automotive emissions control - autelligence · 2017-05-16 · tel: 0045 2334 0705 e-mail:...

14
tel: 0045 2334 0705 e-mail: [email protected] web: www.autelligence.com Automotive emissions control: Technologies and trends By Michael Murphy

Upload: others

Post on 06-Jul-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Automotive emissions control - Autelligence · 2017-05-16 · tel: 0045 2334 0705 e-mail: info@autelligence.com web: Automotive emissions control: Technologies and trends By Michael

tel: 0045 2334 0705

e-mail: [email protected]

web: www.autelligence.com

Automotive emissions control:Technologies and trends

By Michael Murphy

Page 2: Automotive emissions control - Autelligence · 2017-05-16 · tel: 0045 2334 0705 e-mail: info@autelligence.com web: Automotive emissions control: Technologies and trends By Michael

Autelligence ApS Copyright© 2015 Autelligence ApS. All rights reserved. Neither this publication nor any part of it may be reproduced, stored in aretrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording orotherwise, without the prior permission of Autelligence Limited.

The authors of Autelligence ApS Research Reports are drawn from a wide range of professional and academic disciplines.All the information in the reports is verified to the best of the authors’ and the publisher’s ability, but neither can acceptresponsibility for loss arising from decisions based on these reports.

Page 3: Automotive emissions control - Autelligence · 2017-05-16 · tel: 0045 2334 0705 e-mail: info@autelligence.com web: Automotive emissions control: Technologies and trends By Michael

© Autelligence ApS 2015 Automotive emissions control: Technologies and trends

Table of Contents

Chapter 1: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6

Chapter 2: Market drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8

Health concerns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8

Diesel exhaust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9

Gasoline exhaust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9

Criterion emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10

Greenhouse gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11

Criterion emissions regulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11

Progress to date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11

United States of America . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15

California . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21

European Union . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24

Japan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28

South Korea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29

China . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30

Other countries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33

Fuel economy and CO2 emissions regulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37

United States of America . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38

Europe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39

Japan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40

China . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40

South Korea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40

Other countries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40

Energy security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40

Incentives and taxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41

North America . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41

Europe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42

Japan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42

China . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42

South Korea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43

Consumer preferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43

Chapter 3: Market challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45

Closing the gaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45

Real driving emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45

Harmonisation of global test procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48

Fuel Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49

Sulphur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50

Aromatics and benzene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51

Olefins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51

Oxygenates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51

Vapour Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52

Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52

Emissions reduction technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52

Fuel quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57

Precious metals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58

Urea for SCR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61

1

Table of Contents

Page 4: Automotive emissions control - Autelligence · 2017-05-16 · tel: 0045 2334 0705 e-mail: info@autelligence.com web: Automotive emissions control: Technologies and trends By Michael

© Autelligence ApS 2015 Automotive emissions control: Technologies and trends

Chapter 4: Market dynamics and forecasts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62

Global vehicle production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62

Light vehicle engine fuel type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62

Turbochargers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63

Stop-start technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64

Catalysts and platinum group metals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64

Electrically-powered ancillaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65

Chapter 5: Technology developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66

Exhaust after-treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66

Catalytic converters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66

Selective catalytic reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67

NOx adsorber catalyst . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72

Diesel particulate filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72

Gasoline particulate filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73

Integrated systems for diesels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79

Exhaust gas recirculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84

Evaporative emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85

Internal combustion engine efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85

Supercharging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86

Variable valve operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88

Direct fuel injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90

Cylinder deactivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92

Combustion cycle technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92

Efficient ancillaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98

Thermal management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100

Drivetrain technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100

Transmissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101

Stop-start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103

Hybrid powertrains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104

Weight reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106

Steel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107

Aluminium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108

Aluminium versus AHSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109

Magnesium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110

Plastics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110

Carbon fibre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112

Compacted graphite iron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112

Hybrid construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112

Drag and friction reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113

Aerodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113

Tyres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113

Powertrain friction reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114

Other technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118

Exhaust heat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118

Lighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118

Driver aids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119

Alternative fuels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119

Natural gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121

Liquefied petroleum gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121

Ethanol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121

Biodiesel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .122

Gas-to-liquids diesel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .122

Coal-to-liquids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .122

Emissions testing technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123

2

Table of Contents

Page 5: Automotive emissions control - Autelligence · 2017-05-16 · tel: 0045 2334 0705 e-mail: info@autelligence.com web: Automotive emissions control: Technologies and trends By Michael

© Autelligence ApS 2015 Automotive emissions control: Technologies and trends

ProfilesArcelor Mittal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125

BASF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129

BorgWarner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .134

Bosch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .141

Continental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .146

Corning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .150

Delphi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .153

Denso . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .157

Eaton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .162

Eberspächer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166

Faurecia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .169

Honeywell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .172

IAV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .176

Johnson Matthey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .179

Schaeffler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .182

Tenneco . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .186

Umicore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .190

Valeo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193

Visteon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .197

ZF Friedrichshafen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .201

Table of tablesTable 1: US Tier 2 emissions standards for light-duty vehicles, to five years/50,000 miles . . . . . . . . . . . . .16

Table 2: US Tier 3 emissions standards for light-duty vehicles, to 150,000 miles/15 years . . . . . . . . . . . . .17

Table 3: US Tier 2 emissions standards for light-duty vehicles for the full useful life of the vehicle

(120,000 miles) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18

Table 4: Tier 2 SFTP emission limits (g/mile) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18

Table 5: California LEV II emissions standards for new light-duty vehicles for five years/50,000 miles

(g/mile) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21

Table 6: California LEV II emissions standards for ‘full useful life’ up to 120,000 miles (g/mile)

for light-duty vehicles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22

Table 7: California LEV III emissions standards for ‘full useful life’ up to 150,000 miles for light-duty

vehicles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22

Table 8: EU emissions limits for light gasoline vehicles (g/km) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24

Table 9: EU emissions limits for light diesel vehicles (g/km) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25

Table 10: Japan emissions limits for light gasoline vehicles (g/km) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28

Table 11: Japan emissions limits for light diesel vehicles (g/km) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28

Table 12: South Korea emissions limits for mini and small vehicles (g/km) . . . . . . . . . . . . . . . . . . . . . . . . .30

Table 13: China emission standards for vehicles with positive ignition engines . . . . . . . . . . . . . . . . . . . . .32

Table 14: China emission standards for vehicles with compression ignition engines . . . . . . . . . . . . . . . . .32

Table 15: China implementation dates of emission standards for light-duty vehicles . . . . . . . . . . . . . . . .33

Table 16: Euro 1 to 4 emissions limits for light gasoline vehicles (g/km) . . . . . . . . . . . . . . . . . . . . . . . . . . .36

Table 17: Euro 1 to 4 emissions limits for light diesel vehicles (g/km) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36

Table 18: US federal fleet-average mpg standards by model year to 2016 . . . . . . . . . . . . . . . . . . . . . . . . .38

Table of figuresFigure 1: Shanghai air pollution with record PM level, December 2013 . . . . . . . . . . . . . . . . . . . . . . . . . . .10

Figure 2: Typical composition of diesel particulate matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10

Figure 3: Typical diesel particle size distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11

Figure 4: CO emissions standards for gasoline passenger cars: EU, Japan & US, 1990 – 2014 (g/km) . . . .12

Figure 5: CO emissions standards for diesel passenger cars: EU, Japan & US, 1990 – 2014 (g/km) . . . . . .12

Figure 6: HC+NOx emissions standards for gasoline passenger cars: EU, Japan & US, 1990 – 2014 (g/km)13

Figure 7: HC+NOx emissions standards for diesel passenger cars: EU, Japan & US, 1990 – 2014 (g/km) . .13

Figure 8: NOx emissions standards for gasoline passenger cars: EU, Japan & US, 1990 – 2014 (g/km) . . .14

Figure 9: NOx emissions standards for diesel passenger cars: EU, Japan & US, 1990 – 2014 (g/km) . . . . .14

3

Table of Contents

Page 6: Automotive emissions control - Autelligence · 2017-05-16 · tel: 0045 2334 0705 e-mail: info@autelligence.com web: Automotive emissions control: Technologies and trends By Michael

© Autelligence ApS 2015 Automotive emissions control: Technologies and trends

Figure 10: PM emissions standards for diesel passenger cars: EU, Japan & US, 1990 – 2014 (g/km) . . . . .15

Figure 11: The FTP-75 test cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19

Figure 12: The US06 test cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20

Figure 13: The SC03 test cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20

Figure 14: The California Unified Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23

Figure 15: The ECE15 Driving Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26

Figure 16: The EUDC Driving Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26

Figure 17: The JC08 test cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29

Figure 18: Worldwide schedule for implementing light vehicle emissions regulations . . . . . . . . . . . . . . .35

Figure 19: Changing CO2 emissions standards worldwide to 2025 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37

Figure 20: US new passenger car fuel economy, MY2008 to MY2014 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39

Figure 21: Discrepancy between real-world CO2 emissions and manufacturer’s claims . . . . . . . . . . . . . . .45

Figure 22: Discrepancy between regulated and real driving NOx emission from diesel cars . . . . . . . . . . .46

Figure 23: Stakeholder survey regarding RDE challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47

Figure 24: Stakeholder survey regarding most urgent need for PEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . .48

Figure 25: The WLTP driving cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49

Figure 26: Progressive reductions in sulphur, benzene, aromatics and olefins in gasoline . . . . . . . . . . . .50

Figure 27: Costs of catalytic converters to meet US and EU regulations . . . . . . . . . . . . . . . . . . . . . . . . . . .52

Figure 28: DPF cost by engine size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53

Figure 29: NAC cost by engine size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54

Figure 30: SCR system cost by engine size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55

Figure 31: Estimated costs of emission control technologies for a European four-cylinder diesel . . . . . .56

Figure 32: CO2 reduction and increased powertrain cost for C/D-segment vehicles . . . . . . . . . . . . . . . . . .57

Figure 33: Platinum supply by region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58

Figure 34: Platinum price (US$) per ounce, 1992 to 2014 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59

Figure 35: Palladium price (US$) per ounce, 1992 to 2014 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59

Figure 36: Rhodium price (US$) per ounce, 1992 to 2014 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60

Figure 37: Palladium and rhodium catalytic converter content costs, 1995 to 2010 . . . . . . . . . . . . . . . . . .60

Figure 38: Global vehicle production forecast, 2005 - 2015 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62

Figure 39: Engine mix in Europe, North America and China in 2019 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63

Figure 40: Engine mix in the US, 2010 – 2020 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63

Figure 41: Global light vehicle turbocharger market, 2014 to 2019 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64

Figure 42: Global automotive catalyst demand, 2002 – 2011 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65

Figure 43: The forecast shift towards electrically-powered ancillaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65

Figure 44: Catalytic converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67

Figure 45: Stability of surface area by vanadia content and aging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68

Figure 46: Low temperature activity by vanadia content and aging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69

Figure 47: N2O emissions by vanadia content and aging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69

Figure 48: Volatile vanadia by content and temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70

Figure 49: Twist urea mixer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70

Figure 50: Reductant uniformity with different spray nozzles, low load & medium load . . . . . . . . . . . . .71

Figure 51: Amminex ASDS versus AdBlue SCR on a city bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71

Figure 52: Volkswagen retrofit DPF for Golf V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73

Figure 53: PM and PN emissions by gasoline engine technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74

Figure 54: PH emissions comparison: PFI, GDI & GDI+GPF over the US FTP-75 test cycle . . . . . . . . . . . . . .74

Figure 55: GPF efficiency by particle size and test phase over the FTP test cycle . . . . . . . . . . . . . . . . . . . .75

Figure 56: Impact of washcoat loading on back pressure with a TWC and TWFTM . . . . . . . . . . . . . . . . . .76

Figure 57: Cumulative PN emissions across the NEDC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76

Figure 58: Emissions measured using both Johnson Matthey TWFTM versions . . . . . . . . . . . . . . . . . . . . .77

Figure 69: PN emissions with baseline TWC and TWC+GPF/TWC over the NEDC . . . . . . . . . . . . . . . . . . . .77

Figure 60: PN emissions with baseline TWC, bare GPF and coated GPF . . . . . . . . . . . . . . . . . . . . . . . . . . . .78

Figure 61: PN emissions with metallic foam and metallic fibre substrates over the NEDC . . . . . . . . . . . . .78

Figure 62: Exhaust system combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79

Figure 63: Component layout with an integrated SCR-DPF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80

Figure 64: Integrated systems for Euro 6 and US Tier 2 Bin 5 light diesels . . . . . . . . . . . . . . . . . . . . . . . . .80

Figure 65: Bosch concept integrated systems for SULEV light diesels . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81

Figure 66: Example temperature profile of Concept 1 over the FTP-75 cycle . . . . . . . . . . . . . . . . . . . . . . .81

Figure 67: Final emissions results for Concept 1 of the FTP-75 cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82

Figure 68: Example temperature profile of Concept 2 over the FTP-75 cycle . . . . . . . . . . . . . . . . . . . . . . .82

4

Table of Contents

Page 7: Automotive emissions control - Autelligence · 2017-05-16 · tel: 0045 2334 0705 e-mail: info@autelligence.com web: Automotive emissions control: Technologies and trends By Michael

© Autelligence ApS 2015 Automotive emissions control: Technologies and trends

Figure 69: Concept 2 NOx emissions over the FTP-75 cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83

Figure 70: Final emissions results for Concept 2 of the FTP-75 cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83

Figure 71: NGK DOC+SCR-on-DPF system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84

Figure 72: General Motors 1.0L, three-cylinder Ecotec engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85

Figure 73: Continental aluminium turbocharger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86

Figure 74: Controlled Power Technologies’ electric supercharger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88

Figure 75: Honda i-VTEC system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89

Figure 76: BMW Valvetronic system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89

Figure 77: Fiat MultiAir variable valve actuation system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90

Figure 78: The results of applying calibration measures to a GDI concept . . . . . . . . . . . . . . . . . . . . . . . . .91

Figure 79: Four-cylinder engine with dedicated EGR cylinder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94

Figure 80: Emissions comparison of RCCI with a conventional diesel engine . . . . . . . . . . . . . . . . . . . . . . .96

Figure 81: HC emissions from conventional diesel, diesel PCCI and RCCI . . . . . . . . . . . . . . . . . . . . . . . . . . .96

Figure 82: Federal-Mogul ACIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97

Figure 83: Continental electro-hydraulic power steering system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99

Figure 84: ZF Servolectric electric power steering system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99

Figure 85: Powertrain technologies and CO2 emissions reduction potential over the NEDC . . . . . . . . .100

Figure 86: Automatic transmission fuel economy gains since five-speed units . . . . . . . . . . . . . . . . . . . . .102

Figure 87: Efficiency of automatics (AT), DCTs and CVTs, present and past . . . . . . . . . . . . . . . . . . . . . . . .102

Figure 88: Continental ISG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103

Figure 89: Volvo flywheel hybrid drivetrain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104

Figure 90: Peugeot air car chassis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105

Figure 91: Chevrolet Volt plug-in hybrid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106

Figure 92: Weight reduction of Volkswagen 1.4 TSI engine, 2008 – 2012 . . . . . . . . . . . . . . . . . . . . . . . . .107

Figure 93: Aluminium Range Rover body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109

Figure 94: Life-cycle GHG emissions for baseline, AHSS (1) and aluminium (2) cases . . . . . . . . . . . . . . . .109

Figure 95: Life cycle CO2 emissions (Kg x 1,000) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110

Figure 96: Thermoplastic polypropylene resin lift-gate on 2014 Nissan Rogue . . . . . . . . . . . . . . . . . . . . .111

Figure 97: Polycarbonate roof on a Smart ForTwo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111

Figure 98: Friction improvement in gasoline and diesel engines, 1990 to 2013 . . . . . . . . . . . . . . . . . . . .115

Figure 99: Specific power of gasoline and diesel engines, 1990 to 2013 . . . . . . . . . . . . . . . . . . . . . . . . . .115

Figure 100: Friction distribution in a 1.8L, turbocharged, spark-ignition engine . . . . . . . . . . . . . . . . . . .116

Figure 101: Total CAE-modelled friction reduction potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117

Figure 102: Well-to-wheels CO2 emissions by fuel and propulsion type, US light vehicle . . . . . . . . . . . .120

Figure 103: Carbon emissions relative to conventional gasoline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121

Figure 104: US requirements for biofuels, 2006 – 2022 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .122

Figure 105: Horiba MEXA 7000 Series 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123

Figure 106: AVL M.O.V.E. System Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .124

5

Table of Contents

Page 8: Automotive emissions control - Autelligence · 2017-05-16 · tel: 0045 2334 0705 e-mail: info@autelligence.com web: Automotive emissions control: Technologies and trends By Michael

© Autelligence ApS 2015 Automotive emissions control: Technologies and trends

Market drivers

Health concerns

Emissions from transportation have been associated with a range of health problems that include

respiratory illnesses and cancer. Some agencies, including the US Environmental Protection Agency (EPA),

have estimated that emissions from road transportation account for as much as half of all cancers that can

be attributed to outdoor sources of toxic airborne substances. Air pollution in Europe, to which

transportation emissions account for a significant proportion, is estimated to contribute to more than

400,000 premature deaths per year and cause more than 100 million lost days of work because of illness

with an associated cost of between €330bn and €940bn per year.

In 2012 a report by a consortium of universities working in conjunction with the UN estimated that

globally in 2010 more than 3.2 million people died prematurely from air pollution, mostly from the effects

of breathing PM. The Global Burden of Disease study, which was published in The Lancet, estimated that

2.1 million of those people were in Asia. The study stated that air pollution now ranks among the world’s

top ten killer diseases.

Research for the report indicated that, between 2009 and 2011, up to 96% of city dwellers in European

cities were exposed to fine PM – particles less than 2.5 microns (PM2.5) – at concentrations exceeding

World Health Organisation (WHO) guidelines. While EU guidelines for maximum air pollution levels are, in

some cases, lower than the WHO guidelines, substantial proportions of the urban population were

exposed to levels that exceeded EU maximum recommended levels.

As well as discussing human health issues associated with air pollution, the report highlighted

environmental issues such as eutrophication, which is ecosystem damage caused by excessive nutrient

nitrogen. Eutrophication remains a problem despite emissions of NOx being reduced by 27% between

2002 and 2012. During the same period, nutrient nitrogen emissions from ammonia in fertilisers decreased

by 7%.

In 2011 research by the Harvard Center for Risk Analysis at the School of Public Health estimated that the

additional fine particle emissions that result from traffic congestion in the 83 largest urban areas in the US

led to more than 2,200 premature deaths during 2010. The related public health cost was estimated to be

at least US$18bn. That year, the American Lung Association in California concluded that the state’s

Advanced Clean Air standards scheduled for introduction in 2017 and an aggressive zero emissions vehicle

requirement could avoid as many as 420 premature deaths; 405 heart attacks; 8,440 asthma and lower

respiratory symptoms; 29,300 lost work days, 9,500 missed school days; and as much as US$8.1bn in

healthcare and in environmental and societal damage.

In 2012 a study by the International Council on Clean Transportation referred to a report by India’s Central

Pollution Control Board that around 90 cities in India are critically polluted. The pollutants of greatest

concern are PM2.5, NOx and ozone. Studies have estimated that as much as half of PM emissions,

particularly PM2.5, in cities come from vehicles; and vehicles are the dominant emitters of NOx and

significant emitters of ozone. The study estimated that if India took steps to implement the most stringent

vehicle emissions control policies, almost 39,000 premature deaths could be avoided in India’s 337 largest

cities in the year 2035 alone with more than 425,000 premature deaths avoided between 2012 and 2035.

In October 2013, the European Environmental Agency published a report in which it was stated that new

scientific findings indicate that human health can be harmed by lower concentrations of air pollutants

than previously thought. Furthermore, despite emissions levels from vehicles, industry, agriculture and

households being reduced in recent years, PM and ground-level ozone continue to contribute to

respiratory problems and cardiovascular disease.

8

Chapter 2: Market drivers

Page 9: Automotive emissions control - Autelligence · 2017-05-16 · tel: 0045 2334 0705 e-mail: info@autelligence.com web: Automotive emissions control: Technologies and trends By Michael

© Autelligence ApS 2015 Automotive emissions control: Technologies and trends

However, in September 2014 the Society of Manufacturers and Traders (SMMT) published a press release

challenging some of the assertions that have been made regarding the “creative interpretations”

mentioned above. In the press release, the SMMT pointed out that during and NEDC test:

• The test must be witnessed by the Vehicle Certification Agency to ensure it meets the standards set out

by the EC.

• All of the vehicle’s components must be present and cannot be tampered with. For example, the

alternator belt must be intact and the brakes must function fully to pass testing.

• The tests must be done within a controlled range of temperatures, between 20°C and 30°C to be valid.

• Testing is always undertaken in specific laboratory conditions on a rolling road and with a standard

drive cycle controlled by a computer programme.

• The vehicle will not pass the test unless it is exactly the same as the one that the manufacturer intends

to put on sale.

• The vehicle will be checked to ensure it has the same tyre pressures, fluid levels and components as it

would have on the road.

• Vehicles that come off the production line are tested at random to ensure that the values given by

manufacturers are correct.

Of equally grave concern, real driving emissions of criterion pollutants have been found to be

substantially greater than measured during certification testing. In particular, NOx emissions from diesels

have been found to be up to seven times higher under real driving conditions than what the regulations

permit although considerable variation was found across different vehicle models suggesting that the

standards can, in fact, be met. A study published by the ICCT in October 2014 shows that the discrepancy

between the progressive Euro emissions regulations and the average real, on-road measured NOx

emissions from diesel cars in Europe has increased dramatically from a factor of 2.0 in 2000 (Euro 2) to a

factor of 7.5 in 2014 (Euro 6). In the figure below, the dotted boundary indicates the regulated NOx

emissions limit and the grey area the real driving emissions.

Figure 22: Discrepancy between regulated and real driving NOx emission from diesel cars

Source: ICCT

46

Chapter 3: Market challenges

Page 10: Automotive emissions control - Autelligence · 2017-05-16 · tel: 0045 2334 0705 e-mail: info@autelligence.com web: Automotive emissions control: Technologies and trends By Michael

© Autelligence ApS 2015 Automotive emissions control: Technologies and trends

Market dynamics and forecasts

Global vehicle production

Since the global recession of 2008/09, global light vehicle production has continued to advance at a

compound annual growth rate (CAGR) of around 6% with that trend continuing through 2015. (In the

figure below, the black line indicates the demand for platinum group metals (PGM), which closely follows

automotive manufacturing volume. Further forecast information for PGM is presented below.)

Figure 38: Global vehicle production forecast, 2005 - 2015

Source: Gold Seek (http://news.goldseek.com/GoldSeek/1348597923.php)

Light vehicle engine fuel type

Through to 2020, gasoline engines are expected to still dominate the light vehicle sector with 67% of new

engines, while diesel engines will account for 21% of the market. Ethanol will play an increasing role, led

by North America with 28% of vehicles operating on E85 to E100 to take the global share to 10%.

Electrified drivetrains, natural gas and hydrogen are forecast to account for very minor shares of the

market.

62

Chapter 4: Market dynamics and forecasts

Page 11: Automotive emissions control - Autelligence · 2017-05-16 · tel: 0045 2334 0705 e-mail: info@autelligence.com web: Automotive emissions control: Technologies and trends By Michael

© Autelligence ApS 2015 Automotive emissions control: Technologies and trends

Technology developments

Exhaust after-treatment

There are now a range of devices that can be integrated into a vehicle’s exhaust system to reduce the

emissions of pollutants. Catalytic converters primarily operate to reduce CO, HC and NOx although they

typically cannot reduce NOx sufficiently to meet recent standards. As a consequence, additional devices

are now required to reduce NOx. These are selective catalytic reduction (SCR) systems and NAC, which are

also known as lean NOx traps (LNT). NOx emissions can also be reduced by using EGR to dilute the

combustible gas within the engine cylinder and reduce the heat released.

SCR and NAC/LNT are essentially competing technologies in the light vehicle sector although SCR requires

the addition of a fluid reductant system whereas NAC/LNT technologies do not. However, SCR has a fuel

efficiency advantage over NAC/LNT systems and is likely to be necessary on heavier light vehicles. For

example, the LNT system fitted to the 2010 Ram Super Duty pick-up resulted in a 5% to 6% fuel economy

loss whereas the SCR system used by Ford on its comparable vehicle resulted in a gain of as much as 6% to

7% or a difference of 10% to 11% between the two technologies.

In addition, separate devices, whether stand-alone or integrated with other after-treatment systems, are

necessary to reduce particulate emissions. Particulate filters have been required on diesel engines for some

years but the new standards require them on gasoline engines as well.

Catalytic converters

The first automotive catalytic converters were two-way converters for gasoline vehicles and appeared in

the US in 1973. A two-way catalytic converter does not oxidise NOx emissions but converts CO and HC into

CO2 and water, respectively. Three-way systems that also convert NOx were launched in 1981. A three-way

catalytic converter (TWC) converts NOx to nitrogen and oxygen with some of the free oxygen converting

CO in the exhaust stream to CO2.

Two-way converters are used on diesel engines and use the typically oxygen-rich exhaust streams to

support the oxidation process. In this application they are known as Diesel Oxidation Catalysts (DOC). As

in its gasoline applications, a DOC oxidises HC including the soluble organic fraction (SOF) of gaseous and

liquid HC adsorbed onto the carbon core of PM particles. Depending on the conditions and the volume of

SOF in the exhaust stream, a DOC has the potential to reduce SOF by as much as 90% and total PM

emissions by 40% to 50%. However, a DOC will not remove the ash content of PM, for which a particulate

filter is necessary, and further after-treatment technology, such as SCR, is required to reduce NOx

emissions.

The core of a catalytic converter is typically a honeycombed ceramic or stainless steel ‘substrate’ that is

coated in a ‘washcoat’ which, in turn, is coated with a very thin layer of one or more platinum-group

precious metals. The washcoat is usually a mixture of silica and alumina that provides a rough, irregular

surface to increase the total surface area of the external, catalytic layer. Platinum and palladium are used

as oxidation catalysts while platinum and rhodium are used as reduction catalysts. However, other metals

such as cerium, iron and manganese may be used to control sulphur and ammonia emissions and to

prevent sulphur and hydrogen sulphide adsorption on the catalytic surface. The coated substrate is

wrapped in a mat to secure it in place within, and insulate it from, its container.

66

Chapter 5: Technology developments

Page 12: Automotive emissions control - Autelligence · 2017-05-16 · tel: 0045 2334 0705 e-mail: info@autelligence.com web: Automotive emissions control: Technologies and trends By Michael

© Autelligence ApS 2015 Automotive emissions control: Technologies and trends

ARCELORMITTAL

ArcelorMittal is one of the leading mining and steel companies. It is the leading supplier of quality steel

products in all major markets including automotive, construction, household appliances and packaging.

ArcelorMittal developed automotive steel products to optimise the weight and cost of vehicles, reduce

carbon emissions and ensure high standards of safety.

The company was formed in 2006 and is headquartered in Luxembourg. Arcelor Mittal has operations in

more than 22 countries and employees 2, 32,000 people worldwide.

MANAGEMENT TEAM

• Lakshmi N. Mittal is the Chairman and Chief Executive Officer, responsible for overall strategic and

operational management of the company.

• Aditya Mittal is the Chief Financial Officer responsible for overall financial management of the

company.

• Louis Schorsch is the Chief Technical Officer responsible for strategy, technology and research and

development of the company.

BRIEF HISTORY

ArcelorMittal steel has played a vital role in the automotive industry. The steel in motion technology of

ArcelorMittal has enabled carmakers to reduce the weight of body-in-white and chassis of modern five-

door C-segment vehicle bodies by as much as 19%. The direct consequence of this is a dramatic reduction

in carbon dioxide (CO2) emissions. The company has developed products and techniques that have helped

reduce the weight of cars while maintaining optimum performance. These include laser-welded blanks, in

which different steel grades are welded together to create a component. Without laser-welded blanks,

more steel would be required to produce the same part which means the finished vehicle would be

heavier.

ArcelorMittal provides Advanced High Strength Steels to the automotive industry which helps engineers

to meet requirements for safety, efficiency, emission, manufacturability, durability and quality at a low

cost. It provides extremely high strength and other properties advantageous for maintaining high

formability required for manufacturing.

OPERATING SEGMENTS

The different operating segments of ArcelorMittal steel are:

• Flat Carbon Americas (22% of the total revenue)

• Flat Carbon Europe (31%)

• Long Carbon Americas and Europe (26%)

• AACIS (6%)

• Stainless Steel (4%)

• Steel Solutions and Services (11%)

RESEARCH AND DEVELOPMENT

In the 2013 fiscal year ArcelorMittal invested US$270 million in research and development. The company

invested 39% of the money on processes, 55% on products and solutions and 6% on exploratory research.

ArcelorMittal made several innovations in the field of emissions related to the automotive sector.

125

Supplier Profiles

Page 13: Automotive emissions control - Autelligence · 2017-05-16 · tel: 0045 2334 0705 e-mail: info@autelligence.com web: Automotive emissions control: Technologies and trends By Michael

© Autelligence ApS 2015 Automotive emissions control: Technologies and trends

BASF

BASF is the largest chemical company in the world and its portfolio ranges from chemicals, plastics,

performance products and fine chemicals to crude oil and natural gas. BASF originally stood for Badische

Anilin-und Soda-Fabrik. The company is currently expanding its international activities with a particular

focus on Asia.

The company was formed in 1865 and, headquartered Ludwigshafen, Germany,operates in six integrated

productions sites and 390 other production sites in Europe, Asia, Australia, America and Africa. BASF has

of 112,000 employees worldwide.

MANAGEMENT TEAM

• Dr. Kurt Bock is the Chief Executive Officer responsible for overall strategic and operational

management

• Dr. Hans Ulrich Engel is the Chief Financial Officer responsible for overall financial management.

• Margret Suckale is the Industrial Relations Director responsible for corporate functions and Human

Resource strategy.

BRIEF HISTORY

In 1865 BASF was founded in Mannheim, Baden by Friedrich Engelhorn to produce chemicals necessary for

dye production, soda and acids. In 1866 the dye production process was moved to BASF sites. In 1880 soda

was produced by the Leblanc process. Sulphuric acid was initially produced by the lead chamber process.

In 1890 a unit using the contact process was introduced producing the acid at higher concentration and

lower cost. In 1907 BASF, along with Bayer and AGFA, acquired Auguste Victoria Mine in Marl, Germany.

From 1908 to 1912 synthesis of ammonia took place through Haber’s process. In 1913 BASF started a new

production plant in Oppau, adding fertilizer to its product range. In 1916 BASF started operations in a

new site in Leuna where explosives where produced during the First World War.

In 1925 BASF merged with five other companies to form IG Farben. After the economic crisis in Germany

in 1929, the economic benefits from public spending in growing industries like construction, Engineering,

Automotives and Chemicals increased from 1933.

In 1941 a large-scale plant based on a three-stage process developed by Walter Reppe for the production

of butynediol from acetylene and formaldehyde was built. In 1943-1944 a massive air raid on

Ludwigshafen caused production to drop drastically and reach a standstill by the end of 1944.

In the 1950s BASF added synthesis such as nylon to its products range. In the 1960s production abroad was

expanded and new plants were built in Argentina, Australia, Belgium, Brazil, France, United Kingdom,

India, Italy, Japan, Mexico, Spain and United States. In 1965 greater emphasis was placed on higher value

products such as Coatings, Pharmaceuticals, Pesticides and Fertilizers. In 1968 BASF bought the German

coating company Herbol and in 1970 the company completely took over the Herbol branches in Cologne

and Wurzburg that specialised in drugs to treat diseases of central nervous system.

In 1968 BASF acquired Nordmark-Werke GmbH, Hamburg and in 1969 acquired Wintershall, one of the

oldest oil and gas companies in Germany, to access petrochemical feed stocks.

In 1973 the first oil crisis leads to long lasting instability in the global economy is felt by BASF in raw

materials purchasing, production and energy supply. In 1975 BASF acquired majority stake in Knoll AG. In

1977 a Joint venture was made between BASF and Deutsche Shell launched a second plant for the

production of the plastic polypropylene at Rheinische Olefinwerke GmbH.

In 1987 BASF develops a biotechnological method in which vitamin B2 is made from vegetable oils in a

single microbiological step. In 1988, BASF acquires polymer dispersion business of Polysar Ltd, a Canadian

company operating mainly in North America.

129

Supplier Profiles

Page 14: Automotive emissions control - Autelligence · 2017-05-16 · tel: 0045 2334 0705 e-mail: info@autelligence.com web: Automotive emissions control: Technologies and trends By Michael

Autelligence ApS

tel: 0045 2334 0705

e-mail: [email protected]

web: www.autelligence.com

Autelligence ApS

Vesterbakken 25

Høruphav

6470 Sydals

Denmark