atom interferometry ii - uni-hannover.de · v u b goal: measure planck constant h with a 10-8...

65
F. Pereira Dos Santos Atom Interferometry II

Upload: others

Post on 28-Mar-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Atom Interferometry II - uni-hannover.de · v U B Goal: Measure Planck constant h with a 10-8 relative accuracy ... Use of a combination of MW/pusher/Raman pulses 7~10 atoms in F=1,

F. Pereira Dos Santos

Atom Interferometry II

Page 2: Atom Interferometry II - uni-hannover.de · v U B Goal: Measure Planck constant h with a 10-8 relative accuracy ... Use of a combination of MW/pusher/Raman pulses 7~10 atoms in F=1,

Organization of the lecture

1 : Applications of inertial sensors/gravimetry

2 : A case study : the SYRTE atom gravimeter

3 : Towards more compact sensors

4 : Other instruments : gravimeters, gradiometers

5 : Atomic gyroscope

Page 3: Atom Interferometry II - uni-hannover.de · v U B Goal: Measure Planck constant h with a 10-8 relative accuracy ... Use of a combination of MW/pusher/Raman pulses 7~10 atoms in F=1,

Organization of the lecture

1 : Applications of inertial sensors/gravimetry

2 : A case study : the SYRTE atom gravimeter

3 : Towards more compact sensors

4 : Other instruments : gravimeters, gradiometers

5 : Atomic gyroscope

Page 4: Atom Interferometry II - uni-hannover.de · v U B Goal: Measure Planck constant h with a 10-8 relative accuracy ... Use of a combination of MW/pusher/Raman pulses 7~10 atoms in F=1,

Inertial sensors

Inertial navigation satellite, submarine…

Fundamental physics

measurement of a, G...

watt balance (gravimeter)

test of general relativity Lense-Thirring effect (gyroscope)

WEP, anomalous gravity…(accelerometer)

gravitational waves

Geophysics ground or space

Earth’s rotation rate, tidal effects, gravity field mapping and monitoring

g

Page 5: Atom Interferometry II - uni-hannover.de · v U B Goal: Measure Planck constant h with a 10-8 relative accuracy ... Use of a combination of MW/pusher/Raman pulses 7~10 atoms in F=1,

Gravimetry

✓ Deduce from local variations of gravity density variations in the ground

✓ Measure small variations with transportable sensors microgravimetry : 1 µGal ~ 10-9 g with g ~9.8 m/s2 = 980 Gal

✓ Looking for small (temporal and local) changes 1 - 100 µGal

✓ Variation of g with height : 3 µGal/cm

Page 6: Atom Interferometry II - uni-hannover.de · v U B Goal: Measure Planck constant h with a 10-8 relative accuracy ... Use of a combination of MW/pusher/Raman pulses 7~10 atoms in F=1,

Simple examples in geophysics

✓ Measurement of (Bouguer) gravity anomaly to map influence of mass distribution, detect changes …

✓ Volcanology: 4D mapping of mass distribution evolutions

✓ Deformation and constraints:

➡ accumulation during seismic cycle...

Page 7: Atom Interferometry II - uni-hannover.de · v U B Goal: Measure Planck constant h with a 10-8 relative accuracy ... Use of a combination of MW/pusher/Raman pulses 7~10 atoms in F=1,

Measurements at all scales

Page 8: Atom Interferometry II - uni-hannover.de · v U B Goal: Measure Planck constant h with a 10-8 relative accuracy ... Use of a combination of MW/pusher/Raman pulses 7~10 atoms in F=1,

World gravity map

Page 9: Atom Interferometry II - uni-hannover.de · v U B Goal: Measure Planck constant h with a 10-8 relative accuracy ... Use of a combination of MW/pusher/Raman pulses 7~10 atoms in F=1,
Page 10: Atom Interferometry II - uni-hannover.de · v U B Goal: Measure Planck constant h with a 10-8 relative accuracy ... Use of a combination of MW/pusher/Raman pulses 7~10 atoms in F=1,

Fundamental metrology: watt balance

Static phase Dynamic phase

B.i.L = m.g B.i.L = m.g

U = B.L.v U = B.L.v

m g v = U i m g v = U i

Planck

constant

Accurate measurement of g needed

B Fg = m.g

FLaplace = i L ´ B

j.dL

v U

B

Goal: Measure Planck constant h with a 10-8 relative accuracy Interest: Replace the Kg etalon by a definition linked to h

Quantum Hall and

Josephson effects

Page 11: Atom Interferometry II - uni-hannover.de · v U B Goal: Measure Planck constant h with a 10-8 relative accuracy ... Use of a combination of MW/pusher/Raman pulses 7~10 atoms in F=1,

Organization of the lecture

1 : Applications of inertial sensors/gravimetry

2 : A case study : SYRTE atom gravimeter

3 : Towards more compact sensors

4 : Other instruments : gravimeters, gradiometers

5 : Atomic gyroscope

Page 12: Atom Interferometry II - uni-hannover.de · v U B Goal: Measure Planck constant h with a 10-8 relative accuracy ... Use of a combination of MW/pusher/Raman pulses 7~10 atoms in F=1,

Interferometer configuration

3-Raman pulses interferometer = Mach Zehnder/ Chu-Bordé interferometer

T T

Page 13: Atom Interferometry II - uni-hannover.de · v U B Goal: Measure Planck constant h with a 10-8 relative accuracy ... Use of a combination of MW/pusher/Raman pulses 7~10 atoms in F=1,

Acceleration phase shift

2. Takeff

DF = F1(t1) – 2F2 (t2) + F3 (t3) =

2

33 )2(.2

1)( Takt eff

=F

0)( 11 =F t 2

22 .2

1)( Takt eff

=F

a

1F

2F3F

T T)(.)( trkt eff

=F

2

2

1ta

Page 14: Atom Interferometry II - uni-hannover.de · v U B Goal: Measure Planck constant h with a 10-8 relative accuracy ... Use of a combination of MW/pusher/Raman pulses 7~10 atoms in F=1,

Gravimeter : Implementation of Raman lasers

Miroir

0=z

2

2

1)( g TTz =

22)2( g TTz =

Laser 2

Laser 1

Pulse 1

Pulse 2

Pulse 3

Interferometer measurement = relative displacement atoms/mirror

• Vertical Raman lasers

• Retroreflect two (copropagating) Raman lasers

Reduces influence of path fluctuations (common mode) 4 laser beams 2 pairs of counterpropragating Raman lasers with opposite keff wavevectors

• Position of planes of equal phase difference attached to position of retroreflecting mirror

DF = keff.g.T2

Page 15: Atom Interferometry II - uni-hannover.de · v U B Goal: Measure Planck constant h with a 10-8 relative accuracy ... Use of a combination of MW/pusher/Raman pulses 7~10 atoms in F=1,

• Titanium vacuum chamber (non magnetic)

• 14 + 2 + 4 viewports

• Indium seals

• Pumps : 2 × getter pumps 50 l/s 1 × ion pump 2 l/s 4 × getter pills

• Two layers magnetic shield

• Retroreflecting mirror under vacuum

SYRTE Gravimeter vacuum chamber

Page 16: Atom Interferometry II - uni-hannover.de · v U B Goal: Measure Planck constant h with a 10-8 relative accuracy ... Use of a combination of MW/pusher/Raman pulses 7~10 atoms in F=1,

Drop chamber

16

Commercial fiber splitters

Fibered angled MOT collimators

Symmetric detection

Page 17: Atom Interferometry II - uni-hannover.de · v U B Goal: Measure Planck constant h with a 10-8 relative accuracy ... Use of a combination of MW/pusher/Raman pulses 7~10 atoms in F=1,

Laser requirements

Detection Pusher

Cooling Repumper

5 different frequencies : Cooling+Repumper + Raman 1&2 + Detection

Page 18: Atom Interferometry II - uni-hannover.de · v U B Goal: Measure Planck constant h with a 10-8 relative accuracy ... Use of a combination of MW/pusher/Raman pulses 7~10 atoms in F=1,

Optical bench « Compact » laser system : 60 x 90 cm

3 ECDL, 2 TA Key feature : Use the same lasers for Cooling/Repumping and Raman beams Frequency control thanks to offset locks (using FVC) and/or PLL

REFERENCE/

DETECTION

REPUMPER/

RAMAN1

COOLING/

RAMAN1

Page 19: Atom Interferometry II - uni-hannover.de · v U B Goal: Measure Planck constant h with a 10-8 relative accuracy ... Use of a combination of MW/pusher/Raman pulses 7~10 atoms in F=1,

Sequence

• 2D + 3DMOT and far detuned molasses : ~ 100 ms Loading rate ~ 109 atoms/s 108 atoms at T~2µK

• State preparation : ~ 15 ms Use of a combination of MW/pusher/Raman pulses ~107 atoms in F=1, mF=0 δv~1vr

• Interferometer : 2T~140 ms Raman pulses of typically ~10-20-10 µs

• Detection : ~ 80 ms

• Total cycle time : ~ 360 ms

Page 20: Atom Interferometry II - uni-hannover.de · v U B Goal: Measure Planck constant h with a 10-8 relative accuracy ... Use of a combination of MW/pusher/Raman pulses 7~10 atoms in F=1,

λ/4

Repumper

Detection

Diaphragm Atoms blocker

Mirror

Collection efficiency : 1% Saturation parameter : 2 x 0.5

0 10 20 30 40 50 60

-100

0

100

200

300

400

500

600

700

800

Flu

ore

secn

ce S

ign

al (

a.u

.)

Time (ms)

F=2

F=1

Time of flight signals

Horizontal detection

Page 21: Atom Interferometry II - uni-hannover.de · v U B Goal: Measure Planck constant h with a 10-8 relative accuracy ... Use of a combination of MW/pusher/Raman pulses 7~10 atoms in F=1,

Collection efficiency : 1% Saturation Parameter : 2 x 25

Raman Vertical Beam back to resonance during the detection

1) First pulse at low intensity to slow down the F=2 atoms (cooling beam only) 2)Wait for the F=1 atoms to reach the bottom position 3)Second pulse at full power (cooling + repumper beams) 4)Third pulse for background substraction

F=2

F=1

PD1

PD2

0 10 20 30 40

0

200

400

600

800

1000

1200

3rd Pulse

Flu

ore

scen

ce S

ign

al (

u.a

.)Time (ms)

F=2

F=12nd Pulse

Vertical detection

Page 22: Atom Interferometry II - uni-hannover.de · v U B Goal: Measure Planck constant h with a 10-8 relative accuracy ... Use of a combination of MW/pusher/Raman pulses 7~10 atoms in F=1,

DF = keff.g.T2 - aT2

Fringe pattern

π/2 π π /2

t0 a =

23,5 24,0 24,5 25,0 25,5 26,0 26,5

-0,2

-0,1

0,0

0,1

0,2

a/2 (MHz/s)

25,140 25,142 25,144 25,146 25,148 25,150

-0,2

-0,1

0,0

0,1

0,2

a/2 (MHz/s)

• Free fall → Doppler shift of the resonance condition of the Raman transition

• Ramping of the frequency difference to stay on resonance :

Page 23: Atom Interferometry II - uni-hannover.de · v U B Goal: Measure Planck constant h with a 10-8 relative accuracy ... Use of a combination of MW/pusher/Raman pulses 7~10 atoms in F=1,

-25.1435 -25.14300.2

0.3

0.4

0.5

0.6

0.7

-125.718 -125.716 -125.714

Pro

bab

ilit

é d

e t

ran

sit

ion

a (MHz.s-1)

DDS1

(Hz)

Principle of measurement, interferometer fringes

• Free fall → Doppler shift of the resonance condition of the Raman transition

• Ramping of the frequency difference to stay on resonance :

π/2 π π /2

ta =0

C=45%

m

ktvk

eff

fe eff

2)(

2

21

=

22 TTk eff a=DF g

23

Page 24: Atom Interferometry II - uni-hannover.de · v U B Goal: Measure Planck constant h with a 10-8 relative accuracy ... Use of a combination of MW/pusher/Raman pulses 7~10 atoms in F=1,

-25.1435 -25.14300.2

0.3

0.4

0.5

0.6

0.7

-125.718 -125.716 -125.714

Pro

bab

ilit

é d

e t

ran

sit

ion

a (MHz.s-1)

DDS1

(Hz)

Principle of measurement : interferometer fringes

• Free fall → Doppler shift of the resonance condition of the Raman transition

• Ramping of the frequency difference to stay on resonance :

π/2 π π /2

ta =0

C=45%

m

ktvk

eff

efffe2

)(

2

21

=

• Dark fringe : independent of T

g =a0

keff

DF = keff g T2 a T2

24

The measurement of g is a frequency measurement

Page 25: Atom Interferometry II - uni-hannover.de · v U B Goal: Measure Planck constant h with a 10-8 relative accuracy ... Use of a combination of MW/pusher/Raman pulses 7~10 atoms in F=1,

25,1435 25,1440 25,1445

0,3

0,4

0,5

0,6

0,7

0,8

Pro

bab

ilité

de t

ransitio

n

a/2 (MHz/s)

a

)( = PPKa

0aa

P+

0aa

P-

Digital Lock :

a > aa

Principle of measurement : interferometer lock

P

a

Page 26: Atom Interferometry II - uni-hannover.de · v U B Goal: Measure Planck constant h with a 10-8 relative accuracy ... Use of a combination of MW/pusher/Raman pulses 7~10 atoms in F=1,

Sensitivity

The sensitivity depends : ➡ on the noise on the measurement of P ➡ contrast of the fringes ➡ scaling factor (keff T2)

2P

C

F =

22

CTk

Pg

eff

=

cos( )2

CP A= DF

Page 27: Atom Interferometry II - uni-hannover.de · v U B Goal: Measure Planck constant h with a 10-8 relative accuracy ... Use of a combination of MW/pusher/Raman pulses 7~10 atoms in F=1,

Parameters 2T=140 ms t = 20 µs sv ~ vr

Ndet = 5 106 Tc = 360 ms Contrast ~ 40-50 %

Sources of noise - Detection noise - Laser phase noise - Mirror vibrations

σΦ = 1/SNR = 160 mrad/shot

sg/g ~ 2 10-7 /shot

Noise

-25.1435 -25.14300.2

0.3

0.4

0.5

0.6

0.7

-125.718 -125.716 -125.714

Pro

bab

ilit

é d

e t

ran

sit

ion

a (MHz.s-1)

DDS1

(Hz)

Page 28: Atom Interferometry II - uni-hannover.de · v U B Goal: Measure Planck constant h with a 10-8 relative accuracy ... Use of a combination of MW/pusher/Raman pulses 7~10 atoms in F=1,

104

105

106

107

10-3

10-2

sP Vertical Detection

sP Horizontal Detection

Quantum Projection Noise

Detection Noise

Detection Noise

sP

Number of atoms

C ~ 50%

σΦ=2σP/C

104 atoms : 40 mrad

5 10-8g/shot 3 10-8g at 1s

106 atoms : 2 mrad

2.5 10-9g/shot 1.5 10-9g at 1s

QPN

T = 70 ms & Tc= 360 ms

Detection noise

2

2

1

4P

AC

N Ns =

Quantum Projection Noise Electronic Noise

Page 29: Atom Interferometry II - uni-hannover.de · v U B Goal: Measure Planck constant h with a 10-8 relative accuracy ... Use of a combination of MW/pusher/Raman pulses 7~10 atoms in F=1,

Sensitivity function g(t)

Ptg

0lim2)(

=

t

Quantifies the sensitivity of the interferometer to phase fluctuations

Hypothesis : << , Plane waves Neglect spatial phase inhomogeneities at the scale of the separation between wavepackets

2/t = RR

0 τ

T

T+τ T+2τ -T-2τ

T τ

Page 30: Atom Interferometry II - uni-hannover.de · v U B Goal: Measure Planck constant h with a 10-8 relative accuracy ... Use of a combination of MW/pusher/Raman pulses 7~10 atoms in F=1,

Sensitivity function g(t)

=

Ptg

0lim2)(

Method of calculation : Evolution matrix

Expression for the matrix :

Raman pulse Free evolution

Total evolution in the interferometer : product of such matrices :

Result :

Page 31: Atom Interferometry II - uni-hannover.de · v U B Goal: Measure Planck constant h with a 10-8 relative accuracy ... Use of a combination of MW/pusher/Raman pulses 7~10 atoms in F=1,

Sensitivity function g(t)

t

Split a matrix in two : Example if the phase jump occurs dring the first pulse

In the case of a phase jump :

tt

tt

t

2

0

))(sin(

1

)sin(

)(

=

TtT

Tt

t

Tt

t

tg

R

R

Result (for t>0) :

Page 32: Atom Interferometry II - uni-hannover.de · v U B Goal: Measure Planck constant h with a 10-8 relative accuracy ... Use of a combination of MW/pusher/Raman pulses 7~10 atoms in F=1,

Sensitivity function g(t)

The sensitivity function is an odd function

Page 33: Atom Interferometry II - uni-hannover.de · v U B Goal: Measure Planck constant h with a 10-8 relative accuracy ... Use of a combination of MW/pusher/Raman pulses 7~10 atoms in F=1,

Experimental demonstration

P. Cheinet et al., "Measurement of the sensitivity function in time-domain atomic interferometer", IEEE Transactions on Instrumentation and Measurement 57, 1141 - 1148 (2008)

Page 34: Atom Interferometry II - uni-hannover.de · v U B Goal: Measure Planck constant h with a 10-8 relative accuracy ... Use of a combination of MW/pusher/Raman pulses 7~10 atoms in F=1,

)( 0vgtkvkdt

dzk

dt

deffeffeff ===

Gives the scale factor :

= dtdt

dtgPt

)(

2

1)(

==F

s

2)()(

2)()( 2222 d

SHd

SGIn the spectral domain :

))2

sin()2

)2()(cos(

2

)2(sin(

4)(

22

TTTiH R

R

R

tt

=

Response to a time dependent perturbation

Example : gravity !! :

)4

()2(

tt =D TTgkeff

Time dependent phase fluctuations

Page 35: Atom Interferometry II - uni-hannover.de · v U B Goal: Measure Planck constant h with a 10-8 relative accuracy ... Use of a combination of MW/pusher/Raman pulses 7~10 atoms in F=1,

Transfer function H(ω)

))2

sin()2

)2()(cos(

2

)2(sin(

4)(

22

TTTiH R

R

R

tt

=

103

104

105

106

1E-3

0.01

0.1

1

10

<H

(f)2

>Frequency (Hz)

2/(f) 2

10-1

100

101

102

0.01

0.1

1

10

H(f

)2

Frequency (Hz)

Finite duration of the pulses Low pass filtering

Insensitive to frequencies multiples of 1/(T+2τ)

2

2

t

02 321 =

Page 36: Atom Interferometry II - uni-hannover.de · v U B Goal: Measure Planck constant h with a 10-8 relative accuracy ... Use of a combination of MW/pusher/Raman pulses 7~10 atoms in F=1,

Stability characterized by the Allan standard deviation Sampled measurement : fc=1/Tc => Aliasing For long enough averaging time, only components at frequencies at multiples of the cycling frequency contribute

)2()2(1

)(

2

1

2

c

n

c

m

m nfSnfH t

ts

=

F =

m

cm

TS

tt

ts

02

2

2)(

=F

White phase noise ( ) => 0

S

Degradation of the stability

Page 37: Atom Interferometry II - uni-hannover.de · v U B Goal: Measure Planck constant h with a 10-8 relative accuracy ... Use of a combination of MW/pusher/Raman pulses 7~10 atoms in F=1,

Derivation of the stability

where δΦk is the k-th average of the interferometer phase over duration τm

Using the sensitivity function, it can be expressed as

where

Allan standard deviation

Page 38: Atom Interferometry II - uni-hannover.de · v U B Goal: Measure Planck constant h with a 10-8 relative accuracy ... Use of a combination of MW/pusher/Raman pulses 7~10 atoms in F=1,

Derivation of the stability

The difference between consecutive averages can be expressed as :

Assuming uncorrelated averaged samples

with

As

We finally get

Page 39: Atom Interferometry II - uni-hannover.de · v U B Goal: Measure Planck constant h with a 10-8 relative accuracy ... Use of a combination of MW/pusher/Raman pulses 7~10 atoms in F=1,

Sensitivity function g(t)

The sensitivity function is a simple and powerful tool Allows to calculate the influence of all kinds of perturbations : - Laser/microwave reference phase/frequency noise

- Magnetic field fluctuations

- Light shift fluctuations

- Vibrations

- …

Page 40: Atom Interferometry II - uni-hannover.de · v U B Goal: Measure Planck constant h with a 10-8 relative accuracy ... Use of a combination of MW/pusher/Raman pulses 7~10 atoms in F=1,

Laser phase stability

DDS

190 MHz

PLL

6,834 GHz

2L ~ 1 m

ECL1

ECL2

PhC

100 MHz

HF synthesis

7,024 GHz

DDS

190 MHz

PLL

DDS

190 MHz

PLL

DDS

190 MHz

PLL

6,834 GHz

2L ~ 1 m

ECL1

ECL2

PhC

100 MHz

HF synthesis

7,024 GHz

The two Raman lasers are phase locked onto an ultra-low noise µwave oscillator

The µwave oscillator is phase locked onto an ULN Quartz oscillator

The Raman phase is also perturbed by non common perturbations during propagation

Page 41: Atom Interferometry II - uni-hannover.de · v U B Goal: Measure Planck constant h with a 10-8 relative accuracy ... Use of a combination of MW/pusher/Raman pulses 7~10 atoms in F=1,

Laser phase stability : influence of ULN Quartz

0.1 1 10 100 1000 10000 100000-180

-160

-140

-120

-100

-80

-60

SF(d

Bc)

Frequency (Hz)1 10 100 1000

10-10

10-9

10-8

10-7

10-6

Co

ntr

ibutio

n to s

F

2

Frequency (Hz)

T=70 ms

Total : 6.4 10-7

=> 0.8 10-3 rad @1s

=> ~1 µGal @1s

100 MHz reference signal realized by phase locking an ULN 100 MHz oscillator onto an ULN 5 MHz oscillator

Contribution to the noise of the interferometer dominated by low frequencies

)2()2(1

)(

2

1

2

c

n

c

m

m nfSnfH t

ts

=

F =

Page 42: Atom Interferometry II - uni-hannover.de · v U B Goal: Measure Planck constant h with a 10-8 relative accuracy ... Use of a combination of MW/pusher/Raman pulses 7~10 atoms in F=1,

Influence of laser phase noise

DDS

190 MHz

PLL

6,834 GHz

2L ~ 1 m

ECL1

ECL2

PhC

100 MHz

HF synthesis

7,024 GHz

DDS

190 MHz

PLL

DDS

190 MHz

PLL

DDS

190 MHz

PLL

6,834 GHz

2L ~ 1 m

ECL1

ECL2

PhC

100 MHz

HF synthesis

7,024 GHz

Source σΦ

(mrad/coup)

Lasers

Référence 100 MHz 1,0

Synthèse HF 0,7

Résidu PLL 1,6

Fibre optique 1,0

Rétro-réflexion 2,0

Total 3,1

Détection 4

Total {lasers+détection} 5,0

σg (g/Hz1/2)

1,3·10-9

0,9·10-9

2,0·10-9

1,3·10-9

2,6·10-9

3,9·10-9

5 · 10-9

6,5·10-9

(Evaluation of noise sources for T=50 ms)

J. Le Gouët et al., Appl. Phys. B 92, 133–144 (2008)

Page 43: Atom Interferometry II - uni-hannover.de · v U B Goal: Measure Planck constant h with a 10-8 relative accuracy ... Use of a combination of MW/pusher/Raman pulses 7~10 atoms in F=1,

Vibration noise

2 2

4

( )( ) ( )eff z eff

SaS k S k

= =

A fluctuation δz of the lasers equiphase induces a change δφ=keff δz

the contribution to the stability can be expressed as

As

2T=100 ms

Transfer function for acceleration noise Sensitivity to low frequencies

Page 44: Atom Interferometry II - uni-hannover.de · v U B Goal: Measure Planck constant h with a 10-8 relative accuracy ... Use of a combination of MW/pusher/Raman pulses 7~10 atoms in F=1,

Vibration isolation

Acoustic + air flow isolation

Passive isolation platform : Natural frequency 0.5 Hz )2(

)sin(1)(

1

4

2

ca

k c

cg kfS

Tkf

Tkf

tts

=

=

Corresponding sensitivities @ 1s : 2,9 · 10-6 g when OFF (day) 7,6 · 10-8 g when ON (day)

=> Gain : factor 40

Page 45: Atom Interferometry II - uni-hannover.de · v U B Goal: Measure Planck constant h with a 10-8 relative accuracy ... Use of a combination of MW/pusher/Raman pulses 7~10 atoms in F=1,

• Measure vibrations with a seismometer at the same time

• Convert the seismometer signal into an interferometer phase shift

Residual vibration corrections

Interferometer

Seismometer

Passive platform

Mirror

Good correlations with the calculated phase shift

⇒ the seismometer is used to correct the atomic measurement

vibs = keff Ks gs(t)Us(t) dtT

T

Page 46: Atom Interferometry II - uni-hannover.de · v U B Goal: Measure Planck constant h with a 10-8 relative accuracy ... Use of a combination of MW/pusher/Raman pulses 7~10 atoms in F=1,

Residual vibration corrections

Typical sensitivity

σg/g = 2. 10-8 at 1s Resolution ~ 10-9g after 500-1000 s

Post correction Seismometer PC

v(t) → φvibS

keffgT² + φvibS Interferometer

keffgT²

Gain : from 2 to ~10

Page 47: Atom Interferometry II - uni-hannover.de · v U B Goal: Measure Planck constant h with a 10-8 relative accuracy ... Use of a combination of MW/pusher/Raman pulses 7~10 atoms in F=1,

Seismometer transfer function

Phase shift between seismometer signal and mirror vibrations → Rejection at highfrequency will be limited

10 100-270

-180

-90

0

Ph

ase

(deg

rés)

Fréquence (Hz)

Mesure fabricant

Mesure interféromètre

fc =50 Hz

High pass filter : 30 s (0.03 Hz) Low pass filter (mechanical resonances) : fc = 50 Hz

( ) 1( )

( ) 1 ( )c

GH

F= =

F

Correction :

Gain :

( ) ( ) H( ) ( ) (1 ( )) ( )c H F = F F = F

Page 48: Atom Interferometry II - uni-hannover.de · v U B Goal: Measure Planck constant h with a 10-8 relative accuracy ... Use of a combination of MW/pusher/Raman pulses 7~10 atoms in F=1,

Non linear filtering

2

1

0

)/(1

1

/1

/1)(

cfffjf

fjffF

=

Implement a digital filter Goal : compensate the phase shift of the seismometer

1 10 100

-40

-30

-20

-10

0

10

Réj

ecti

on

(d

B)

Fréquence (Hz)

Sans filtrage

Avec filtrage

0 10 20 30

0.5

0.6

Pro

bab

ilit

é d

e t

ran

siti

on

Temps (s)

Aucune correction

Post-correction sans filtrage

Post-correction avec filtrage

Expected gain of a factor of ~ 3 => σg < 10-8 g Hz-1/2

Page 49: Atom Interferometry II - uni-hannover.de · v U B Goal: Measure Planck constant h with a 10-8 relative accuracy ... Use of a combination of MW/pusher/Raman pulses 7~10 atoms in F=1,

Filtre NL, results

1 10

10-8

10-7

1D correction

3D correction

sg/g

Averaging Time (s)

Alternative technique (simpler) : compensate for the delay Same results when implementing a delay of 4.6 ms

Best short term sensitivity : 1.4 10-8 g @ 1s

Cross-couplings : Acquisition of 3 axes is necessary

Modest gain (<expected 3 ) Self noise of the seismometer : 4·10-9 g.Hz-1/2 (according specs)

Page 50: Atom Interferometry II - uni-hannover.de · v U B Goal: Measure Planck constant h with a 10-8 relative accuracy ... Use of a combination of MW/pusher/Raman pulses 7~10 atoms in F=1,

Post corrections Seismometer PC

v(t) → φvibS

keffgT² + φvibS Interferometer

keffgT²

Acquisition without isolation platform

S. Merlet, et al., Metrologia 46, 87 (2009)

Influence of the filtering much larger in the presence of large vibration noise Makes measurements feasible in noisy environment: ➡ outside the lab ➡ in mobile vehicule

Page 51: Atom Interferometry II - uni-hannover.de · v U B Goal: Measure Planck constant h with a 10-8 relative accuracy ... Use of a combination of MW/pusher/Raman pulses 7~10 atoms in F=1,

Fringe fitting

vibs = keff Ks gs(t)Us(t) dtT

T

Post correction of mirror vibrations with

Fringe fitting )cos(,,

, =

= zyxj

S

jvibjbaPand mod ±/2

Day Night

-5 0 5

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Tra

nsitio

n p

roba

bili

ty

s

vib(rad)

-5 0 5

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Tra

nsitio

n p

roba

bili

ty

S

vib(rad)

1.8 × 10-7 g @ 1s 5.5 × 10-8 g @ 1s Gain : 20 Gain : 30

In the presence of high anthropic noise, we have reached gains as high as 100 !!

Page 52: Atom Interferometry II - uni-hannover.de · v U B Goal: Measure Planck constant h with a 10-8 relative accuracy ... Use of a combination of MW/pusher/Raman pulses 7~10 atoms in F=1,

Systematics

DFint= keff g T2 DFLS2 DFCoriolis DFAb DFRF DFLS1 DFZeeman

of keff orientation

Dependent Independent

1- Some effects are keff orientation dependent

|f,p

keff

g

52

Page 53: Atom Interferometry II - uni-hannover.de · v U B Goal: Measure Planck constant h with a 10-8 relative accuracy ... Use of a combination of MW/pusher/Raman pulses 7~10 atoms in F=1,

→ Reject independent effects by switching between keff / : need two measurements

|f,p

keff

keff

g

dependentT DF=DFDF

2

2geffk

of keff orientation

Dependent Independent

DFint= keff g T2 DFLS2 DFCoriolis DFAb DFRF DFLS1 DFZeeman

1- Some effects are keff orientation dependent

53

Systematics

Page 54: Atom Interferometry II - uni-hannover.de · v U B Goal: Measure Planck constant h with a 10-8 relative accuracy ... Use of a combination of MW/pusher/Raman pulses 7~10 atoms in F=1,

|f,p

keff

keff

g

effLSDF

22- Reject DFLS2 bias alternating measurements eff and eff/2

DF, / 2 DF, / 2

DF, DF

,

2= keffgT

2 DFCoriolis DFAb

of keff orientation

Dependent Independent

DFint= keff g T2 DFLS2 DFCoriolis DFAb DFRF DFLS1 DFZeeman

dependentT DF=DFDF

2

2geffk

1- Some effects are keff orientation dependent

54

The algorithm degrades the sensitivity by √10

Systematics

Page 55: Atom Interferometry II - uni-hannover.de · v U B Goal: Measure Planck constant h with a 10-8 relative accuracy ... Use of a combination of MW/pusher/Raman pulses 7~10 atoms in F=1,

12 days of continuous measurement

Gal ? 1 µGal = 10-8 m.s-2 ≈ 10-9 g

Gray: 400 drops (170 s) Black: 10 000 s

55

Page 56: Atom Interferometry II - uni-hannover.de · v U B Goal: Measure Planck constant h with a 10-8 relative accuracy ... Use of a combination of MW/pusher/Raman pulses 7~10 atoms in F=1,

Long term sensitivity

Sensitivity flickers at 7-8 × 10-10 g Limited by tidal model? Water table? Soil moisture? Instrument?

g (4 conf) (-)/2 (+)/2

56

Page 57: Atom Interferometry II - uni-hannover.de · v U B Goal: Measure Planck constant h with a 10-8 relative accuracy ... Use of a combination of MW/pusher/Raman pulses 7~10 atoms in F=1,

Coriolis acceleration

For T = 2 µK, σv ~ 1 cm.s-1 = 100 v0 !!! Average shift is null if 1) velocity distribution symmetric 2) detection symmetric 3) mean velocity is zero

Solutions Control v0 (CCD imaging, Raman velocimetry/selection) Colder atoms Alternate ±v0 (rotate the experiment by 180°)

Non zero transverse velocity → sensitivity to the Sagnac effect

Ω keff

v┴

g

Ω keff

v┴

g

Δg = 10-9 g for v0 = 100 µm.s-1

Page 58: Atom Interferometry II - uni-hannover.de · v U B Goal: Measure Planck constant h with a 10-8 relative accuracy ... Use of a combination of MW/pusher/Raman pulses 7~10 atoms in F=1,

Opposite trends for the two orientations signature of Coriolis shift

Trend is not so linear changes in the aberration shift ? why linear anyway? At the crossing point : Null (mean) Coriolis shift

g (µ

Gal)

• Handle on the mean velocity : power imbalance EO molasses beams • Alternate two opposite orientations within 2 hours

Coriolis acceleration

-0.4 -0.2 0.0 0.2 0.4 0.6980890720

980890740

980890760

980890780

Imbalance in the molasses beams i=(P2-P1)/(P2+P1)

ORIENTATION N

ORIENTATION S

Page 59: Atom Interferometry II - uni-hannover.de · v U B Goal: Measure Planck constant h with a 10-8 relative accuracy ... Use of a combination of MW/pusher/Raman pulses 7~10 atoms in F=1,

Changes in Coriolis Vs changes in the wavefront distortions shift? Half difference : Coriolis Half sum : changes in the aberration shift

Coriolis acceleration

-0.4 -0.2 0.0 0.2 0.4 0.6-30

-20

-10

0

10

20

30-0.4 -0.2 0.0 0.2 0.4 0.6

-30

-20

-10

0

10

20

30

Half sum

Dg (

µG

al)

Imbalance in the molasses beams i=(P2-P1)/(P2+P1)

Half difference

Null Coriolis bias

Uncertainty in the correction of the Coriolis shift : 0.4 µGal

Page 60: Atom Interferometry II - uni-hannover.de · v U B Goal: Measure Planck constant h with a 10-8 relative accuracy ... Use of a combination of MW/pusher/Raman pulses 7~10 atoms in F=1,

Wavefront aberrations

Δg < 10-9 g with T = 2 µK

R > 10 km !

→ flatness better than λ/300 !!!

Case of a curvature → δφ = K.r2 (with K = k1/2R)

Measure aberrations with wavefront sensor + excellent optics + colder atoms

t = 0

t = T

t = 2T

(v = 0)

(v = 0)

D = 0D ≠ 0

vr≠0

1 =(vr = 0)

2> 1

3 >

R

t = 0

t = T

t = 2T

(v = 0)

(v = 0)

D = 0D ≠ 0

vr≠0

1 =(vr = 0)

2> 1

3 >

R

Wavefronts are not flat : gaussian beams, flatness of the optics …

Page 61: Atom Interferometry II - uni-hannover.de · v U B Goal: Measure Planck constant h with a 10-8 relative accuracy ... Use of a combination of MW/pusher/Raman pulses 7~10 atoms in F=1,

• 40mm diameter

• PV= l/10

• RMS =l/100

Mirror

Simulation :

• T = 2.5mK

• s = 1.5mm

g/g = 1.4 10-9

g/g = 8 10-9

l/4 PV

Characterization of the optics

Page 62: Atom Interferometry II - uni-hannover.de · v U B Goal: Measure Planck constant h with a 10-8 relative accuracy ... Use of a combination of MW/pusher/Raman pulses 7~10 atoms in F=1,

Mirror + l/4 plate under vacuum

Page 63: Atom Interferometry II - uni-hannover.de · v U B Goal: Measure Planck constant h with a 10-8 relative accuracy ... Use of a combination of MW/pusher/Raman pulses 7~10 atoms in F=1,

Accuracy

0 1 2 3 4 5 6 7

-4

-2

0

2

4

0 1 2 3 4 5 6 7

-4

-2

0

2

4

n=108

6

4

n=2

Dg

Ga

l)

Tat (µK)

0 1 2 3 4 5 6 7

-4

-2

0

2

4

0 1 2 3 4 5 6 7

-4

-2

0

2

4

Dg

Ga

l)

Tat (µK)

Exploration of the wavefronts : Differential measurements for different cloud temperatures and extrapolation to zero Analysis with a set of Zernike polynomials => No reliable extrapolation

Need to limit the expansion of the cloud: colder atoms and/or use horizontal Raman selection

Page 64: Atom Interferometry II - uni-hannover.de · v U B Goal: Measure Planck constant h with a 10-8 relative accuracy ... Use of a combination of MW/pusher/Raman pulses 7~10 atoms in F=1,

Self gravity effect

Dg = (1.3 ± 0.1) × 10-8 m.s-2

64

G. D’Agostino et al, Metrologia 48 (2011)

Page 65: Atom Interferometry II - uni-hannover.de · v U B Goal: Measure Planck constant h with a 10-8 relative accuracy ... Use of a combination of MW/pusher/Raman pulses 7~10 atoms in F=1,

Accuracy budget

65