or E = L∞(µ)isometrically.

Some facts used in the proof:

If supp Ea = Ω, then Ea has (DP) (AKM, J. Convex Anal.).

Ea is order continuous and has (DP), so Ea coincides with L1(µ) as aBanach space if we assume that ‖χΩ‖E = µ(Ω) (KMMW, Canad. J.Math.).

Hence E is isometric to L1(µ).

María D. Acosta (Universidad de Granada) The Daugavet property Valencia, 05/06/2013 8 / 11

Page 41: Banach function lattices with the Daugavet property · Abramovich and Aliprantis, An invitation to operator theory, AMS, 2002. María D. Acosta (Universidad de Granada) The Daugavet

Isometric results (Kaminska, Mastyło, A.Trans. Amer. Math. Soc.)

TheoremLet E be a r.i. space on a finite measure space (Ω,A, µ) with the weak Fatouproperty.If E has the Daugavet property then either E = L1(µ) or E = L∞(µ)isometrically.

Some facts used in the proof:

If supp Ea = Ω, then Ea has (DP) (AKM, J. Convex Anal.).

Ea is order continuous and has (DP), so Ea coincides with L1(µ) as aBanach space if we assume that ‖χΩ‖E = µ(Ω) (KMMW, Canad. J.Math.).

Hence E is isometric to L1(µ).

María D. Acosta (Universidad de Granada) The Daugavet property Valencia, 05/06/2013 8 / 11

Page 42: Banach function lattices with the Daugavet property · Abramovich and Aliprantis, An invitation to operator theory, AMS, 2002. María D. Acosta (Universidad de Granada) The Daugavet

Isometric results (Kaminska, Mastyło, A.Trans. Amer. Math. Soc.)

TheoremLet E be a r.i. space on a finite measure space (Ω,A, µ) with the weak Fatouproperty.If E has the Daugavet property then either E = L1(µ) or E = L∞(µ)isometrically.

Some facts used in the proof:

If supp Ea = Ω, then Ea has (DP) (AKM, J. Convex Anal.).

Ea is order continuous and has (DP), so Ea coincides with L1(µ) as aBanach space if we assume that ‖χΩ‖E = µ(Ω) (KMMW, Canad. J.Math.).

Hence E is isometric to L1(µ).

María D. Acosta (Universidad de Granada) The Daugavet property Valencia, 05/06/2013 8 / 11

Page 43: Banach function lattices with the Daugavet property · Abramovich and Aliprantis, An invitation to operator theory, AMS, 2002. María D. Acosta (Universidad de Granada) The Daugavet

Isometric results (Kaminska, Mastyło, A.Trans. Amer. Math. Soc.)

TheoremLet E be a r.i. space on a finite measure space (Ω,A, µ) with the weak Fatouproperty.If E has the Daugavet property then either E = L1(µ) or E = L∞(µ)isometrically.

Some facts used in the proof:

If supp Ea = Ω, then Ea has (DP) (AKM, J. Convex Anal.).

Ea is order continuous and has (DP), so Ea coincides with L1(µ) as aBanach space if we assume that ‖χΩ‖E = µ(Ω) (KMMW, Canad. J.Math.).

Hence E is isometric to L1(µ).

María D. Acosta (Universidad de Granada) The Daugavet property Valencia, 05/06/2013 8 / 11

Page 44: Banach function lattices with the Daugavet property · Abramovich and Aliprantis, An invitation to operator theory, AMS, 2002. María D. Acosta (Universidad de Granada) The Daugavet

Isometric results (Kaminska, Mastyło, A.Trans. Amer. Math. Soc.)

TheoremLet E be a r.i. space on a finite measure space (Ω,A, µ) with the weak Fatouproperty.If E has the Daugavet property then either E = L1(µ) or E = L∞(µ)isometrically.

Some facts used in the proof:

If supp Ea = Ω, then Ea has (DP) (AKM, J. Convex Anal.).

Ea is order continuous and has (DP), so Ea coincides with L1(µ) as aBanach space if we assume that ‖χΩ‖E = µ(Ω) (KMMW, Canad. J.Math.).

Hence E is isometric to L1(µ).

María D. Acosta (Universidad de Granada) The Daugavet property Valencia, 05/06/2013 8 / 11

Page 45: Banach function lattices with the Daugavet property · Abramovich and Aliprantis, An invitation to operator theory, AMS, 2002. María D. Acosta (Universidad de Granada) The Daugavet

Isometric results (Kaminska, Mastyło, A.Trans. Amer. Math. Soc.)

TheoremLet E be a r.i. space on a finite measure space (Ω,A, µ) with the weak Fatouproperty.If E has the Daugavet property then either E = L1(µ) or E = L∞(µ)isometrically.

Some facts used in the proof:

If supp Ea = Ω, then Ea has (DP) (AKM, J. Convex Anal.).

Ea is order continuous and has (DP), so Ea coincides with L1(µ) as aBanach space if we assume that ‖χΩ‖E = µ(Ω) (KMMW, Canad. J.Math.).

Hence E is isometric to L1(µ).María D. Acosta (Universidad de Granada) The Daugavet property Valencia, 05/06/2013 8 / 11

Page 46: Banach function lattices with the Daugavet property · Abramovich and Aliprantis, An invitation to operator theory, AMS, 2002. María D. Acosta (Universidad de Granada) The Daugavet

Isometric results (Kaminska, Mastyło, A.Trans. Amer. Math. Soc.)

If supp Ea = ∅ we have φE (0+) > 0.

SinceφE (t)φE′(t) = t , ∀0 ≤ t < µ(Ω)

Then φE ′(0+) = 0.

PropositionLet E be a r.i. space over (Ω,A, µ) with the weak Fatou property.If φE ′(0+) = 0 and E has (DP) then E is isometric to L∞(µ).

María D. Acosta (Universidad de Granada) The Daugavet property Valencia, 05/06/2013 9 / 11

Page 47: Banach function lattices with the Daugavet property · Abramovich and Aliprantis, An invitation to operator theory, AMS, 2002. María D. Acosta (Universidad de Granada) The Daugavet

Isometric results (Kaminska, Mastyło, A.Trans. Amer. Math. Soc.)

If supp Ea = ∅ we have φE (0+) > 0.

SinceφE (t)φE′(t) = t , ∀0 ≤ t < µ(Ω)

Then φE ′(0+) = 0.

PropositionLet E be a r.i. space over (Ω,A, µ) with the weak Fatou property.If φE ′(0+) = 0 and E has (DP) then E is isometric to L∞(µ).

María D. Acosta (Universidad de Granada) The Daugavet property Valencia, 05/06/2013 9 / 11

Page 48: Banach function lattices with the Daugavet property · Abramovich and Aliprantis, An invitation to operator theory, AMS, 2002. María D. Acosta (Universidad de Granada) The Daugavet

Isometric results (Kaminska, Mastyło, A.Trans. Amer. Math. Soc.)

If supp Ea = ∅ we have φE (0+) > 0.

SinceφE (t)φE′(t) = t , ∀0 ≤ t < µ(Ω)

Then φE ′(0+) = 0.

PropositionLet E be a r.i. space over (Ω,A, µ) with the weak Fatou property.If φE ′(0+) = 0 and E has (DP) then E is isometric to L∞(µ).

María D. Acosta (Universidad de Granada) The Daugavet property Valencia, 05/06/2013 9 / 11

Page 49: Banach function lattices with the Daugavet property · Abramovich and Aliprantis, An invitation to operator theory, AMS, 2002. María D. Acosta (Universidad de Granada) The Daugavet

Isometric results (Kaminska, Mastyło, A.Trans. Amer. Math. Soc.)

If supp Ea = ∅ we have φE (0+) > 0.

SinceφE (t)φE′(t) = t , ∀0 ≤ t < µ(Ω)

Then φE ′(0+) = 0.

PropositionLet E be a r.i. space over (Ω,A, µ) with the weak Fatou property.If φE ′(0+) = 0 and E has (DP) then E is isometric to L∞(µ).

María D. Acosta (Universidad de Granada) The Daugavet property Valencia, 05/06/2013 9 / 11

Page 50: Banach function lattices with the Daugavet property · Abramovich and Aliprantis, An invitation to operator theory, AMS, 2002. María D. Acosta (Universidad de Granada) The Daugavet

Isometric results (Kaminska, Mastyło, A.Trans. Amer. Math. Soc.)

If supp Ea = ∅ we have φE (0+) > 0.

SinceφE (t)φE′(t) = t , ∀0 ≤ t < µ(Ω)

Then φE ′(0+) = 0.

PropositionLet E be a r.i. space over (Ω,A, µ) with the weak Fatou property.If φE ′(0+) = 0 and E has (DP) then E is isometric to L∞(µ).

María D. Acosta (Universidad de Granada) The Daugavet property Valencia, 05/06/2013 9 / 11

Page 51: Banach function lattices with the Daugavet property · Abramovich and Aliprantis, An invitation to operator theory, AMS, 2002. María D. Acosta (Universidad de Granada) The Daugavet

Isometric results (Kaminska, Mastyło, A.Trans. Amer. Math. Soc.)

A few words about the proof of the Proposition:

1 Where to use the assumption of weak Fatou property?E has the weak Fatou property ⇒ E ′ is norming.

2 Characterization of (DP) (Kadets, Shvidkoy, Sirotkin, Werner, TAMS,2000)LemmaTFAE:(i) X has (DP)(ii) For every x0 ∈ SX , y∗0 ∈ SX∗ and ε > 0 there is x∗ ∈ SX∗ such that

x∗(x0) > 1− ε and ‖x∗ + y∗0 ‖ > 2− ε.(ii)′ Given a norming set B ⊂ SX∗ with −B ⊂ B,

for every x0 ∈ SX , x∗0 ∈ SX∗ and ε > 0 there is b∗ ∈ B such thatb∗(x0) > 1− ε and ‖b∗ + x∗0 ‖ > 2− ε.

We use condition (ii)′ for B = SE′ and the argument in the proof byKadets, Martín, Merí and Werner.

María D. Acosta (Universidad de Granada) The Daugavet property Valencia, 05/06/2013 10 / 11

Page 52: Banach function lattices with the Daugavet property · Abramovich and Aliprantis, An invitation to operator theory, AMS, 2002. María D. Acosta (Universidad de Granada) The Daugavet

Isometric results (Kaminska, Mastyło, A.Trans. Amer. Math. Soc.)

A few words about the proof of the Proposition:

1 Where to use the assumption of weak Fatou property?E has the weak Fatou property ⇒ E ′ is norming.

2 Characterization of (DP) (Kadets, Shvidkoy, Sirotkin, Werner, TAMS,2000)LemmaTFAE:(i) X has (DP)(ii) For every x0 ∈ SX , y∗0 ∈ SX∗ and ε > 0 there is x∗ ∈ SX∗ such that

x∗(x0) > 1− ε and ‖x∗ + y∗0 ‖ > 2− ε.(ii)′ Given a norming set B ⊂ SX∗ with −B ⊂ B,

for every x0 ∈ SX , x∗0 ∈ SX∗ and ε > 0 there is b∗ ∈ B such thatb∗(x0) > 1− ε and ‖b∗ + x∗0 ‖ > 2− ε.

We use condition (ii)′ for B = SE′ and the argument in the proof byKadets, Martín, Merí and Werner.

María D. Acosta (Universidad de Granada) The Daugavet property Valencia, 05/06/2013 10 / 11

Page 53: Banach function lattices with the Daugavet property · Abramovich and Aliprantis, An invitation to operator theory, AMS, 2002. María D. Acosta (Universidad de Granada) The Daugavet

Isometric results (Kaminska, Mastyło, A.Trans. Amer. Math. Soc.)

A few words about the proof of the Proposition:

1 Where to use the assumption of weak Fatou property?

E has the weak Fatou property ⇒ E ′ is norming.

2 Characterization of (DP) (Kadets, Shvidkoy, Sirotkin, Werner, TAMS,2000)LemmaTFAE:(i) X has (DP)(ii) For every x0 ∈ SX , y∗0 ∈ SX∗ and ε > 0 there is x∗ ∈ SX∗ such that

x∗(x0) > 1− ε and ‖x∗ + y∗0 ‖ > 2− ε.(ii)′ Given a norming set B ⊂ SX∗ with −B ⊂ B,

for every x0 ∈ SX , x∗0 ∈ SX∗ and ε > 0 there is b∗ ∈ B such thatb∗(x0) > 1− ε and ‖b∗ + x∗0 ‖ > 2− ε.

We use condition (ii)′ for B = SE′ and the argument in the proof byKadets, Martín, Merí and Werner.

María D. Acosta (Universidad de Granada) The Daugavet property Valencia, 05/06/2013 10 / 11

Page 54: Banach function lattices with the Daugavet property · Abramovich and Aliprantis, An invitation to operator theory, AMS, 2002. María D. Acosta (Universidad de Granada) The Daugavet

Isometric results (Kaminska, Mastyło, A.Trans. Amer. Math. Soc.)

A few words about the proof of the Proposition:

1 Where to use the assumption of weak Fatou property?

E has the weak Fatou property ⇒ E ′ is norming.

2 Characterization of (DP) (Kadets, Shvidkoy, Sirotkin, Werner, TAMS,2000)LemmaTFAE:(i) X has (DP)(ii) For every x0 ∈ SX , y∗0 ∈ SX∗ and ε > 0 there is x∗ ∈ SX∗ such that

x∗(x0) > 1− ε and ‖x∗ + y∗0 ‖ > 2− ε.(ii)′ Given a norming set B ⊂ SX∗ with −B ⊂ B,

for every x0 ∈ SX , x∗0 ∈ SX∗ and ε > 0 there is b∗ ∈ B such thatb∗(x0) > 1− ε and ‖b∗ + x∗0 ‖ > 2− ε.

We use condition (ii)′ for B = SE′ and the argument in the proof byKadets, Martín, Merí and Werner.

María D. Acosta (Universidad de Granada) The Daugavet property Valencia, 05/06/2013 10 / 11

Page 55: Banach function lattices with the Daugavet property · Abramovich and Aliprantis, An invitation to operator theory, AMS, 2002. María D. Acosta (Universidad de Granada) The Daugavet

Isometric results (Kaminska, Mastyło, A.Trans. Amer. Math. Soc.)

A few words about the proof of the Proposition:

1 Where to use the assumption of weak Fatou property?E has the weak Fatou property ⇒ E ′ is norming.

2 Characterization of (DP) (Kadets, Shvidkoy, Sirotkin, Werner, TAMS,2000)LemmaTFAE:(i) X has (DP)(ii) For every x0 ∈ SX , y∗0 ∈ SX∗ and ε > 0 there is x∗ ∈ SX∗ such that

x∗(x0) > 1− ε and ‖x∗ + y∗0 ‖ > 2− ε.(ii)′ Given a norming set B ⊂ SX∗ with −B ⊂ B,

for every x0 ∈ SX , x∗0 ∈ SX∗ and ε > 0 there is b∗ ∈ B such thatb∗(x0) > 1− ε and ‖b∗ + x∗0 ‖ > 2− ε.

We use condition (ii)′ for B = SE′ and the argument in the proof byKadets, Martín, Merí and Werner.

María D. Acosta (Universidad de Granada) The Daugavet property Valencia, 05/06/2013 10 / 11

Page 56: Banach function lattices with the Daugavet property · Abramovich and Aliprantis, An invitation to operator theory, AMS, 2002. María D. Acosta (Universidad de Granada) The Daugavet

Isometric results (Kaminska, Mastyło, A.Trans. Amer. Math. Soc.)

A few words about the proof of the Proposition:

1 Where to use the assumption of weak Fatou property?E has the weak Fatou property ⇒ E ′ is norming.

2 Characterization of (DP)

(Kadets, Shvidkoy, Sirotkin, Werner, TAMS,2000)LemmaTFAE:(i) X has (DP)(ii) For every x0 ∈ SX , y∗0 ∈ SX∗ and ε > 0 there is x∗ ∈ SX∗ such that

x∗(x0) > 1− ε and ‖x∗ + y∗0 ‖ > 2− ε.(ii)′ Given a norming set B ⊂ SX∗ with −B ⊂ B,

for every x0 ∈ SX , x∗0 ∈ SX∗ and ε > 0 there is b∗ ∈ B such thatb∗(x0) > 1− ε and ‖b∗ + x∗0 ‖ > 2− ε.

We use condition (ii)′ for B = SE ′ and the argument in the proof byKadets, Martín, Merí and Werner.

María D. Acosta (Universidad de Granada) The Daugavet property Valencia, 05/06/2013 10 / 11

Page 57: Banach function lattices with the Daugavet property · Abramovich and Aliprantis, An invitation to operator theory, AMS, 2002. María D. Acosta (Universidad de Granada) The Daugavet

Isometric results (Kaminska, Mastyło, A.Trans. Amer. Math. Soc.)

A few words about the proof of the Proposition:

1 Where to use the assumption of weak Fatou property?E has the weak Fatou property ⇒ E ′ is norming.

2 Characterization of (DP)

(Kadets, Shvidkoy, Sirotkin, Werner, TAMS,2000)LemmaTFAE:(i) X has (DP)(ii) For every x0 ∈ SX , y∗0 ∈ SX∗ and ε > 0 there is x∗ ∈ SX∗ such that

x∗(x0) > 1− ε and ‖x∗ + y∗0 ‖ > 2− ε.(ii)′ Given a norming set B ⊂ SX∗ with −B ⊂ B,

for every x0 ∈ SX , x∗0 ∈ SX∗ and ε > 0 there is b∗ ∈ B such thatb∗(x0) > 1− ε and ‖b∗ + x∗0 ‖ > 2− ε.

We use condition (ii)′ for B = SE ′ and the argument in the proof byKadets, Martín, Merí and Werner.

María D. Acosta (Universidad de Granada) The Daugavet property Valencia, 05/06/2013 10 / 11

Page 58: Banach function lattices with the Daugavet property · Abramovich and Aliprantis, An invitation to operator theory, AMS, 2002. María D. Acosta (Universidad de Granada) The Daugavet

Isometric results (Kaminska, Mastyło, A.Trans. Amer. Math. Soc.)

A few words about the proof of the Proposition:

1 Where to use the assumption of weak Fatou property?E has the weak Fatou property ⇒ E ′ is norming.

2 Characterization of (DP) (Kadets, Shvidkoy, Sirotkin, Werner, TAMS,2000)

LemmaTFAE:(i) X has (DP)(ii) For every x0 ∈ SX , y∗0 ∈ SX∗ and ε > 0 there is x∗ ∈ SX∗ such that

x∗(x0) > 1− ε and ‖x∗ + y∗0 ‖ > 2− ε.(ii)′ Given a norming set B ⊂ SX∗ with −B ⊂ B,

for every x0 ∈ SX , x∗0 ∈ SX∗ and ε > 0 there is b∗ ∈ B such thatb∗(x0) > 1− ε and ‖b∗ + x∗0 ‖ > 2− ε.

We use condition (ii)′ for B = SE ′ and the argument in the proof byKadets, Martín, Merí and Werner.

María D. Acosta (Universidad de Granada) The Daugavet property Valencia, 05/06/2013 10 / 11

Page 59: Banach function lattices with the Daugavet property · Abramovich and Aliprantis, An invitation to operator theory, AMS, 2002. María D. Acosta (Universidad de Granada) The Daugavet

Isometric results (Kaminska, Mastyło, A.Trans. Amer. Math. Soc.)

A few words about the proof of the Proposition:

1 Where to use the assumption of weak Fatou property?E has the weak Fatou property ⇒ E ′ is norming.

2 Characterization of (DP) (Kadets, Shvidkoy, Sirotkin, Werner, TAMS,2000)LemmaTFAE:(i) X has (DP)

(ii) For every x0 ∈ SX , y∗0 ∈ SX∗ and ε > 0 there is x∗ ∈ SX∗ such thatx∗(x0) > 1− ε and ‖x∗ + y∗0 ‖ > 2− ε.

(ii)′ Given a norming set B ⊂ SX∗ with −B ⊂ B,for every x0 ∈ SX , x∗0 ∈ SX∗ and ε > 0 there is b∗ ∈ B such thatb∗(x0) > 1− ε and ‖b∗ + x∗0 ‖ > 2− ε.

We use condition (ii)′ for B = SE ′ and the argument in the proof byKadets, Martín, Merí and Werner.

María D. Acosta (Universidad de Granada) The Daugavet property Valencia, 05/06/2013 10 / 11

Page 60: Banach function lattices with the Daugavet property · Abramovich and Aliprantis, An invitation to operator theory, AMS, 2002. María D. Acosta (Universidad de Granada) The Daugavet

Isometric results (Kaminska, Mastyło, A.Trans. Amer. Math. Soc.)

A few words about the proof of the Proposition:

1 Where to use the assumption of weak Fatou property?E has the weak Fatou property ⇒ E ′ is norming.

2 Characterization of (DP) (Kadets, Shvidkoy, Sirotkin, Werner, TAMS,2000)LemmaTFAE:(i) X has (DP)(ii) For every x0 ∈ SX , y∗0 ∈ SX∗ and ε > 0 there is x∗ ∈ SX∗ such that

x∗(x0) > 1− ε and ‖x∗ + y∗0 ‖ > 2− ε.

(ii)′ Given a norming set B ⊂ SX∗ with −B ⊂ B,for every x0 ∈ SX , x∗0 ∈ SX∗ and ε > 0 there is b∗ ∈ B such thatb∗(x0) > 1− ε and ‖b∗ + x∗0 ‖ > 2− ε.

We use condition (ii)′ for B = SE ′ and the argument in the proof byKadets, Martín, Merí and Werner.

María D. Acosta (Universidad de Granada) The Daugavet property Valencia, 05/06/2013 10 / 11

Page 61: Banach function lattices with the Daugavet property · Abramovich and Aliprantis, An invitation to operator theory, AMS, 2002. María D. Acosta (Universidad de Granada) The Daugavet

Isometric results (Kaminska, Mastyło, A.Trans. Amer. Math. Soc.)

A few words about the proof of the Proposition:

1 Where to use the assumption of weak Fatou property?E has the weak Fatou property ⇒ E ′ is norming.

2 Characterization of (DP) (Kadets, Shvidkoy, Sirotkin, Werner, TAMS,2000)LemmaTFAE:(i) X has (DP)(ii) For every x0 ∈ SX , y∗0 ∈ SX∗ and ε > 0 there is x∗ ∈ SX∗ such that

x∗(x0) > 1− ε and ‖x∗ + y∗0 ‖ > 2− ε.(ii)′ Given a norming set B ⊂ SX∗ with −B ⊂ B,

for every x0 ∈ SX , x∗0 ∈ SX∗ and ε > 0 there is b∗ ∈ B such thatb∗(x0) > 1− ε and ‖b∗ + x∗0 ‖ > 2− ε.

We use condition (ii)′ for B = SE ′ and the argument in the proof byKadets, Martín, Merí and Werner.

María D. Acosta (Universidad de Granada) The Daugavet property Valencia, 05/06/2013 10 / 11

Page 62: Banach function lattices with the Daugavet property · Abramovich and Aliprantis, An invitation to operator theory, AMS, 2002. María D. Acosta (Universidad de Granada) The Daugavet

Isometric results (Kaminska, Mastyło, A.Trans. Amer. Math. Soc.)

A few words about the proof of the Proposition:

1 Where to use the assumption of weak Fatou property?E has the weak Fatou property ⇒ E ′ is norming.

2 Characterization of (DP) (Kadets, Shvidkoy, Sirotkin, Werner, TAMS,2000)LemmaTFAE:(i) X has (DP)(ii) For every x0 ∈ SX , y∗0 ∈ SX∗ and ε > 0 there is x∗ ∈ SX∗ such that

x∗(x0) > 1− ε and ‖x∗ + y∗0 ‖ > 2− ε.(ii)′ Given a norming set B ⊂ SX∗ with −B ⊂ B,

for every x0 ∈ SX , x∗0 ∈ SX∗ and ε > 0 there is b∗ ∈ B such thatb∗(x0) > 1− ε and ‖b∗ + x∗0 ‖ > 2− ε.

We use condition (ii)′ for B = SE ′ and the argument in the proof byKadets, Martín, Merí and Werner.

María D. Acosta (Universidad de Granada) The Daugavet property Valencia, 05/06/2013 10 / 11

Page 63: Banach function lattices with the Daugavet property · Abramovich and Aliprantis, An invitation to operator theory, AMS, 2002. María D. Acosta (Universidad de Granada) The Daugavet

Some open problems

What happens in case of infinite measure?

Assume that (Ω,A, µ) is an atomless σ-finite measure space andE is a r.i. space on (Ω,A, µ) with (DP).Is E isometric to L1(µ) or L∞(µ)?

Assume that E is a r.i. space on (Ω,A, µ) and A ∈ A.If E has (DP), does E(A) also has the Daugavet property?E(A) = xχA : x ∈ E.

María D. Acosta (Universidad de Granada) The Daugavet property Valencia, 05/06/2013 11 / 11

Page 64: Banach function lattices with the Daugavet property · Abramovich and Aliprantis, An invitation to operator theory, AMS, 2002. María D. Acosta (Universidad de Granada) The Daugavet

Some open problems

What happens in case of infinite measure?

Assume that (Ω,A, µ) is an atomless σ-finite measure space andE is a r.i. space on (Ω,A, µ) with (DP).Is E isometric to L1(µ) or L∞(µ)?

Assume that E is a r.i. space on (Ω,A, µ) and A ∈ A.If E has (DP), does E(A) also has the Daugavet property?E(A) = xχA : x ∈ E.

María D. Acosta (Universidad de Granada) The Daugavet property Valencia, 05/06/2013 11 / 11

Page 65: Banach function lattices with the Daugavet property · Abramovich and Aliprantis, An invitation to operator theory, AMS, 2002. María D. Acosta (Universidad de Granada) The Daugavet

Some open problems

What happens in case of infinite measure?

Assume that (Ω,A, µ) is an atomless σ-finite measure space andE is a r.i. space on (Ω,A, µ) with (DP).Is E isometric to L1(µ) or L∞(µ)?

Assume that E is a r.i. space on (Ω,A, µ) and A ∈ A.If E has (DP), does E(A) also has the Daugavet property?E(A) = xχA : x ∈ E.

María D. Acosta (Universidad de Granada) The Daugavet property Valencia, 05/06/2013 11 / 11

Page 66: Banach function lattices with the Daugavet property · Abramovich and Aliprantis, An invitation to operator theory, AMS, 2002. María D. Acosta (Universidad de Granada) The Daugavet

Some open problems

What happens in case of infinite measure?

Assume that (Ω,A, µ) is an atomless σ-finite measure space andE is a r.i. space on (Ω,A, µ) with (DP).Is E isometric to L1(µ) or L∞(µ)?

Assume that E is a r.i. space on (Ω,A, µ) and A ∈ A.If E has (DP), does E(A) also has the Daugavet property?E(A) = xχA : x ∈ E.

María D. Acosta (Universidad de Granada) The Daugavet property Valencia, 05/06/2013 11 / 11

Page 67: Banach function lattices with the Daugavet property · Abramovich and Aliprantis, An invitation to operator theory, AMS, 2002. María D. Acosta (Universidad de Granada) The Daugavet

Some open problems

What happens in case of infinite measure?

Assume that (Ω,A, µ) is an atomless σ-finite measure space andE is a r.i. space on (Ω,A, µ) with (DP).Is E isometric to L1(µ) or L∞(µ)?

Assume that E is a r.i. space on (Ω,A, µ) and A ∈ A.If E has (DP), does E(A) also has the Daugavet property?E(A) = xχA : x ∈ E.

María D. Acosta (Universidad de Granada) The Daugavet property Valencia, 05/06/2013 11 / 11

Page 68: Banach function lattices with the Daugavet property · Abramovich and Aliprantis, An invitation to operator theory, AMS, 2002. María D. Acosta (Universidad de Granada) The Daugavet

Some open problems

What happens in case of infinite measure?

Assume that (Ω,A, µ) is an atomless σ-finite measure space andE is a r.i. space on (Ω,A, µ) with (DP).Is E isometric to L1(µ) or L∞(µ)?

Assume that E is a r.i. space on (Ω,A, µ) and A ∈ A.If E has (DP), does E(A) also has the Daugavet property?E(A) = xχA : x ∈ E.

María D. Acosta (Universidad de Granada) The Daugavet property Valencia, 05/06/2013 11 / 11

Page 69: Banach function lattices with the Daugavet property · Abramovich and Aliprantis, An invitation to operator theory, AMS, 2002. María D. Acosta (Universidad de Granada) The Daugavet

Some open problems

What happens in case of infinite measure?

Assume that (Ω,A, µ) is an atomless σ-finite measure space andE is a r.i. space on (Ω,A, µ) with (DP).Is E isometric to L1(µ) or L∞(µ)?

Assume that E is a r.i. space on (Ω,A, µ) and A ∈ A.If E has (DP), does E(A) also has the Daugavet property?E(A) = xχA : x ∈ E.

María D. Acosta (Universidad de Granada) The Daugavet property Valencia, 05/06/2013 11 / 11

Page 70: Banach function lattices with the Daugavet property · Abramovich and Aliprantis, An invitation to operator theory, AMS, 2002. María D. Acosta (Universidad de Granada) The Daugavet

Some open problems

What happens in case of infinite measure?

Assume that (Ω,A, µ) is an atomless σ-finite measure space andE is a r.i. space on (Ω,A, µ) with (DP).Is E isometric to L1(µ) or L∞(µ)?

Assume that E is a r.i. space on (Ω,A, µ) and A ∈ A.If E has (DP), does E(A) also has the Daugavet property?E(A) = xχA : x ∈ E.

María D. Acosta (Universidad de Granada) The Daugavet property Valencia, 05/06/2013 11 / 11