asymmetric supernovae explosions: theory and...

26
Asymmetric supernovae explosions: theory and experiment Thierry Foglizzo CEA Saclay X Grefenstette+14 blue: Titanium green: Silicon red: Iron Wongwathanarat+13 R. Hosseini-Kazeroni, B. Krueger, M. Gonzalez, F. Masset, A. Châtain, C. Royer, D. Martin, A. Kuntz

Upload: buibao

Post on 30-Jul-2018

237 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Asymmetric supernovae explosions: theory and experimentcolloquium.bao.ac.cn/sites/default/files/PPT_NAOC colloquium_No.43... · Asymmetric supernovae explosions: theory and experiment

Asymmetric supernovae explosions: theory and experiment

Thierry Foglizzo CEA Saclay

X

Grefenstette+14

blue: Titanium green: Silicon red: Iron

Wongwathanarat+13

R. Hosseini-Kazeroni, B. Krueger, M. Gonzalez, F. Masset, A. Châtain, C. Royer, D. Martin, A. Kuntz

Page 2: Asymmetric supernovae explosions: theory and experimentcolloquium.bao.ac.cn/sites/default/files/PPT_NAOC colloquium_No.43... · Asymmetric supernovae explosions: theory and experiment

Some observational hints about the asymmetric character of ordinary supernovae

Hobbs+05

Cordes+93

Grefenstette+14

-distribution of pulsar kicks (Hobbs+05) -kick-spin angle distribution ? (Wang, Lai & Han 06, Ng & Romani 04) -polarization in the core (Leonard+06)

-nucleosynthesis inhomogeneities (Grefenstette+14)

Page 3: Asymmetric supernovae explosions: theory and experimentcolloquium.bao.ac.cn/sites/default/files/PPT_NAOC colloquium_No.43... · Asymmetric supernovae explosions: theory and experiment

Theoretical framework (Bethe & Wilson 85) neutrino-driven delayed explosion

electron capture p+ + e� ! n+ ⌫

modest energy in differential rotation:

GM2

ns

Rns

⇠ 2⇥ 1053erg

✓30km

Rns

◆✓M

ns

1.5Msol

◆2

Edi↵

< Erot

⇠ 2.4⇥ 1050erg

✓M

ns

1.5Msol

◆✓R

ns

10km

◆2

✓10ms

Pns

◆2

Page 4: Asymmetric supernovae explosions: theory and experimentcolloquium.bao.ac.cn/sites/default/files/PPT_NAOC colloquium_No.43... · Asymmetric supernovae explosions: theory and experiment

Why does the star explode ? How does the collapse turn into an explosion ?

A challenging numerical modeling: Garching, Oak Ridge, Princeton, Tokyo

Los Alamos, Basel, Chicago, CalTech, Monash

neutrino transport & interactions 3D hydrodynamics nuclear EOS general relativity

neutrinosphere shock

~150km

Fe

p+, n, e-

p+ + e− → n + ν e

n + ν e → p+ + e−

νe

Page 5: Asymmetric supernovae explosions: theory and experimentcolloquium.bao.ac.cn/sites/default/files/PPT_NAOC colloquium_No.43... · Asymmetric supernovae explosions: theory and experiment

2 instabilities during the phase of stalled accretion shock

Neutrino-driven convection (Herant, Benz & Colgate 92, ...)

- entropy gradient, fed by neutrino absorption - inhibited if the advection time is too short (Foglizzo et al. ’06)

SASI: Standing Accretion Shock Instability

(Blondin et al. 03 ...) - advective-acoustic cycle - large angular scale l=1,2: pulsar kick, nucleosynthesis, gravitational waves & neutrino signatures

neutrinosphere shock

~150km

Fe p+, n, e-

p+ + e− → n + ν e€

n + ν e → p+ + e−

νe

� ⌘Z gain

sh!BV

dr

vr< 3

Page 6: Asymmetric supernovae explosions: theory and experimentcolloquium.bao.ac.cn/sites/default/files/PPT_NAOC colloquium_No.43... · Asymmetric supernovae explosions: theory and experiment

Stationary Accretion Shock Instability : SASI

Blondin+03

Mechanism of SASI: advective-acoustic cycle

(Foglizzo 02, Ohnishi+06, Foglizzo+07, Scheck+08, Fernandez & Thompson 09, Guilet & Foglizzo 12)

shock ~150km

neutrinosphere €

p+ + e− → n + ν e

νe

Page 7: Asymmetric supernovae explosions: theory and experimentcolloquium.bao.ac.cn/sites/default/files/PPT_NAOC colloquium_No.43... · Asymmetric supernovae explosions: theory and experiment

H

He

Linear coupling between the acoustic wave and the entropy/vorticity wave

(Sato, Foglizzo & Fromang 09)

Page 8: Asymmetric supernovae explosions: theory and experimentcolloquium.bao.ac.cn/sites/default/files/PPT_NAOC colloquium_No.43... · Asymmetric supernovae explosions: theory and experiment

H

He

Linear coupling between the acoustic wave and the entropy/vorticity wave

(Sato, Foglizzo & Fromang 09)

Page 9: Asymmetric supernovae explosions: theory and experimentcolloquium.bao.ac.cn/sites/default/files/PPT_NAOC colloquium_No.43... · Asymmetric supernovae explosions: theory and experiment

8.1, 9.6 ,11.2, 15, 27Msol (Marek & Janka 08, Müller+12a,b,+13) 12, 15, 20, 25 Msol (Bruenn+13)

-depending on the progenitor, the dynamical evolution can be dominated by

-neutrino driven buoyancy (11.2Msol)

-or SASI (27Msol)

-or both (15Msol) -competition between the advection and buoyancy timescales (Foglizzo+06, Fernandez+13)

Since 2008: 2D explosions from first principles + understandable diversity

-weakish explosion energy < 1051 erg -insufficient convergence between the numerical models -no explosion in 3D yet

� ⌘Z gain

sh!BV

dr

vr< 3

Page 10: Asymmetric supernovae explosions: theory and experimentcolloquium.bao.ac.cn/sites/default/files/PPT_NAOC colloquium_No.43... · Asymmetric supernovae explosions: theory and experiment

The challenge of 3D modelling: SASI spiral mode, 27Msol (Hanke ‘13) no explosion ?

PRACE 150 million hours

16.000 processors 4.5 months/model

time evolution: 500ms diameter: 300km

Page 11: Asymmetric supernovae explosions: theory and experimentcolloquium.bao.ac.cn/sites/default/files/PPT_NAOC colloquium_No.43... · Asymmetric supernovae explosions: theory and experiment

From a shallow water experiment to supernova theory

- explosion energy, neutrino signal, grav. waves, nucleosynthesis, - Pulsar kick and spin

Complex comprehensive simulations

SWASI experiment Build intuition Fast exploration of the parameter space: accretion rate, Mach number, shock radius, angular momentum

Predictions of SN and pulsars

properties

progenitor structure + nuclear EOS + neutrino transport & interactions + GR + multi-D hydro

Multi-D hydro 3D stationary accretion, neutrino heating, SASI+convection

- 2D shallow water with viscous drag, then inviscid

© MPA/Janka

- 2D cylindrical SASI ideal gas neutrino cooling

© Blondin & Mezzacappa

© Hosseini Kazeroni

© Masset, Gonzalez

© Grefenstette

Page 12: Asymmetric supernovae explosions: theory and experimentcolloquium.bao.ac.cn/sites/default/files/PPT_NAOC colloquium_No.43... · Asymmetric supernovae explosions: theory and experiment

Dynamics of water in the fountain

diameter 40cm

3s/oscillation

Dynamics of the gas in the supernova core

diameter 400km 0.03s/oscillation

1 000 000 x bigger 100 x faster

Page 13: Asymmetric supernovae explosions: theory and experimentcolloquium.bao.ac.cn/sites/default/files/PPT_NAOC colloquium_No.43... · Asymmetric supernovae explosions: theory and experiment

SWASI Shallow Water Analogue of a Shock Instability

acoustic waves shock wave pressure

surface waves hydraulic jump depth

Page 14: Asymmetric supernovae explosions: theory and experimentcolloquium.bao.ac.cn/sites/default/files/PPT_NAOC colloquium_No.43... · Asymmetric supernovae explosions: theory and experiment

Formal similarity between SASI and SWASI

accretion of gas (on a cylinder) density , velocity , sound speed

inviscid shallow water accretion depth , velocity , wave speed

- Inviscid shallow water: analogue to an isentropic gas γ=2 ( intermediate between "isothermal" and "γ=2 without entropy" )

isothermal

adiabatic

expected scaling

shock radius 200 km → 20 cm oscillation period 30 ms → 3 s

Blondin & Mezzacappa 07

3D spherical γ=4/3

2D cylindrical γ=2 isentropic

Page 15: Asymmetric supernovae explosions: theory and experimentcolloquium.bao.ac.cn/sites/default/files/PPT_NAOC colloquium_No.43... · Asymmetric supernovae explosions: theory and experiment

a shallow water experiment with a circular hydraulic jump

Page 16: Asymmetric supernovae explosions: theory and experimentcolloquium.bao.ac.cn/sites/default/files/PPT_NAOC colloquium_No.43... · Asymmetric supernovae explosions: theory and experiment

Comparison to the 2D shallow water model

No free parameter: - laminar viscous drag measured in the stationary flow - inner boundary: free spillover

Foglizzo, Masset, Guilet, Durand PRL (2012)

Page 17: Asymmetric supernovae explosions: theory and experimentcolloquium.bao.ac.cn/sites/default/files/PPT_NAOC colloquium_No.43... · Asymmetric supernovae explosions: theory and experiment

SWASI: simple as a garden experiment

May 2010

June 2010

October 2010

November 2010 November 2013

Page 18: Asymmetric supernovae explosions: theory and experimentcolloquium.bao.ac.cn/sites/default/files/PPT_NAOC colloquium_No.43... · Asymmetric supernovae explosions: theory and experiment

The “supernova fountain” at the Palais de la Découverte, Paris 17 decembre 2013-16 february 2014

S N 2 N S !Supernovae explosions, from stellar core-collapse

to neutron stars and black holes

12 researchers 138 presentations

2059 visitors

Thierry Foglizzo Julien Faure

Rémi Hosseini-Kazeroni Noël Martin

Jérôme Novak Micaela Oertel Patrick Blottiau

Elias Khan Jérôme Guilet Bruno Peres

Michael Urban Jérôme Margueron

Page 19: Asymmetric supernovae explosions: theory and experimentcolloquium.bao.ac.cn/sites/default/files/PPT_NAOC colloquium_No.43... · Asymmetric supernovae explosions: theory and experiment

-injection radius: 33cm -NS radius: 4-8 cm -flow rate: Q = 0-4L/s -injection slit: h = 0.5-2mm -rotation period: 10-500s

Froude number Reynolds number

Re = 650

✓h

1mm

◆ 32✓Fr

4

◆✓20cm

r

Fr = 4.9

✓Q

L/s

◆✓h

mm

◆� 32

April 2014

A new prototype built at CEA in 2014

Page 20: Asymmetric supernovae explosions: theory and experimentcolloquium.bao.ac.cn/sites/default/files/PPT_NAOC colloquium_No.43... · Asymmetric supernovae explosions: theory and experiment

Rotating progenitor: accreted angular momentum changes its sign as SASI grows

fountain rotation period: 246s injection slit: 0.55mm flow rate: 1.17L/s

Blondin & Mezzacappa 07

Page 21: Asymmetric supernovae explosions: theory and experimentcolloquium.bao.ac.cn/sites/default/files/PPT_NAOC colloquium_No.43... · Asymmetric supernovae explosions: theory and experiment

The consequences of SASI on the birth conditions of neutron stars!

-  pulsar kicks (Scheck+04, 06, Nordhaus+10, 11,

Wongwathanarat+10, 13) -  pulsar spin ? (Blondin & Mezzacappa 07, Yamasaki & Foglizzo 08, Iwakami+09, Rantsiou+11 Guilet & Fernandez 14)

Hobbs et al. 05

Page 22: Asymmetric supernovae explosions: theory and experimentcolloquium.bao.ac.cn/sites/default/files/PPT_NAOC colloquium_No.43... · Asymmetric supernovae explosions: theory and experiment

Unexpected robust spiral shock driven at the corotation radius when the inner rotation rate reaches 20% Kepler

analogue to the instability of a neutron star rotating differentially (Shibata+02,03, Saijo+03,06, Watts+05, Corvino+10)

flow rate: 0.3L/s, slit size: 1.6mm

instability mechanism dominated by the corotation trapping of acoustic waves (Papaloizou & Pringle 84, Goldreich & Narayan 85)

Saijo & Yoshida 2006

velocity

density

Page 23: Asymmetric supernovae explosions: theory and experimentcolloquium.bao.ac.cn/sites/default/files/PPT_NAOC colloquium_No.43... · Asymmetric supernovae explosions: theory and experiment

Increasing the rotation rate above the centrifugal limit (TK=15s):

shallow water analogue of the m=1 instability of a centrifugal shock

fountain rotation period: 12.7s (i.e. 0.84 TK) injection slit: 0.9mm flow rate: 0.7L/s

Page 24: Asymmetric supernovae explosions: theory and experimentcolloquium.bao.ac.cn/sites/default/files/PPT_NAOC colloquium_No.43... · Asymmetric supernovae explosions: theory and experiment

Instability of a centrifugal shock

Instability mechanism: corotation trapping of acoustic waves (Papaloizou & Pringle 1984, Goldreich & Narayan 1985)

Molteni et al. 1999

density

Page 25: Asymmetric supernovae explosions: theory and experimentcolloquium.bao.ac.cn/sites/default/files/PPT_NAOC colloquium_No.43... · Asymmetric supernovae explosions: theory and experiment

toward larger scales

educative experiment

outdoor fountain ?

aquatic parc ??

Page 26: Asymmetric supernovae explosions: theory and experimentcolloquium.bao.ac.cn/sites/default/files/PPT_NAOC colloquium_No.43... · Asymmetric supernovae explosions: theory and experiment

Conclusions

Hydrodynamical instabilities are a key ingredient to supernova theory - enable the explosion by locally increasing neutrino capture - pulsar kick up to 1000km/s - pulsar spin up to 10 Hz

SWASI: first experimental view on core collapse supernovae - complementary to perturbative tools and numerical modeling - makes asymmetric explosions more intuitive and attractive to students

First results from the new prototypes - Palais de la Découverte, Paris at Fall 2014 - increasing the rotation rate:

T>150s: spiral SASI with a counter-spinning neutron star T~30-60s: neutron star destabilized by differential rotation

Towards a better modeling of the experiment: - interplay of SWASI and turbulence ? - experiment scaling to a larger size ?

Guitar Nebula: 1.4Msol@1600km/s Cordes et al. ‘93