atmega328/p - ww1.microchip.comww1.microchip.com/downloads/en/devicedoc/atmega328... · –...

445
ATmega328/P AVR ® Microcontroller with picoPower ® Technology Introduction The picoPower ® ATmega328/P is a low-power CMOS 8-bit microcontroller based on the AVR ® enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATmega328/P achieves throughputs close to 1 MIPS per MHz. This empowers system designers to optimize the device for power consumption versus processing speed. Feature High Performance, Low-Power AVR ® 8-Bit Microcontroller Family Advanced RISC Architecture 131 Powerful instructions Most single clock cycle execution 32 x 8 General purpose working registers Fully static operation Up to 20 MIPS throughput at 20 MHz On-chip 2-cycle multiplier High Endurance Nonvolatile Memory Segments 32K Bytes of in-system self-programmable Flash program memory 1K Bytes EEPROM 2K Bytes internal SRAM Write/erase cycles: 10,000 Flash/100,000 EEPROM Data retention: 20 years at 85°C/100 years at 25°C (1) Optional boot code section with independent lock bits In-system programming by on-chip boot program True read-while-write operation Programming lock for software security QTouch Library Support Capacitive touch buttons, sliders and wheels QTouch and QMatrix acquisition Up to 64 sense channels Peripheral Features Two 8-bit Timer/counters with separate prescaler and Compare mode One 16-bit Timer/counter with separate prescaler, Compare mode, and Capture mode Real time counter with separate oscillator Six PWM channels © 2018 Microchip Technology Inc. Datasheet Complete DS40001984A-page 1

Upload: duongdat

Post on 04-May-2018

228 views

Category:

Documents


4 download

TRANSCRIPT

  • ATmega328/P AVR Microcontroller with picoPower Technology

    Introduction

    The picoPower ATmega328/P is a low-power CMOS 8-bit microcontroller based on the AVR enhancedRISC architecture. By executing powerful instructions in a single clock cycle, the ATmega328/P achievesthroughputs close to 1 MIPS per MHz. This empowers system designers to optimize the device for powerconsumption versus processing speed.

    Feature

    High Performance, Low-Power AVR 8-Bit Microcontroller Family Advanced RISC Architecture

    131 Powerful instructions Most single clock cycle execution 32 x 8 General purpose working registers Fully static operation Up to 20 MIPS throughput at 20 MHz On-chip 2-cycle multiplier

    High Endurance Nonvolatile Memory Segments 32K Bytes of in-system self-programmable Flash program memory 1K Bytes EEPROM 2K Bytes internal SRAM Write/erase cycles: 10,000 Flash/100,000 EEPROM Data retention: 20 years at 85C/100 years at 25C(1)

    Optional boot code section with independent lock bits In-system programming by on-chip boot program True read-while-write operation

    Programming lock for software security QTouch Library Support

    Capacitive touch buttons, sliders and wheels QTouch and QMatrix acquisition Up to 64 sense channels

    Peripheral Features Two 8-bit Timer/counters with separate prescaler and Compare mode One 16-bit Timer/counter with separate prescaler, Compare mode, and Capture mode Real time counter with separate oscillator Six PWM channels

    2018 Microchip Technology Inc. Datasheet Complete DS40001984A-page 1

  • 8-channel 10-bit ADC in TQFP and QFN/MLF package Temperature measurement

    6-channel 10-bit ADC in PDIP package Temperature measurement

    Two master/slave SPI serial interface One programmable serial USART One byte-oriented 2-wire serial interface (Philips I2C compatible) Programmable watchdog timer with separate on-chip oscillator One on-chip analog comparator Interrupt and wake-up on pin change

    Special Microcontroller Features Power-on Reset and programmable Brown-out Detection Internal calibrated oscillator External and internal interrupt sources Six sleep modes: idle, ADC noise reduction, power-save, power-down, standby, and extended

    standby I/O and Packages

    23 Programmable I/O lines 28-pin PDIP, 32-lead TQFP, 28-pad QFN/MLF and 32-pad QFN/MLF

    Operating Voltage: 1.8 - 5.5V

    Temperature Range: -40C to 105C

    Speed Grade: ATmega328/P: 0 - 4 MHz @ 1.8 - 5.5V, 0 - 10 MHz @ 2.7 - 5.5V, 0 - 20 MHz @ 4.5 - 5.5V

    Power Consumption at 1 MHz, 1.8V, 25C Active mode: 0.2 mA Power-Down mode: 0.1 A Power-Save mode: 0.75 A (Including 32 kHz RTC)

    ATmega328/P

    2018 Microchip Technology Inc. Datasheet Complete DS40001984A-page 2

  • Table of Contents

    Introduction......................................................................................................................1

    Feature............................................................................................................................ 1

    1. Description.................................................................................................................9

    2. Configuration Summary...........................................................................................10

    3. Ordering Information ...............................................................................................113.1. ATmega328 ............................................................................................................................... 113.2. ATmega328P .............................................................................................................................11

    4. Block Diagram......................................................................................................... 13

    5. Pin Configurations................................................................................................... 145.1. Pinout......................................................................................................................................... 145.2. Pin Descriptions......................................................................................................................... 17

    6. I/O Multiplexing........................................................................................................19

    7. Resources............................................................................................................... 21

    8. Data Retention.........................................................................................................22

    9. About Code Examples.............................................................................................23

    10. Capacitive Touch Sensing....................................................................................... 2410.1. QTouch Library...........................................................................................................................24

    11. AVR CPU Core........................................................................................................ 2511.1. Overview.................................................................................................................................... 2511.2. Arithmetic Logic Unit (ALU)........................................................................................................2611.3. Status Register...........................................................................................................................2611.4. General Purpose Register File...................................................................................................2911.5. Stack Pointer..............................................................................................................................3011.6. Instruction Execution Timing...................................................................................................... 3211.7. Reset and Interrupt Handling..................................................................................................... 33

    12. AVR Memories.........................................................................................................3612.1. Overview.................................................................................................................................... 3612.2. In-System Reprogrammable Flash Program Memory................................................................3612.3. SRAM Data Memory.................................................................................................................. 3712.4. EEPROM Data Memory............................................................................................................. 3812.5. I/O Memory.................................................................................................................................3912.6. Register Description...................................................................................................................40

    2018 Microchip Technology Inc. Datasheet Complete DS40001984A-page 3

  • 13. System Clock and Clock Options............................................................................ 4913.1. Clock Systems and Their Distribution........................................................................................ 4913.2. Clock Sources............................................................................................................................ 5013.3. Low-Power Crystal Oscillator..................................................................................................... 5213.4. Full Swing Crystal Oscillator.......................................................................................................5413.5. Low-Frequency Crystal Oscillator.............................................................................................. 5513.6. Calibrated Internal RC Oscillator................................................................................................5613.7. 128 kHz Internal Oscillator......................................................................................................... 5713.8. External Clock............................................................................................................................ 5813.9. Timer/Counter Oscillator.............................................................................................................5913.10. Clock Output Buffer....................................................................................................................5913.11. System Clock Prescaler............................................................................................................. 5913.12. Register Description...................................................................................................................60

    14. Power Management and Sleep Modes................................................................... 6414.1. Overview.................................................................................................................................... 6414.2. Sleep Modes.............................................................................................................................. 6414.3. BOD Disable...............................................................................................................................6514.4. Idle Mode....................................................................................................................................6514.5. ADC Noise Reduction Mode...................................................................................................... 6514.6. Power-Down Mode.....................................................................................................................6614.7. Power-Save Mode......................................................................................................................6614.8. Standby Mode............................................................................................................................ 6714.9. Extended Standby Mode............................................................................................................6714.10. Power Reduction Register......................................................................................................... 6714.11. Minimizing Power Consumption.................................................................................................6714.12. Register Description...................................................................................................................69

    15. System Control and Reset.......................................................................................7415.1. Resetting the AVR...................................................................................................................... 7415.2. Reset Sources............................................................................................................................7415.3. Power-on Reset..........................................................................................................................7515.4. External Reset............................................................................................................................7615.5. Brown-out Detection...................................................................................................................7615.6. Watchdog System Reset............................................................................................................7715.7. Internal Voltage Reference.........................................................................................................7715.8. Watchdog Timer......................................................................................................................... 7815.9. Register Description...................................................................................................................80

    16. Interrupts................................................................................................................. 8416.1. Interrupt Vectors in ATmega328/P............................................................................................. 8416.2. Register Description...................................................................................................................86

    17. EXTINT - External Interrupts................................................................................... 8917.1. Pin Change Interrupt Timing.......................................................................................................8917.2. Register Description...................................................................................................................90

    18. I/O-Ports.................................................................................................................. 99

    ATmega328/P

    2018 Microchip Technology Inc. Datasheet Complete DS40001984A-page 4

  • 18.1. Overview.................................................................................................................................... 9918.2. Ports as General Digital I/O......................................................................................................10018.3. Alternate Port Functions...........................................................................................................10318.4. Register Description................................................................................................................. 115

    19. 8-bit Timer/Counter0 (TC0) with PWM.................................................................. 12719.1. Features................................................................................................................................... 12719.2. Overview.................................................................................................................................. 12719.3. Timer/Counter Clock Sources.................................................................................................. 12919.4. Counter Unit............................................................................................................................. 12919.5. Output Compare Unit............................................................................................................... 13019.6. Compare Match Output Unit.....................................................................................................13219.7. Modes of Operation..................................................................................................................13419.8. Timer/Counter Timing Diagrams.............................................................................................. 13819.9. Register Description.................................................................................................................140

    20. 16-bit Timer/Counter1 (TC1) with PWM................................................................ 15220.1. Overview.................................................................................................................................. 15220.2. Features................................................................................................................................... 15220.3. Block Diagram..........................................................................................................................15220.4. Definitions.................................................................................................................................15320.5. Registers.................................................................................................................................. 15420.6. Accessing 16-bit Timer/Counter Registers...............................................................................15420.7. Timer/Counter Clock Sources.................................................................................................. 15720.8. Counter Unit............................................................................................................................. 15720.9. Input Capture Unit.................................................................................................................... 15820.10. Output Compare Units............................................................................................................. 16020.11. Compare Match Output Unit.....................................................................................................16220.12. Modes of Operation..................................................................................................................16320.13. Timer/Counter 0, 1 Prescalers................................................................................................. 17120.14. Timer/Counter Timing Diagrams.............................................................................................. 17120.15. Register Description.................................................................................................................173

    21. Timer/Counter 0, 1 Prescalers...............................................................................18621.1. Internal Clock Source...............................................................................................................18621.2. Prescaler Reset........................................................................................................................18621.3. External Clock Source..............................................................................................................18621.4. Register Description.................................................................................................................188

    22. 8-bit Timer/Counter2 (TC2) with PWM and Asynchronous Operation...................19022.1. Features................................................................................................................................... 19022.2. Overview.................................................................................................................................. 19022.3. Timer/Counter Clock Sources.................................................................................................. 19222.4. Counter Unit............................................................................................................................. 19222.5. Output Compare Unit............................................................................................................... 19322.6. Compare Match Output Unit.....................................................................................................19522.7. Modes of Operation..................................................................................................................19622.8. Timer/Counter Timing Diagrams.............................................................................................. 200

    ATmega328/P

    2018 Microchip Technology Inc. Datasheet Complete DS40001984A-page 5

  • 22.9. Asynchronous Operation of Timer/Counter2............................................................................20122.10. Timer/Counter Prescaler.......................................................................................................... 20322.11. Register Description.................................................................................................................203

    23. Serial Peripheral Interface (SPI)............................................................................21823.1. Features................................................................................................................................... 21823.2. Overview.................................................................................................................................. 21823.3. SS Pin Functionality................................................................................................................. 22223.4. Data Modes..............................................................................................................................22223.5. Register Description.................................................................................................................223

    24. Universal Synchronous Asynchronous Receiver Transceiver (USART)............... 22824.1. Features................................................................................................................................... 22824.2. Overview.................................................................................................................................. 22824.3. Block Diagram..........................................................................................................................22824.4. Clock Generation......................................................................................................................22924.5. Frame Formats.........................................................................................................................23224.6. USART Initialization................................................................................................................. 23324.7. Data Transmission The USART Transmitter......................................................................... 23424.8. Data Reception The USART Receiver.................................................................................. 23624.9. Asynchronous Data Reception.................................................................................................24024.10. Multi-Processor Communication Mode.................................................................................... 24324.11. Examples of Baud Rate Setting............................................................................................... 24324.12. Register Description.................................................................................................................246

    25. USART in SPI (USARTSPI) Mode.........................................................................25625.1. Features................................................................................................................................... 25625.2. Overview.................................................................................................................................. 25625.3. Clock Generation......................................................................................................................25625.4. SPI Data Modes and Timing.....................................................................................................25725.5. Frame Formats.........................................................................................................................25725.6. Data Transfer............................................................................................................................25925.7. AVR USART MSPIM vs. AVR SPI............................................................................................26025.8. Register Description.................................................................................................................261

    26. Two-Wire Serial Interface (TWI)............................................................................ 26226.1. Features................................................................................................................................... 26226.2. Two-Wire Serial Interface Bus Definition..................................................................................26226.3. Data Transfer and Frame Format.............................................................................................26326.4. Multi-Master Bus Systems, Arbitration, and Synchronization...................................................26626.5. Overview of the TWI Module....................................................................................................26826.6. Using the TWI...........................................................................................................................27026.7. Transmission Modes................................................................................................................ 27326.8. Multi-Master Systems and Arbitration...................................................................................... 29126.9. Register Description.................................................................................................................292

    27. Analog Comparator (AC).......................................................................................30027.1. Overview.................................................................................................................................. 300

    ATmega328/P

    2018 Microchip Technology Inc. Datasheet Complete DS40001984A-page 6

  • 27.2. Analog Comparator Multiplexed Input......................................................................................30027.3. Register Description.................................................................................................................301

    28. Analog-to-Digital Converter (ADC)........................................................................ 30528.1. Features................................................................................................................................... 30528.2. Overview.................................................................................................................................. 30528.3. Starting a Conversion...............................................................................................................30728.4. Prescaling and Conversion Timing...........................................................................................30828.5. Changing Channel or Reference Selection..............................................................................31028.6. ADC Noise Canceler................................................................................................................ 31228.7. ADC Conversion Result........................................................................................................... 31528.8. Temperature Measurement...................................................................................................... 31628.9. Register Description.................................................................................................................316

    29. debugWIRE On-chip Debug System.....................................................................32529.1. Features................................................................................................................................... 32529.2. Overview.................................................................................................................................. 32529.3. Physical Interface.....................................................................................................................32529.4. Software Breakpoints............................................................................................................... 32629.5. Limitations of debugWIRE........................................................................................................32629.6. Register Description.................................................................................................................326

    30. Boot Loader Support Read-While-Write Self-programming (BTLDR)................ 32830.1. Features................................................................................................................................... 32830.2. Overview.................................................................................................................................. 32830.3. Application and Boot Loader Flash Sections............................................................................32830.4. Read-While-Write and No Read-While-Write Flash Sections...................................................32930.5. Boot Loader Lock Bits.............................................................................................................. 33130.6. Entering the Boot Loader Program...........................................................................................33230.7. Addressing the Flash During Self-Programming......................................................................33330.8. Self-Programming the Flash.....................................................................................................33430.9. Register Description.................................................................................................................342

    31. Memory Programming (MEMPROG).....................................................................34531.1. Program And Data Memory Lock Bits......................................................................................34531.2. Fuse Bits.................................................................................................................................. 34631.3. Signature Bytes........................................................................................................................34831.4. Calibration Byte........................................................................................................................34931.5. Serial Number.......................................................................................................................... 34931.6. Page Size.................................................................................................................................34931.7. Parallel Programming Parameters, Pin Mapping, and Commands..........................................34931.8. Parallel Programming...............................................................................................................35131.9. Serial Downloading.................................................................................................................. 359

    32. Electrical Characteristics....................................................................................... 36432.1. Absolute Maximum Ratings......................................................................................................36432.2. Common DC Characteristics....................................................................................................36432.3. Speed Grades.......................................................................................................................... 367

    ATmega328/P

    2018 Microchip Technology Inc. Datasheet Complete DS40001984A-page 7

  • 32.4. Clock Characteristics................................................................................................................36832.5. System and Reset Characteristics........................................................................................... 36932.6. SPI Timing Characteristics....................................................................................................... 37032.7. Two-Wire Serial Interface Characteristics................................................................................ 37132.8. ADC Characteristics.................................................................................................................37332.9. Parallel Programming Characteristics......................................................................................374

    33. Typical Characteristics (TA = -40C to 85C).........................................................37733.1. ATmega328 Typical Characteristics......................................................................................... 377

    34. Typical Characteristics (TA = -40C to 105C).......................................................40234.1. ATmega328P Typical Characteristics.......................................................................................402

    35. Register Summary.................................................................................................42735.1. Note..........................................................................................................................................429

    36. Instruction Set Summary....................................................................................... 431

    37. Packaging Information...........................................................................................43637.1. 32-pin 32A................................................................................................................................43637.2. 32-pin 32M1-A..........................................................................................................................43737.3. 28-pin 28M1............................................................................................................................. 43837.4. 28-pin 28P3..............................................................................................................................438

    38. Errata.....................................................................................................................44038.1. Errata ATmega328/P................................................................................................................440

    39. Datasheet Revision History................................................................................... 44139.1. Rev. A 2/2018........................................................................................................................44139.2. Pre Microchip Revisions...........................................................................................................441

    The Microchip Web Site.............................................................................................. 442

    Customer Change Notification Service........................................................................442

    Customer Support....................................................................................................... 442

    Microchip Devices Code Protection Feature............................................................... 442

    Legal Notice.................................................................................................................443

    Trademarks................................................................................................................. 443

    Quality Management System Certified by DNV...........................................................444

    Worldwide Sales and Service......................................................................................445

    ATmega328/P

    2018 Microchip Technology Inc. Datasheet Complete DS40001984A-page 8

  • 1. DescriptionThe AVR core combines a rich instruction set with 32 general purpose working registers. All the 32registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers tobe accessed in a single instruction executed in one clock cycle. The resulting architecture is more codeefficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.

    The ATmega328/P provides the following features: 32Kbytes of in-system programmable Flash with read-while-write capabilities, 1Kbytes EEPROM, 2Kbytes SRAM, 23 general purpose I/O lines, 32 generalpurpose working registers, Real Time Counter (RTC), three flexible timer/counters with Compare modesand PWM, 1 serial programmable USARTs , 1 byte-oriented 2-wire Serial Interface (I2C), a 6-channel 10-bit ADC (8 channels in TQFP and QFN/MLF packages), a programmable watchdog timer with internaloscillator, an SPI serial port, and six software selectable power saving modes. The Idle mode stops theCPU while allowing the SRAM, timer/counters, SPI port, and interrupt system to continue functioning. ThePower-Down mode saves the register contents but freezes the oscillator, disabling all other chip functionsuntil the next interrupt or hardware Reset. In Power-Save mode, the asynchronous timer continues to run,allowing the user to maintain a timer base while the rest of the device is sleeping. The ADC NoiseReduction mode stops the CPU and all I/O modules except asynchronous timer and ADC to minimizeswitching noise during ADC conversions. In Standby mode, the crystal/resonator oscillator is runningwhile the rest of the device is sleeping. This allows very fast start-up combined with low-powerconsumption. In Extended Standby mode, both the main oscillator and the asynchronous timer continueto run.

    Microchip offers the QTouch library for embedding capacitive touch buttons, sliders and wheelsfunctionality into AVR microcontrollers. The patented charge-transfer signal acquisition offers robustsensing and includes fully debounced reporting of touch keys and includes Adjacent Key Suppression(AKS) technology for unambiguous detection of key events. The easy-to-use QTouch Suite toolchainallows you to explore, develop and debug your own touch applications.

    The device is manufactured using Microchips high density nonvolatile memory technology. The on-chipISP Flash allows the program memory to be reprogrammed in-system through an SPI serial interface, bya conventional nonvolatile memory programmer, or by an on-chip boot program running on the AVR core.The boot program can use any interface to download the application program in the application Flashmemory. Software in the boot Flash section will continue to run while the application Flash section isupdated, providing true read-while-write operation. By combining an 8-bit RISC CPU with in-system self-programmable Flash on a monolithic chip, the ATmega328/P is a powerful microcontroller that provides ahighly flexible and cost effective solution to many embedded control applications.

    The ATmega328/P is supported with a full suite of program and system development tools including: Ccompilers, macro assemblers, program debugger/simulators, in-circuit emulators, and evaluation kits.

    ATmega328/PDescription

    2018 Microchip Technology Inc. Datasheet Complete DS40001984A-page 9

  • 2. Configuration SummaryFeatures ATmega328/P

    Pin Count 28/32

    Flash (Bytes) 32K

    SRAM (Bytes) 2K

    EEPROM (Bytes) 1K

    General Purpose I/O Lines 23

    SPI 2

    TWI (I2C) 1

    USART 1

    ADC 10-bit 15 kSPS

    ADC Channels 8

    8-bit Timer/Counters 2

    16-bit Timer/Counters 1

    ATmega328/PConfiguration Summary

    2018 Microchip Technology Inc. Datasheet Complete DS40001984A-page 10

  • 3. Ordering Information

    3.1 ATmega328

    Speed [MHz](3) Power Supply [V] Ordering Code(2) Package(1) Operational Range

    20 1.8 - 5.5 ATmega328-AUATmega328-AUR(5)ATmega328-MMH(4)ATmega328-MMHR(4)(5)ATmega328-MUATmega328-MUR(5)ATmega328-PU

    32A32A28M128M132M1-A32M1-A28P3

    Industrial(-40C to 85C)

    Note:1. This device can also be supplied in wafer form. Please contact your local Microchip sales office for

    detailed ordering information and minimum quantities.2. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances

    (RoHS directive). Also Halide free and fully Green.3. Please refer to Speed Grades for Speed vs. VCC4. Tape & Reel.5. NiPdAu Lead Finish.

    Package Type

    28M1 28-pad, 4 x 4 x 1.0 body, Lead Pitch 0.45mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)

    28P3 28-lead, 0.300 Wide, Plastic Dual Inline Package (PDIP)

    32M1-A 32-pad, 5 x 5 x 1.0 body, Lead Pitch 0.50mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)

    32A 32-lead, Thin (1.0mm) Plastic Quad Flat Package (TQFP)

    3.2 ATmega328P

    Speed [MHz](3) Power Supply [V] Ordering Code(2) Package(1) Operational Range

    20 1.8 - 5.5 ATmega328P-AUATmega328P-AUR(5)ATmega328P-MMH(4)ATmega328P-MMHR(4)(5)ATmega328P-MU

    32A32A28M128M132M1-A

    Industrial(-40C to 85C)

    ATmega328/POrdering Information

    2018 Microchip Technology Inc. Datasheet Complete DS40001984A-page 11

  • Speed [MHz](3) Power Supply [V] Ordering Code(2) Package(1) Operational Range

    ATmega328P-MUR(5)ATmega328P-PU

    32M1-A28P3

    ATmega328P-ANATmega328P-ANR(5)ATmega328P-MNATmega328P-MNR(5)ATmega328P-PN

    32A32A32M1-A32M1-A28P3

    Industrial(-40C to 105C)

    Note:1. This device can also be supplied in wafer form. Please contact your local Microchip sales office for

    detailed ordering information and minimum quantities.2. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances

    (RoHS directive). Also Halide free and fully Green.3. Please refer to Speed Grades for Speed vs. VCC4. Tape & Reel.5. NiPdAu Lead Finish.

    Package Type

    28M1 28-pad, 4 x 4 x 1.0 body, Lead Pitch 0.45mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)

    28P3 28-lead, 0.300 Wide, Plastic Dual Inline Package (PDIP)

    32M1-A 32-pad, 5 x 5 x 1.0 body, Lead Pitch 0.50mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)

    32A 32-lead, Thin (1.0mm) Plastic Quad Flat Package (TQFP)

    ATmega328/POrdering Information

    2018 Microchip Technology Inc. Datasheet Complete DS40001984A-page 12

  • 4. Block DiagramFigure 4-1.Block Diagram

    CPU

    USART

    ADCADC[7:0]AREF

    RxD0TxD0XCK0

    I/OPORTS

    DATABUS

    GPIOR[2:0]

    SRAM

    OCD

    EXTINT

    FLASHNVM

    programming

    debugWire

    IN/OUT

    DATABUS

    TC 0(8-bit)

    SPI

    ACAIN0AIN1

    ADCMUX

    EEPROM

    EEPROMIF

    TC 1(16-bit)

    OC1A/BT1

    ICP1

    TC 2(8-bit async)

    TWI SDA0SCL0

    InternalReference

    Watchdog Timer

    Power management

    and clock control

    VCC

    GND

    Clock generation8MHz

    Calib RC

    128kHz int osc

    32.768kHz XOSC

    External clock

    Power SupervisionPOR/BOD &

    RESET

    XTAL2 / TOSC2

    RESET

    XTAL1 /TOSC1

    16MHz LP XOSC

    PCINT[23:0]INT[1:0]

    T0OC0AOC0B

    MISO0MOSI0SCK0SS0

    OC2AOC2B

    PB[7:0]PC[6:0]PD[7:0]

    ADC6,ADC7,PC[5:0]AREF

    PD[7:0], PC[6:0], PB[7:0]PD3, PD2

    PB1, PB2PD5PB0

    PB3PD3

    PD4PD6PD5

    PB4PB3PB5PB2

    PD6PD7

    ADC6, ADC7PC[5:0]PD0PD1PD4 PC4PC5

    ATmega328/PBlock Diagram

    2018 Microchip Technology Inc. Datasheet Complete DS40001984A-page 13

  • 5. Pin Configurations

    5.1 PinoutFigure 5-1.28-pin PDIP

    Power

    Ground

    Programming/debug

    Digital

    Analog

    Crystal/Osc

    (PCINT14/RESET) PC6

    (PCINT16/RXD) PD0

    (PCINT17/TXD) PD1

    (PCINT18/INT0) PD2

    (PCINT19/OC2B/INT1) PD3

    (PCINT20/XCK/T0) PD4

    VCC

    GND

    (PCINT6/XTAL1/TOSC1) PB6

    (PCINT7/XTAL2/TOSC2) PB7

    (PCINT21/OC0B/T1) PD5

    (PCINT22/OC0A/AIN0) PD6

    (PCINT23/AIN1) PD7

    (PCINT0/CLKO/ICP1) PB0

    PC5 (ADC5/SCL/PCINT13)

    PC4 (ADC4/SDA/PCINT12)

    PC3 (ADC3/PCINT11)

    PC2 (ADC2/PCINT10)

    PC1 (ADC1/PCINT9)

    PC0 (ADC0/PCINT8)

    GND

    AREF

    AVCC

    PB5 (SCK/PCINT5)

    PB4 (MISO/PCINT4)

    PB3 (MOSI/OC2A/PCINT3)

    PB2 (SS/OC1B/PCINT2)

    PB1 (OC1A/PCINT1)

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    13

    14

    28

    27

    26

    25

    24

    23

    22

    21

    20

    19

    18

    17

    16

    15

    ATmega328/PPin Configurations

    2018 Microchip Technology Inc. Datasheet Complete DS40001984A-page 14

  • Figure 5-2.28-pin MLF Top View

    1

    2

    3

    4

    5

    6

    7

    8 9 10 11 12 13 14

    PD2

    (INT0

    /PC

    INT1

    8)

    PD1

    (TXD

    /PC

    INT1

    7)

    PD0

    (RXD

    /PC

    INT1

    6)

    PC6

    (RES

    ET/P

    CIN

    T14)

    PC5

    (AD

    C5/

    SCL/

    PCIN

    T13)

    PC4

    (AD

    C4/

    SDA/

    PCIN

    T12)

    PC3

    (AD

    C3/

    PCIN

    T11)

    PC2 (ADC2/PCINT10)

    PC1 (ADC1/PCINT9)

    PC0 (ADC0/PCINT8)

    GND

    AREF

    AVCC

    PB5 (SCK/PCINT5)

    (PCI

    NT2

    2/O

    C0A

    /AIN

    0) P

    D6

    (PCI

    NT2

    3/A

    IN1)

    PD

    7

    (PCI

    NT0

    /CLK

    O/IC

    P1) P

    B0

    (PCI

    NT1

    /OC1

    A) P

    B1

    (PCI

    NT2

    /SS/

    OC1

    B) P

    B2

    (PCI

    NT3

    /OC2

    A/M

    OSI

    ) PB3

    (PCI

    NT4

    /MIS

    O) P

    B4

    (PCINT19/OC2B/INT1) PD3

    (PCINT20/XCK/T0) PD4

    VCC

    GND

    (PCINT6/XTAL1/TOSC1) PB6

    (PCINT7/XTAL2/TOSC2) PB7

    (PCINT21/OC0B/T1) PD5

    Bottom pad should be soldered to ground

    Power

    Ground

    Programming/debug

    Digital

    Analog

    Crystal/CLK

    21

    20

    19

    18

    17

    16

    15

    28 27 26 25 24 23 22

    ATmega328/PPin Configurations

    2018 Microchip Technology Inc. Datasheet Complete DS40001984A-page 15

  • Figure 5-3.32-pin TQFP Top View

    1

    2

    3

    4

    32 31 30 29 28 27 26

    5

    6

    7

    8

    24

    23

    22

    21

    20

    19

    18

    1725

    9 10 11 12 13 14 15 16

    Power

    Ground

    Programming/debug

    Digital

    Analog

    Crystal/CLK

    (PCINT19/OC2B/INT1) PD3

    (PCINT20/XCK/T0) PD4

    GND

    VCC

    GND

    VCC

    (PCINT6/XTAL1/TOSC1) PB6

    (PCINT7/XTAL2/TOSC2) PB7

    PD2

    (INT0

    /PCI

    NT18

    )

    PD1

    (TXD

    /PCI

    NT17

    )

    PD0

    (RXD

    /PCI

    NT16

    )

    PC6

    (RES

    ET/P

    CINT

    14)

    PC5

    (ADC

    5/SC

    L/PC

    INT1

    3)

    PC4

    (ADC

    4/SD

    A/PC

    INT1

    2)

    PC3

    (ADC

    3/PC

    INT1

    1)

    PC2

    (ADC

    2/PC

    INT1

    0)

    PC1 (ADC1/PCINT9)

    PC0 (ADC0/PCINT8)

    ADC7

    GND

    AREF

    ADC6

    AVCC

    PB5 (SCK/PCINT5)

    (PC

    INT2

    1/O

    C0B

    /T1)

    PD

    5

    (PC

    INT2

    2/O

    C0A

    /AIN

    0) P

    D6

    (PC

    INT2

    3/AI

    N1)

    PD

    7

    (PC

    INT0

    /CLK

    O/IC

    P1) P

    B0

    (PC

    INT1

    /OC

    1A) P

    B1

    (PC

    INT2

    /SS/

    OC

    1B) P

    B2

    (PC

    INT3

    /OC

    2A/M

    OSI

    ) PB3

    (PC

    INT4

    /MIS

    O) P

    B4

    ATmega328/PPin Configurations

    2018 Microchip Technology Inc. Datasheet Complete DS40001984A-page 16

  • Figure 5-4.32-pin MLF Top View

    1

    2

    3

    4

    32 31 30 29 28 27 26

    5

    6

    7

    8

    24

    23

    22

    21

    20

    19

    18

    17

    25

    9 10 11 12 13 14 15 16

    PD2

    (INT0

    /PC

    INT1

    8)

    PD1

    (TXD

    /PC

    INT1

    7)

    PD0

    (RXD

    /PC

    INT1

    6)

    PC6

    (RES

    ET/P

    CIN

    T14)

    PC5

    (AD

    C5/

    SCL/

    PCIN

    T13)

    PC4

    (AD

    C4/

    SDA/

    PCIN

    T12)

    PC3

    (AD

    C3/

    PCIN

    T11)

    PC2

    (AD

    C2/

    PCIN

    T10)

    PC1 (ADC1/PCINT9)

    PC0 (ADC0/PCINT8)

    ADC7

    GND

    AREF

    ADC6

    AVCC

    PB5 (SCK/PCINT5)

    (PCI

    NT2

    1/O

    C0B/

    T1) P

    D5

    (PCI

    NT2

    2/O

    C0A

    /AIN

    0) P

    D6

    (PCI

    NT2

    3/A

    IN1)

    PD

    7

    (PCI

    NT0

    /CLK

    O/IC

    P1) P

    B0

    (PCI

    NT1

    /OC1

    A) P

    B1

    (PCI

    NT2

    /SS/

    OC1

    B) P

    B2

    (PCI

    NT3

    /OC2

    A/M

    OSI

    ) PB3

    (PCI

    NT4

    /MIS

    O) P

    B4

    (PCINT19/OC2B/INT1) PD3

    (PCINT20/XCK/T0) PD4

    GND

    VCC

    GND

    VCC

    (PCINT6/XTAL1/TOSC1) PB6

    (PCINT7/XTAL2/TOSC2) PB7

    Bottom pad should be soldered to ground

    Power

    Ground

    Programming/debug

    Digital

    Analog

    Crystal/CLK

    5.2 Pin Descriptions

    5.2.1 VCCDigital supply voltage pin.

    5.2.2 GNDGround.

    5.2.3 Port B (PB[7:0]) XTAL1/XTAL2/TOSC1/TOSC2Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each pin). The Port Boutput buffers have symmetrical drive characteristics with both high sink and source capability. As inputs,Port B pins that are externally pulled low will source current if the pull-up resistors are activated. The PortB pins are tri-stated during a Reset condition even if the clock is not running.

    ATmega328/PPin Configurations

    2018 Microchip Technology Inc. Datasheet Complete DS40001984A-page 17

  • Depending on the clock selection fuse settings, PB6 can be used as input to the inverting oscillatoramplifier and input to the internal clock operating circuit.

    Depending on the clock selection fuse settings, PB7 can be used as output from the inverting oscillatoramplifier.

    If the internal calibrated RC oscillator is used as chip clock source, PB[7:6] is used as TOSC[2:1] input forthe asynchronous timer/counter2 if the AS2 bit in ASSR is set.

    5.2.4 Port C (PC[5:0])Port C is a 7-bit bi-directional I/O port with internal pull-up resistors (selected for each pin). The PC[5:0]output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs,Port C pins that are externally pulled low will source current if the pull-up resistors are activated. The PortC pins are tri-stated during a Reset condition even if the clock is not running.

    5.2.5 PC6/RESETIf the RSTDISBL fuse is programmed, PC6 is used as an I/O pin. Note that the electrical characteristics ofPC6 differ from those of the other pins of Port C.

    If the RSTDISBL fuse is unprogrammed, PC6 is used as a Reset input. A low level on this pin for longerthan the minimum pulse length will generate a Reset, even if the clock is not running. Shorter pulses arenot guaranteed to generate a Reset.

    The various special features of Port C are elaborated in the Alternate Functions of Port C section.

    5.2.6 Port D (PD[7:0])Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each pin). The Port Doutput buffers have symmetrical drive characteristics with both high sink and source capability. As inputs,Port D pins that are externally pulled low will source current if the pull-up resistors are activated. The PortD pins are tri-stated during a Reset condition even if the clock is not running.

    5.2.7 AVCCAVCC is the supply voltage pin for the A/D Converter (ADC), PC[3:0], and PE[3:2]. It should be externallyconnected to VCC, even if the ADC is not used. If the ADC is used, it should be connected to VCC througha low-pass filter. Note that PC[6:4] use digital supply voltage, VCC.

    5.2.8 AREFAREF is the analog reference pin for the A/D Converter.

    5.2.9 ADC[7:6]In the TQFP and VFQFN package, ADC[7:6] serve as analog inputs to the A/D converter. These pins arepowered by the analog supply and serve as 10-bit ADC channels.

    ATmega328/PPin Configurations

    2018 Microchip Technology Inc. Datasheet Complete DS40001984A-page 18

  • 6. I/O MultiplexingEach pin is by default controlled by the PORT as a general purpose I/O and alternatively it can beassigned to one of the peripheral functions.

    The following table describes the peripheral signals multiplexed to the PORT I/O pins.

    Table 6-1.PORT Function Multiplexing

    (32-pinMLF/TQFP)Pin#

    (28-pinMLF) Pin#

    (28-pinPIPD) Pin#

    PAD EXTINT PCINT ADC/AC OSC T/C #0 T/C#1

    USART 0 I2C 0 SPI 0

    1 1 5 PD3 INT1 PCINT19 OC2B

    2 2 6 PD4 PCINT20 T0 XCK0

    4 3 7 VCC

    3 4 8 GND

    6 - - VCC

    5 - - GND

    7 5 9 PB6 PCINT6 XTAL1/TOSC1

    8 6 10 PB7 PCINT7 XTAL2/TOSC2

    9 7 11 PD5 PCINT21 OC0B T1

    10 8 12 PD6 PCINT22 AIN0 OC0A

    11 9 13 PD7 PCINT23 AIN1

    12 10 14 PB0 PCINT0 CLKO ICP1

    13 11 15 PB1 PCINT1 OC1A

    14 12 16 PB2 PCINT2 OC1B SS0

    15 13 17 PB3 PCINT3 OC2A MOSI0

    16 14 18 PB4 PCINT4 MISO0

    17 15 19 PB5 PCINT5 SCK0

    18 16 20 AVCC

    19 - - ADC6 ADC6

    20 17 21 AREF

    21 18 22 GND

    22 - - ADC7 ADC7

    23 19 13 PC0 PCINT8 ADC0

    24 20 24 PC1 PCINT9 ADC1

    25 21 25 PC2 PCINT10 ADC2

    26 22 26 PC3 PCINT11 ADC3

    27 23 27 PC4 PCINT12 ADC4 SDA0

    28 24 28 PC5 PCINT13 ADC5 SCL0

    ATmega328/PI/O Multiplexing

    2018 Microchip Technology Inc. Datasheet Complete DS40001984A-page 19

  • (32-pinMLF/TQFP)Pin#

    (28-pinMLF) Pin#

    (28-pinPIPD) Pin#

    PAD EXTINT PCINT ADC/AC OSC T/C #0 T/C#1

    USART 0 I2C 0 SPI 0

    29 25 1 PC6/RESET PCINT14

    30 26 2 PD0 PCINT16 RXD0

    31 27 3 PD1 PCINT17 TXD0

    32 28 4 PD2 INT0 PCINT18

    ATmega328/PI/O Multiplexing

    2018 Microchip Technology Inc. Datasheet Complete DS40001984A-page 20

  • 7. ResourcesA comprehensive set of development tools, application notes, and datasheets are available for downloadon http://www.microchip.com/design-centers/8-bit/microchip-avr-mcus.

    ATmega328/PResources

    2018 Microchip Technology Inc. Datasheet Complete DS40001984A-page 21

    http://www.microchip.com/design-centers/8-bit/microchip-avr-mcus

  • 8. Data RetentionReliability qualification results show that the projected data retention failure rate is much less than 1 PPMover 20 years at 85C.

    ATmega328/PData Retention

    2018 Microchip Technology Inc. Datasheet Complete DS40001984A-page 22

  • 9. About Code ExamplesThis documentation contains simple code examples that briefly show how to use various parts of thedevice. These code examples assume that the part specific header file is included before compilation. Beaware that not all C compiler vendors include bit definitions in the header files and interrupt handling in Cis compiler dependent. Confirm with the C compiler documentation for more details.

    For I/O registers located in extended I/O map, IN, OUT, SBIS, SBIC, CBI, and SBI instructions must bereplaced with instructions that allow access to extended I/O. Typically LDS and STS combined with SBRS,SBRC, SBR, and CBR.

    ATmega328/PAbout Code Examples

    2018 Microchip Technology Inc. Datasheet Complete DS40001984A-page 23

  • 10. Capacitive Touch Sensing

    10.1 QTouch LibraryThe QTouch library provides a simple to use solution to realize touch sensitive interfaces on most AVR

    microcontrollers. The QTouch library includes support for the QTouch and QMatrix acquisition methods.

    Touch sensing can be added to any application by linking the appropriate QTouch library for the AVRmicrocontroller. This is done by using a simple set of APIs to define the touch channels and sensors, andthen calling the touch sensing APIs to retrieve the channel information and determine the touch sensorstates.

    The QTouch library is FREE and downloadable from QTouch Library . For implementation details andother information, refer to the QTouch Library User Guide, also available for download from the Microchipwebsite.

    ATmega328/PCapacitive Touch Sensing

    2018 Microchip Technology Inc. Datasheet Complete DS40001984A-page 24

    http://www.microchip.com/developmenttools/productdetails.aspx?partno=atmel+qtouch+library

  • 11. AVR CPU Core

    11.1 OverviewThis section discusses the AVR core architecture in general. The main function of the CPU core is toensure correct program execution. The CPU must, therefore, be able to access memories, performcalculations, control peripherals, and handle interrupts.

    Figure 11-1.Block Diagram of the AVR Architecture

    Register file

    Flash program memory

    Program counter

    Instruction register

    Instruction decode

    Data memory

    ALUStatus register

    R0R1R2R3R4R5R6R7R8R9

    R10R11R12R13R14R15R16R17R18R19R20R21R22R23R24R25

    R26 (XL)R27 (XH)R28 (YL)R29 (YH)R30 (ZL)R31 (ZH)

    Stack pointer

    In order to maximize performance and parallelism, the AVR uses a Harvard architecture with separatememories and buses for program and data. Instructions in the program memory are executed with asingle level pipelining. While one instruction is being executed, the next instruction is pre-fetched from theprogram memory. This concept enables instructions to be executed in every clock cycle. The programmemory is In-System Reprogrammable Flash memory.

    The fast-access register file contains 32 x 8-bit general purpose working registers with a single clockcycle access time. This allows single-cycle Arithmetic Logic Unit (ALU) operation. In a typical ALUoperation, two operands are output from the register file, the operation is executed, and the result isstored back in the register file in one clock cycle.

    Six of the 32 registers can be used as three 16-bit indirect address register pointers for data spaceaddressing enabling efficient address calculations. One of these address pointers can be used as an

    ATmega328/PAVR CPU Core

    2018 Microchip Technology Inc. Datasheet Complete DS40001984A-page 25

  • address pointer for lookup tables in Flash program memory. These added function registers are the 16-bitX-, Y-, and Z-register, described later in this section.

    The ALU supports arithmetic and logic operations between registers or between a constant and aregister. Single register operations can also be executed in the ALU. After an arithmetic operation, theStatus register is updated to reflect information about the result of the operation.

    Program flow is provided by conditional and unconditional jump and call instructions, able to directlyaddress the whole address space. Most AVR instructions have a single 16-bit word format. Everyprogram memory address contains a 16- or 32-bit instruction.

    Program Flash memory space is divided into two sections, the Boot Program section and the ApplicationProgram section. Both sections have dedicated Lock bits for write and read/write protection. The SPMinstruction that writes into the Application Flash memory section must reside in the Boot Program section.

    During interrupts and subroutine calls, the return address Program Counter (PC) is stored on the Stack.The Stack is effectively allocated in the general data SRAM, and consequently, the Stack size is onlylimited by the total SRAM size and the usage of the SRAM. All user programs must initialize the StackPointer (SP) in the Reset routine (before subroutines or interrupts are executed). The SP is read/writeaccessible in the I/O space. The data SRAM can easily be accessed through the five different addressingmodes supported in the AVR architecture.

    The memory spaces in the AVR architecture are all linear and regular memory maps.

    A flexible interrupt module has its control registers in the I/O space with an additional global interruptenable bit in the Status register. All interrupts have a separate interrupt vector in the interrupt vector table.The interrupts have priority in accordance with their interrupt vector position. The lower the interruptvector address, the higher the priority.

    The I/O memory space contains 64 addresses for CPU peripheral functions as Control registers, SPI, andother I/O functions. The I/O memory can be accessed directly, or as the data space locations followingthose of the register file, 0x20 - 0x5F. In addition, this device has extended I/O space from 0x60 - 0xFF inSRAM where only the ST/STS/STD and LD/LDS/LDD instructions can be used.

    11.2 Arithmetic Logic Unit (ALU)The high-performance AVR ALU operates in direct connection with all the 32 general purpose workingregisters. Within a single clock cycle, arithmetic operations between general purpose registers orbetween a register and an immediate are executed. The ALU operations are divided into three maincategories: arithmetic, logical, and bit-functions. Some implementations of the architecture provide apowerful multiplier supporting both signed/unsigned multiplication and fractional format. See InstructionSet Summary section for a detailed description.

    Related LinksInstruction Set Summary

    11.3 Status RegisterThe Status register contains information about the result of the most recently executed arithmeticinstruction. This information can be used for altering program flow in order to perform conditionaloperations. The Status register is updated after all ALU operations, as specified in the instruction setreference. This will in many cases remove the need for using the dedicated compare instructions,resulting in faster and more compact code.

    ATmega328/PAVR CPU Core

    2018 Microchip Technology Inc. Datasheet Complete DS40001984A-page 26

  • The Status register is not automatically stored when entering an interrupt routine and restored whenreturning from an interrupt. This must be handled by software.

    ATmega328/PAVR CPU Core

    2018 Microchip Technology Inc. Datasheet Complete DS40001984A-page 27

  • 11.3.1 Status Register

    Name: SREGOffset: 0x5FReset: 0x00Property: When addressing as I/O Register: address offset is 0x3F

    When addressing I/O registers as data space using LD and ST instructions, the provided offset must beused. When using the I/O specific commands IN and OUT, the offset is reduced by 0x20, resulting in anI/O address offset within 0x00 - 0x3F.

    Bit 7 6 5 4 3 2 1 0 I T H S V N Z C

    Access R/W R/W R/W R/W R/W R/W R/W R/W Reset 0 0 0 0 0 0 0 0

    Bit 7 IGlobal Interrupt EnableThe global interrupt enable bit must be set for the interrupts to be enabled. The individual interrupt enablecontrol is then performed in separate control registers. If the Global Interrupt Enable register is cleared,none of the interrupts are enabled independent of the individual interrupt enable settings. The I-bit iscleared by hardware after an interrupt has occurred, and is set by the RETI instruction to enablesubsequent interrupts. The I-bit can also be set and cleared by the application with the SEI and CLIinstructions, as described in the instruction set reference.

    Bit 6 TCopy StorageThe bit copy instructions BLD (Bit LoaD) and BST (Bit STore) use the T-bit as source or destination forthe operated bit. A bit from a register in the register file can be copied into T by the BST instruction, and abit in T can be copied into a bit in a register in the register file by the BLD instruction.

    Bit 5 HHalf Carry FlagThe half carry flag H indicates a half carry in some arithmetic operations. Half carry flag is useful in BCDarithmetic. See the Instruction Set Description for detailed information.

    Bit 4 SSign Flag, S = N V

    The S-bit is always an exclusive or between the negative flag N and the twos complement overflow flagV. See the Instruction Set Description for detailed information.

    Bit 3 VTwos Complement Overflow FlagThe twos complement overflow flag V supports twos complement arithmetic. See the Instruction SetDescription for detailed information.

    Bit 2 NNegative FlagThe negative flag N indicates a negative result in an arithmetic or logic operation. See the Instruction SetDescription for detailed information.

    Bit 1 ZZero FlagThe zero flag Z indicates a zero result in an arithmetic or logic operation. See the Instruction SetDescription for detailed information.

    ATmega328/PAVR CPU Core

    2018 Microchip Technology Inc. Datasheet Complete DS40001984A-page 28

  • Bit 0 CCarry FlagThe carry flag C indicates a carry in an arithmetic or logic operation. See the Instruction Set Descriptionfor detailed information.

    11.4 General Purpose Register FileThe register file is optimized for the AVR Enhanced RISC instruction set. In order to achieve the requiredperformance and flexibility, the following input/output schemes are supported by the register file:

    One 8-bit output operand and one 8-bit result input Two 8-bit output operands and one 8-bit result input Two 8-bit output operands and one 16-bit result input One 16-bit output operand and one 16-bit result input

    Figure 11-2.AVR CPU General Purpose Working Registers7 0 Addr.

    R0 0x00

    R1 0x01

    R2 0x02

    R13 0x0D

    General R14 0x0E

    Purpose R15 0x0F

    Working R16 0x10

    Registers R17 0x11

    R26 0x1A X-register Low Byte

    R27 0x1B X-register High Byte

    R28 0x1C Y-register Low Byte

    R29 0x1D Y-register High Byte

    R30 0x1E Z-register Low Byte

    R31 0x1F Z-register High Byte

    Most of the instructions operating on the register file have direct access to all registers, and most of themare single cycle instructions. As shown in the figure, each register is also assigned a data memoryaddress, mapping them directly into the first 32 locations of the user data space. Although not beingphysically implemented as SRAM locations, this memory organization provides great flexibility in accessof the registers, as the X-, Y-, and Z-pointer registers can be set to index any register in the file.

    11.4.1 The X-register, Y-register, and Z-registerThe registers R26...R31 have some added functions to their general purpose usage. These registers are16-bit address pointers for indirect addressing of the data space. The three indirect address registers X,Y, and Z are defined as described in the figure.

    ATmega328/PAVR CPU Core

    2018 Microchip Technology Inc. Datasheet Complete DS40001984A-page 29

  • Figure 11-3.The X-, Y-, and Z-registers15 XH XL 0

    X-register 7 0 7 0

    R27 R26

    15 YH YL 0

    Y-register 7 0 7 0

    R29 R28

    15 ZH ZL 0

    Z-register 7 0 7 0

    R31 R30

    In the different addressing modes, these address registers have functions as fixed displacement,automatic increment, and automatic decrement (see the instruction set reference for details).

    Related LinksInstruction Set Summary

    11.5 Stack PointerThe stack is mainly used for storing temporary data, local variables, and return addresses after interruptsand subroutine calls. The stack is implemented as growing from higher to lower memory locations. TheStack Pointer register always points to the top of the stack.

    The stack pointer points to the data SRAM stack area where the subroutine and interrupt stacks arelocated. A stack PUSH command will decrease the stack pointer. The stack in the data SRAM must bedefined by the program before any subroutine calls are executed or interrupts are enabled. Initial stackpointer value equals the last address of the internal SRAM and the stack pointer must be set to pointabove start of the SRAM. See the table for stack pointer details.

    Table 11-1.Stack Pointer Instructions

    Instruction Stack Pointer Description

    PUSH Decremented by 1 Data is pushed onto the stack

    CALL

    ICALL

    RCALL

    Decremented by 2 Return address is pushed onto the stack with a subroutine call orinterrupt

    POP Incremented by 1 Data is popped from the stack

    RET

    RETI

    Incremented by 2 Return address is popped from the stack with return from subroutine orreturn from interrupt

    ATmega328/PAVR CPU Core

    2018 Microchip Technology Inc. Datasheet Complete DS40001984A-page 30

  • The AVR stack pointer is implemented as two 8-bit registers in the I/O space. The number of bits actuallyused is implementation dependent. Note that the data space in some implementations of the AVRarchitecture is so small that only SPL is needed. In this case, the SPH register will not be present.

    ATmega328/PAVR CPU Core

    2018 Microchip Technology Inc. Datasheet Complete DS40001984A-page 31

  • 11.5.1 Stack Pointer Register Low and High byte

    Name: SPL and SPHOffset: 0x5DReset: 0x4FFProperty: When addressing I/O registers as data space the offset address is 0x3D

    The SPL and SPH register pair represents the 16-bit value, SP. The low byte [7:0] (suffix L) is accessibleat the original offset. The high byte [15:8] (suffix H) can be accessed at offset + 0x01. For more details onreading and writing 16-bit registers, refer to Accessing 16-bit Timer/Counter Registers.

    When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. Whenaddressing I/O registers as data space using LD and ST instructions, 0x20 must be added to these offsetaddresses.

    Bit 15 14 13 12 11 10 9 8 SP11 SP10 SP9 SP8

    Access R R R R RW RW RW RW Reset 0 0 0 0 0 1 0 0

    Bit 7 6 5 4 3 2 1 0 SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0

    Access RW RW RW RW RW RW RW RW Reset 1 1 1 1 1 1 1 1

    Bits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 SPStack Pointer RegisterSPL and SPH are combined into SP.

    Related LinksAccessing 16-bit Timer/Counter Registers

    11.6 Instruction Execution TimingThis section describes the general access timing concepts for instruction execution. The AVR CPU isdriven by the CPU clock clkCPU, directly generated from the selected clock source for the chip. No internalclock division is used. The figure below shows the parallel instruction fetches and instruction executionsenabled by the Harvard architecture and the fast-access register file concept. This is the basic pipeliningconcept to obtain up to 1 MIPS per MHz with the corresponding unique results for functions per cost,functions per clocks, and functions per power unit.

    ATmega328/PAVR CPU Core

    2018 Microchip Technology Inc. Datasheet Complete DS40001984A-page 32

  • Figure 11-4.The Parallel Instruction Fetches and Instruction Executions

    clk

    1st Instruction Fetch1st Instruction Execute

    2nd Instruction Fetch2nd Instruction Execute

    3rd Instruction Fetch3rd Instruction Execute

    4th Instruction Fetch

    T1 T2 T3 T4

    CPU

    The following figure shows the internal timing concept for the register file. In a single clock cycle, an ALUoperation using two register operands is executed and the result is stored back to the destination register.

    Figure 11-5.Single Cycle ALU Operation

    Total Execution Time

    Register Operands Fetch

    ALU Operation Execute

    Result Write Back

    T1 T2 T3 T4

    clkCPU

    11.7 Reset and Interrupt HandlingThe AVR provides several different interrupt sources. These interrupts and the separate Reset vectoreach have a separate program vector in the program memory space. All interrupts are assignedindividual enable bits, which must be written logic one together with the global interrupt enable bit in theStatus register in order to enable the interrupt. Depending on the program counter value, interrupts maybe automatically disabled when Boot Lock bits BLB02 or BLB12 are programmed. This feature improvessoftware security.

    The lowest addresses in the program memory space are by default defined as the Reset and interruptvectors. They have determined priority levels: The lower the address the higher is the priority level.RESET has the highest priority, and next is INT0 the External Interrupt Request 0. The interrupt vectorscan be moved to the start of the boot Flash section by setting the IVSEL bit in the MCU Control Register(MCUCR). The Reset vector can be moved to the start of the boot Flash section by programming theBOOTRST Fuse.

    When an interrupt occurs, the global interrupt enable I-bit is cleared and all interrupts are disabled. Theuser software can write logic one to the I-bit to enable nested interrupts. All enabled interrupts can theninterrupt the current interrupt routine. The I-bit is automatically set when a return from interrupt instruction RETI is executed.

    There are basically two types of interrupts:

    The first type is triggered by an event that sets the interrupt flag. For these interrupts, the programcounter is vectored to the actual interrupt vector in order to execute the interrupt handling routine, and

    ATmega328/PAVR CPU Core

    2018 Microchip Technology Inc. Datasheet Complete DS40001984A-page 33

  • hardware clears the corresponding interrupt flag. Interrupt flags can be cleared by writing a logic one tothe flag bit position(s) to be cleared. If an interrupt condition occurs while the corresponding interruptenable bit is cleared, the interrupt flag will be set and remembered until the interrupt is enabled, or theflag is cleared by software. Similarly, if one or more interrupt conditions occur while the global interruptenable bit is cleared, the corresponding interrupt flag(s) will be set and remembered until the globalinterrupt enable bit is set and will then be executed by order of priority.

    The second type of interrupts will trigger as long as the interrupt condition is present. These interrupts donot necessarily have interrupt flags. If the interrupt condition disappears before the interrupt is enabled,the interrupt will not be triggered. When the AVR exits from an interrupt, it will always return to the mainprogram and execute one more instruction before any pending interrupt is served.

    The Status register is not automatically stored when entering an interrupt routine, nor restored whenreturning from an interrupt routine. This must be handled by software.

    When using the CLI instruction to disable interrupts, the interrupts will be immediately disabled. Nointerrupt will be executed after the CLI instruction, even if it occurs simultaneously with the CLIinstruction. The following example shows how this can be used to avoid interrupts during the timedEEPROM write sequence.

    Assembly Code Example(1)

    in r16, SREG ; store SREG valuecli ; disable interrupts during timed sequencesbi EECR, EEMPE ; start EEPROM writesbi EECR, EEPEout SREG, r16 ; restore SREG value (I-bit)

    C Code Example(1)

    char cSREG;cSREG = SREG; /* store SREG value *//* disable interrupts during timed sequence */_CLI();EECR |= (1

  • 11.7.1 Interrupt Response TimeThe interrupt execution response for all the enabled AVR interrupts is four clock cycles minimum. Afterfour clock cycles, the program vector address for the actual interrupt handling routine is executed. Duringthis four clock cycle period, the program counter is pushed onto the stack. The vector is normally a jumpto the interrupt routine, and this jump takes three clock cycles. If an interrupt occurs during execution of amulti-cycle instruction, this instruction is completed before the interrupt is served. If an interrupt occurswhen the microcontroller (MCU) is in Sleep mode, the interrupt execution response time is increased byfour clock cycles. This increase comes in addition to the start-up time from the selected Sleep mode. Areturn from an interrupt handling routine takes four clock cycles. During these four clock cycles, theprogram counter (two bytes) is popped back from the Stack, the Stack Pointer is incremented by two, andthe I-bit in SREG is set.

    ATmega328/PAVR CPU Core

    2018 Microchip Technology Inc. Datasheet Complete DS40001984A-page 35

  • 12. AVR Memories

    12.1 OverviewThis section describes the different memory types in the device. The AVR architecture has two mainmemory spaces, the Data Memory and the Program Memory space. In addition, the device features anEEPROM Memory for data storage. All memory spaces are linear and regular.

    12.2 In-System Reprogrammable Flash Program MemoryThe ATmega328/P contains 32Kbytes on-chip in-system reprogrammable Flash memory for programstorage. Since all AVR instructions are 16 or 32 bits wide, the Flash is organized as 16 K x 16. Forsoftware security, the Flash Program memory space is divided into two sections - Boot Loader Sectionand Application Program Section in the device .

    The ATmega328/P Program Counter (PC) is 14 bits wide, thus addressing the 16 K program memorylocations. The operation of the Boot Program section and associated Boot Lock bits for softwareprotection are described in detail in Boot Loader Support Read-While-Write Self-Programming. Refer toMemory Programming for the description of Flash data serial downloading using the SPI pins.

    Constant tables can be allocated within the entire program memory address space, using the LoadProgram Memory (LPM) instruction.

    Timing diagrams for instruction fetch and execution are presented in Instruction Execution Timing.

    Figure 12-1.Program Memory Map ATmega328/P

    0x0000

    0x3FFF

    Program Memory

    Application Flash Section

    Boot Flash Section

    Related LinksBoot Loader Support Read-While-Write Self-programming (BTLDR)Memory Programming (MEMPROG)Instruction Execution Timing

    ATmega328/PAVR Memories

    2018 Microchip Technology Inc. Datasheet Complete DS40001984A-page 36

  • 12.3 SRAM Data MemoryThe following figure shows how the device SRAM memory is organized.

    The device is a complex microcontroller with more peripheral units than can be supported within the 64locations reserved in the Opcode for the IN and OUT instructions. For the extended I/O space from 0x60 -0xFF in SRAM, only the ST/STS/STD and LD/LDS/LDD instructions can be used.

    The lower 2303 data memory locations address both the register file, the I/O memory, extended I/Omemory, and the internal data SRAM. The first 32 locations address the register file, the next 64 locationthe standard I/O memory, then 160 locations of extended I/O memory, and the next 2 K locations addressthe internal data SRAM.

    The five different addressing modes for the data memory cover: Direct

    The direct addressing reaches the entire data space. Indirect with Displacement

    The indirect with displacement mode reaches 63 address locations from the base addressgiven by the Y- or Z-register.

    Indirect In the register file, registers R26 to R31 feature the indirect addressing pointer registers.

    Indirect with Pre-decrement The address registers X, Y, and Z are decremented.

    Indirect with Post-increment The address registers X, Y, and Z are incremented.

    The 32 general purpose working registers, 64 I/O registers, 160 extended I/O registers, and the 2K bytesof internal data SRAM in the device are all accessible through all these addressing modes.

    Figure 12-2.Data Memory Map with 2048 Byte Internal Data SRAMLoad/StoreIN/OUT

    0x0000 0x001F

    0x0100

    0x08FF

    160 Ext I/O registers

    64 I/O registers

    32 registers

    Internal SRAM(2048x8)

    0x0020 0x005F

    0x0060 0x00FF

    0x0000 0x001F

    12.3.1 Data Memory Access TimesThe internal data SRAM access is performed in two clkCPU cycles as described in the following Figure.

    ATmega328/PAVR Memories

    2018 Microchip Technology Inc. Datasheet Complete DS40001984A-page 37

  • Figure 12-3.On-chip Data SRAM Access Cycles

    clk

    WR

    RD

    Data

    Data

    Address Address valid

    T1 T2 T3

    Compute Address

    Rea

    dW

    rite

    CPU

    Memory Access Instruction Next Instruction

    12.4 EEPROM Data MemoryThe ATmega328/P contains 1KB of data EEPROM memory. It is organized as a separate data space, inwhich single bytes can be read and written. The access between the EEPROM and the CPU is describedin the following, specifying the EEPROM Address registers, the EEPROM Data register, and theEEPROM Control register.

    See the related links for a detailed description on EEPROM Programming in SPI or Parallel Programmingmode.

    Related LinksMemory Programming (MEMPROG)

    12.4.1 EEPROM Read/Write AccessThe EEPROM access registers are accessible in the I/O space.

    The write access time for the EEPROM is given in Table 12-2. A self-timing function, however, lets theuser software detect when the next byte can be written. If the user code contains instructions that writethe EEPROM, some precautions must be taken. In heavily filtered power supplies, VCC is likely to rise orfall slowly on power-up/down. This causes the device for some period of time to run at a voltage lowerthan specified as a minimum for the clock frequency used. Refer to Preventing EEPROM Corruption fordetails on how to avoid problems in these situations.

    In order to prevent unintentional EEPROM writes, a specific write procedure must be followed. Refer tothe description of the EEPROM Control register for details on this.

    When the EEPROM is read, the CPU is halted for four clock cycles before the next instruction isexecuted. When the EEPROM is written, the CPU is halted for two clock cycles before the next instructionis executed.

    ATmega328/PAVR Memories

    2018 Microchip Technology Inc. Datasheet Complete DS40001984A-page 38

  • 12.4.2 Preventing EEPROM CorruptionDuring periods of low VCC, the EEPROM data can be corrupted because the supply voltage is too low forthe CPU and the EEPROM to operate properly. These issues are the same as for board level systemsusing EEPROM, and the same design solutions should be applied.

    An EEPROM data corruption can be caused by two situations when the voltage is too low. First, a regularwrite sequence to the EEPROM requires a minimum voltage to operate correctly. Secondly, the CPU itselfcan execute instructions incorrectly, if the supply voltage is too low.

    EEPROM data corruption can easily be avoided by following this design recommendation:

    Keep the AVR RESET active (low) during periods of insufficient power supply voltage. This can be doneby enabling the internal Brown-out Detector (BOD). If the detection level of the internal BOD does notmatch the needed detection level, an external low VCC Reset protection circuit can be used. If a Resetoccurs while a write operation is in progress, the write operation will be completed provided that thepower supply voltage is sufficient.

    12.5 I/O MemoryThe I/O space definition of the device is shown in the Register Summary.

    All device I/Os and peripherals are placed in the I/O space. All I/O locations may be accessed by theLD/LDS/LDD and ST/STS/STD instructions, transferring data between the 32 general purpose workingregisters and the I/O space. I/O registers within the address range 0x00-0x1F are directly bit-accessibleusing the SBI and CBI instructions. In these registers, the value of single bits can be checked by usingthe SBIS and SBIC instructions.

    When using the I/O specific commands IN and OUT, the I/O addresses 0x00-0x3F must be used. Whenaddressing I/O registers as data space using LD and ST instructions, 0x20 must be added to theseaddresses. The device is a complex microcontroller with more peripheral units than can be supportedwithin the 64 locations reserved in Opcode for the IN and OUT instructions. For the extended I/O spacefrom 0x60..0xFF in SRAM, only the ST/STS/STD and LD/LDS/LDD instructions can be used.

    For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/Omemory addresses should never be written.

    Some of the status flags are cleared by writing a '1' to them; this is described in the flag descriptions.Note that, unlike most other AVRs, the CBI and SBI instructions will only operate on the specified bit, andcan, therefore, be used on registers containing such status flags. The CBI and SBI instructions work withregisters 0x00-0x1F only.

    The I/O and peripherals control registers are explained in later sections.

    Related LinksMemory Programming (MEMPROG)Register SummaryInstruction Set Summary

    12.5.1 General Purpose I/O RegistersThe device contains three general purpose I/O registers; General purpose I/O register 0/1/2 (GPIOR0/1/2). These registers can be used for storing any information, and they are particularly useful for storingglobal variables and status flags. General purpose I/O registers within the address range 0x00 - 0x1F aredirectly bit-accessible using the SBI, CBI, SBIS, and SBIC instructions.

    ATmega328/PAVR Memories

    2018 Microchip Technology Inc. Datasheet Complete DS40001984A-page 39

  • 12.6 Register Description

    12.6.1 Accessing 16-Bit RegistersThe AVR data bus is 8-bits wide, so accessing 16-bit registers requires atomic operations. Theseregisters must be byte-accessed using two read or write operations. 16-bit registers are connected to the8-bit bus and a temporary register using a 16-bit bus.

    For a write operation, the high byte of the 16-bit register must be written before the low byte. The highbyte is then written into the temporary register. When the low byte of the 16-bit register is written, thetemporary register is copied into the high byte of the 16-bit register in the same clock cycle.

    For a read operation, the low byte of the 16-bit register must be read before the high byte. When the lowbyte register is read by the CPU, the high byte of the 16-bit register is copied into the temporary registerin the same clock cycle as the low byte is read. When the high byte is read, it is then read from thetemporary register.

    This ensures that the low and high bytes of 16-bit registers are always accessed simultaneously whenreading or writing the register.

    Interrupts can corrupt the timed sequence if an interrupt is triggered and accesses the same 16-bitregister during an atomic 16-bit read/write operation. To prevent this, interrupts can be disabled whenwriting or reading 16-bit registers.

    The temporary registers can be read and written directly from user software.

    Note: For more information, refer to Accessing 16-bit Timer/Counter registers.

    Related LinksAccessing 16-bit Timer/Counter Registers

    ATmega328/PAVR Memories

    2018 Microchip Technology Inc. Datasheet Complete DS40001984A-page 40

  • 12.6.2 EEPROM Address Register Low and High Byte

    Name: EEARL and EEARHOffset: 0x41 [ID-000004d0]Reset: 0xXXProperty: When addressing as I/O Register: address offset is 0x21

    The EEARL and EEARH register pair represents the 16-bit value, EEAR. The low byte [7:0] (suffix L) isaccessible at the original offset. The high byte [15:8] (suffix H) can be accessed at offset + 0x01. Formore details on reading and writing 16-bit registers, refer to accessing 16-bit registers in the sectionabove.

    When addressing I/O registers as data space using LD and ST instructions, the provided offset must beused. When using the I/O specific commands IN and OUT, the offset is reduced by 0x20, resulting in anI/O address offset within 0x00 - 0x3F.

    Bit 15 14 13 12 11 10 9 8 EEAR[9:8]

    Access R/W R/W Reset x x

    Bit 7 6 5 4 3 2 1 0 EEAR[7:0]

    Access R/W R/W R/W R/W R/W R/W R/W R/W Reset x x x x x x x x

    Bits 9:0 EEAR[9:0]EEPROM AddressThe EEPROM Address Registers, EEARH and EEARL, specify the EEPROM address in the 1KBEEPROM space. The EEPROM data bytes are addressed linearly between 0 and 255/511/511. The initialvalue of EEAR is undefined. A proper value must be written before the EEPROM may be accessed.

    ATmega328/PAVR Memories

    2018 Microchip Technology Inc. Datasheet Complete DS40001984A-page 41

  • 12.6.3 EEPROM Data Register

    Name: EEDROffset: 0x40 [ID-000004d0]Reset: 0x00Property: When addressing as I/O Register: address offset is 0x20

    When addressing I/O registers as data space using LD and ST instructions, the provided offset must beused. When using the I/O specific commands IN and OUT, the offset is reduced by 0x20, resulting in anI/O address offset within 0x00 - 0x3F.

    Bit 7 6 5 4 3 2 1 0 EEDR[7:0]

    Access R/W R/W R/W R/W R/W R/W R/W R/W Reset 0 0 0 0 0 0 0 0

    Bits 7:0 EEDR[7:0]EEPROM DataFor the EEPROM write operation, the EEDR register contains the data to be written to the EEPROM inthe address given by the EEAR register. For the EEPROM read operation, the EEDR contains the dataread out from the EEPROM at the address given by EEAR.

    ATmega328/PAVR Memories

    2018 Microchip Technology Inc. Datasheet Complete DS40001984A-page 42