assignment 1 - engineering measurement-anandababu n

Upload: anandababu

Post on 07-Jul-2018

218 views

Category:

Documents


1 download

TRANSCRIPT

  • 8/18/2019 Assignment 1 - Engineering Measurement-Anandababu N

    1/14

    Anandababu NBITS ID: 201518BT017

    Assignment 1 – Engineering Measurement 

    Q1 . The resistance R ( θ ) of a thermostat at temperature θ K is given by

    R ( θ ) = α exp ( β / θ). Given that the resistance at the ice point (θ = 273.15 K) is 9.00 kΩ and the resistance at the steam point is 0.50 kΩ, find the resistance at 25 °C. 

     Ans :

    From the equation R(θ ) = α exp(β/θ ).

    Given the resistance at the ice point (θ = 273.15 K) is 9.00 kΩ 

    9 kΩ = α exp ( β / 273.15 ). Ice point = 0 deg C

    the resistance at the steam point is 0.50 kΩ

    = 0.50 kΩ = α exp ( β / 373.15 ). Steam point is at 100 deg C

    To find the resistance at 25 °C we should be calculate the value of β and α 

    =

    18 kΩ = exp(   β / 273.15 ) / exp ( β / 373.15 )

    equating both sides we get

    e ^ ( β / 273.15 ) = 18 kΩ 

    e ^ ( β / 373.15 )

    ( β / 273.15 ) = ln (18)

    ( β / 373.15 )

    =

    9 kΩ  = α exp ( β / 273.15 )

    0.50 k Ω = α exp ( β / 373.15 )

    β  -

    273.15

    β 

    373.15 

    ln (18)

    (Logarithmic)

  • 8/18/2019 Assignment 1 - Engineering Measurement-Anandababu N

    2/14

  • 8/18/2019 Assignment 1 - Engineering Measurement-Anandababu N

    3/14

    Anandababu NBITS ID: 201518BT017

    Assignment 1 – Engineering Measurement 

    Q2. A thermometer is initially at a temperature of 70°F and is suddenly placed in aliquid which is maintained at 300 °F. The thermometer indicates 200 and 270°F after

    intervals of 3 and 5 s, respectively. Estimate the time constant for the Thermometer.

    T0 = 70 deg F

    Tf = 300 deg F

    At Time interval of 3 sec, the rise in temperature T1 = 200 deg F

    At Time interval of 5 sec, the rise in temperature T2 = 270 deg F

    Find Time constant = ???

    RC = time constant

    = = 0.4347 at 3 sec @ temp = 200 deg F

    = = 0.1304 at 5 sec = @ temp = 270 deg F

    1 - 0.632 = 0.368

    RC = 3.4 sec

    T1 – Tf

    T0 – Tf

    200 – 300

    70 - 300

    T2 – Tf

    T0 – Tf

    270 – 300

    70 - 300

    T – Tf = e - ( t / RC)

    T0 – Tf

  • 8/18/2019 Assignment 1 - Engineering Measurement-Anandababu N

    4/14

    Anandababu NBITS ID: 201518BT017

    Assignment 1 – Engineering Measurement 

    Q 3.

    A thermometer has a time constant of 10 s and behaves as a first order system. It is

    initially at a temperature of 30°C and then suddenly subjected to a surrounding

    temperature of 120 °C. Calculate the 90% rise time and the time to attain 99% or the

    steady state temperature.

    T0 = 30 deg C at t = 0 ; Tf = 120 deg C at steady state

    Time constant - RC = 10 sec

    For the 90% rise time

    e - ( t / RC) = 0.1 and

    ln (0.1) = - t / RC

    Therefore t = ln (0.1) x RC =

    e (- t / RC) = 0.1

    - t = ln ( 0.1 ) x RC

    - t = - 2.302 RC ; t = 2.302 RC,

    t = 23.02 sec

    for 99% rise steady state temperature

    = e (- t / RC) = 0.01

    = - t / RC = ln (0.01)

    = - t / RC = - 4.605 , t / RC = 4.605

    t = 4.605 RC & t = 4.605 x 10

    t (99%) = 46.05 sec

  • 8/18/2019 Assignment 1 - Engineering Measurement-Anandababu N

    5/14

    Anandababu NBITS ID: 201518BT017

    Assignment 1 – Engineering Measurement 

    Q4: A force sensor has a mass of 0.5 kg, stiffness of 2×102 Nm−1 and a damping

    constant of 6.0N s m−1. 

    (a) Calculate the steady-state sensitivity, natural frequency and damping ratio for the

    sensor.

    (b) Calculate the displacement of the sensor for a steady input force of 2 N.

    (c) If the input force is suddenly increased from 2 to 3 N, derive an expression for the

    resulting displacement of the sensor

    Soln :

    mass m = 0.5 kg, stiffness k = 2 x 102 Nm-1 ; = 0.2 Nm;

    damping constant = 6.0 N sm-1 =

    Steady state sensitivity K = 1 / k

    = 1 / (2 x 102 Nm-1) = 0.005 Nm-1 

    undamped natural frequency = wn = (k / m) rad / s

    ( 2 x 102 / 0.5) = 20 rad / s

    damping ratio  = / 2 ( km) ; damping ratio  = 6.0 N sm-1 / 2 ( 2 x 102 x 0.5) = 0.3

    under damped natural frequency = wd = wn.  ( 1- 2 ) = 20 x ( 1- 0.32 ) = 19.07 rad / s

    b) displacement of the sensor for steady input force of 2 N

    x = F / k ; F = 2 N; k = 2 x 102 Nm-1 = 2 / 2 x 102 Nm-1 = 0.01 m

    displacement x = 0.01 m 

    c) Resulting displacement of the sensor

    As damping ratio  = 0.3 < 1 (underdamped condition)

  • 8/18/2019 Assignment 1 - Engineering Measurement-Anandababu N

    6/14

    Anandababu NBITS ID: 201518BT017

    Assignment 1 – Engineering Measurement 

    f o (t) = 1- e ^ (0.3 x 20 x t) [ cos 20 ( 1- 0.32

     ) t +

    f o (t) = 1- e ^ (6 t) x [ cos 19.07 t + 0.3145 x sin 19.07 t ] meters

    Steady state displacement is given below

    Steady state sensitivity = 0.005

    step height = 1 (change in force = 2 N to 3 N)

    unit step response = f o (t)

    Hence, steady state displacement as below

    = 0.005 x 1 x 1- e ^ (6 t) x [ cos 19.07 t + 0.3145 x sin 19.07 t ] meters

    Q5 :

    An elastic force sensor has an effective seismic mass of 0.1 kg, a spring stiffness of

    10N m−1 and a damping constant of 14 N s m−1. Calculate the following quantities:

    (i) sensor natural frequency (ii) sensor damping ratio

    (iii) transfer function relating displacement and force.

    Soln :

    i) sensor natural frequency,

    mass m = 0.1 kg, spring stiffness k = 10 Nm-1 ; = damping constant = 14 N s m−1

    undamped natural frequency wn = (k / m) rad / s

    undamped natural frequency wn = (10 Nm-1 / 0.1 kg) rad / s

    = 10 rad / s

    Sensor damping ratio  = / 2 

    ( km) ;

    0.3 

    ( 1- 0.32 ) x  sin 20 x ( 1- 0.3

    2

     ) t ] 

  • 8/18/2019 Assignment 1 - Engineering Measurement-Anandababu N

    7/14

    Anandababu NBITS ID: 201518BT017

    Assignment 1 – Engineering Measurement 

    Sensor damping ratio  = 14 N s m−1

     / 2 

    ( 10 Nm-1

    x 0.1 kg) = 7 ;

    G (s) =1

    1 / 102 s 2 + 2 x 7 / 10 s + 1

    1 x 10- 1

     

    10- 2

    x s 2 + 2 x 7 s + 1

    G (s) =

    1 x 10 - 1

     

    10 - 2 

    x s 2  + 14 s + 1

    G (s) =

  • 8/18/2019 Assignment 1 - Engineering Measurement-Anandababu N

    8/14

    Anandababu NBITS ID: 201518BT017

    Assignment 1 – Engineering Measurement 

    Q6. A force sensor has an output range of 1 to 5 V corresponding to an input rangeof 0 to 2×105 N. Find the equation of the ideal straight line.

    Output Omin = 1 V ; Output Omax = 5 V ; Input I min = 0 N ; Input I Max = 2 x 105 N

    =

    = 0.00002

    K = 0.00002

    a = Omin  – K I min = 1 - 0.00002 x 0

    a = 1

    Oideal = KI + a

    Oideal = 0.00002 I + 1

    5 – 1

    2 x 105  – 0

  • 8/18/2019 Assignment 1 - Engineering Measurement-Anandababu N

    9/14

    Anandababu NBITS ID: 201518BT017

    Assignment 1 – Engineering Measurement 

    Q7: A non-linear temperature sensor has an input range of 0 to 400 °C and an output

    range of 0 to 20 mV. The output signal at 100 °C is 4.5 mV. Find the non-linearity at

    100 °C in millivolts and as a percentage of span.

    Solution :

    Input Imin = 0 deg C; Input Input Imax = 400 deg C

    Output Omin = 0 V ; Output Omax = 20 mV ; Output O = 4.5 mV ; Input I = 100 deg C

    K = 0.05

    a = Omin  – K I min = 0 - 0.05 x 0

    a = 0

    O ( I ) = 0.05 ( I ) + 0

    O ( I ) = 0.05 (100 ) = 5 mV (for Input temp @ 100 deg C)

    O (100) = 4.5 mV

    N ( I ) is the difference between actual & ideal straight line behaviour

    N ( I ) = 4.5  – ( 0.05 x 100 + 0); where N ( I ) is non linearity

    N ( 4 ) = - 0.5

    K = 20 – 0

    400 – 0

  • 8/18/2019 Assignment 1 - Engineering Measurement-Anandababu N

    10/14

    Anandababu NBITS ID: 201518BT017

    Assignment 1 – Engineering Measurement 

    = Nl = 2.5 %

    ----------------------------------------------------------------------------------------------------------------------

    Q8: A force sensor has an input range of 0 to 10 kN and an output range of 0 to 5V at

    a standard temperature of 20 °C. At 30 °C the output range is 0 to 5.5 V. Quantify this

    environmental effect.

    Solution :

    Input Imin = 0 ; Input Imax = 10 KN ; Output Omin  = 0 ; Output Omax = 5 v @

    standard temperature T = 20 deg C,

    @ temperature = 30 deg C ; Output Omin = 0 v ; Output Omax = 5.5 V

    K for temp T = 20 deg C

    K = 0.5

    K1 for temp T = 30 deg C

    K1 = 0.55

    Non linearity % = - 0.5 x 100 %

    20 - 0

    K = 5 – 0

    10 – 0

    K = 5.5 – 0

    10 – 0

  • 8/18/2019 Assignment 1 - Engineering Measurement-Anandababu N

    11/14

    Anandababu NBITS ID: 201518BT017

    Assignment 1 – Engineering Measurement 

    K1 = K+KM x IM

    K = sensitivity

    KM = Modifying sensitivity w.r.t environment , temp variation

    IM = modifying input i e., change in temp = 20 – 30 = 10

    0.55 = 0.5 + 10 KM

    KM = 0.005 V KN-1  C-1 

    a = 0 – 0.5 x 0 = 0

    O (ideal) = 0.5 x 30 + 0 = 15

    N ( I ) = 15 – (0.5 x 30 + 0)

    N ( I ) = 0

    As no shift of the curve to the axis I or O, then:

    KI = 0

  • 8/18/2019 Assignment 1 - Engineering Measurement-Anandababu N

    12/14

    Anandababu NBITS ID: 201518BT017

    Assignment 1 – Engineering Measurement 

    Q9: A pressure transducer has an input range of 0 to 104 Pa and an output range of 4to 20 mA at a standard ambient temperature of 20 °C. If the ambient temperature is

    increased to 30 °C, the range changes to 4.2 to 20.8 mA. Find the values of the

    environmental sensitivities KI and KM.

    Solution

    Omax = 20 mA ; Omin = 4 mA ; Imax = 104 ; Imin = 0 ; @ temp = 20 deg C

    Omax = 20.8 mA ; Omin = 4.2 mA @ temp = 30 °C

    IM = 30-20 = 10 °C

    T ambient = 20°C T ambient = 30°C II = 30-20 = 10°C IM = 30-20 = 10°C

    K = Omax  – Omin Imax  – Imin 

    K = 20 - 4104 - 0

    K = 0.1538

    a = Omin  – KImin 

    a = 4

    K1 = Omax  – Omin Imax  – Imin 

    K1 = 20.8 - 4.2104 - 0

    K1 = 0.1596

    a = Omin  – KImin 

    a1 = 4.2

    a1 = a+KI.II 

    4.2 = 4+10KI

    KI = 0.02 mA °C-1

    K1 = K + KM.IM 

    0.1596=0.158+10KM

    KM = 6 x 10 -4 mA Pa-1 °C-1 

    KI = 0.02 mA °C-1

    KM = 6 x 10 -4 mA Pa-1 °C-1 

  • 8/18/2019 Assignment 1 - Engineering Measurement-Anandababu N

    13/14

    Anandababu NBITS ID: 201518BT017

    Assignment 1 – Engineering Measurement 

    Q10: Following Figure shows a block diagram of a force transducer using negativefeedback. The elastic sensor gives a displacement output for a force input; the

    displacement sensor gives a voltage output for a displacement input. VS is the

    supply voltage for the displacement sensor. Calculate the output voltage V0 when

    (i) VS=1.0 V, F =50 N (ii) VS =1.5 V, F =50 N.

    K = sensing element = Force transducer = 10-4 

    KA = Amplifier gain = Amplifier = 103 

    Kf  = Feedback element = Coil and magnet = 10

    Km x Im = Modifying Input = Displacement sensor = 100 x Vs

    Fin = Input Force = = 50 N

    = Output Voltage V0 =

    = Output Voltage V0 = for Input force 50 N & Vs = 1.0 V

    = 4.995 V

    (10-  + 100 x 1) x 10  

    1 + (10- 4 + 100 x 1) 103 x 10 x 50

  • 8/18/2019 Assignment 1 - Engineering Measurement-Anandababu N

    14/14

    Anandababu NBITS ID: 201518BT017

    Assignment 1 – Engineering Measurement 

    Output Voltage V0 = for Input force 50 N & Vs = 1.5 V

    = 4.997 V

    This means that the system output depends only on the gain K  Fof the feedback element

    and is independent of the gains K and K  A in the forward path. Changes in K and K  Adue

    to modifying inputs and/or non-linear effects have negligible effect on V OUT. 

    (10-  + 100 x 1.5) x 10  

    1 + (10- 4 + 100 x 1.5) 103 x 10x 50