assessment of environmental water requirements … · web viewbriggs, sv, thornton, sa & lawler...

45

Upload: others

Post on 24-May-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Assessment of environmental water requirements … · Web viewBriggs, SV, Thornton, SA & Lawler WG 1997, ‘Relationships between hydrological control of river red gum wetlands and
Page 2: Assessment of environmental water requirements … · Web viewBriggs, SV, Thornton, SA & Lawler WG 1997, ‘Relationships between hydrological control of river red gum wetlands and

Published by Murray-Darling Basin Authority

Postal Address GPO Box 1801, Canberra ACT 2601

Office location Level 4, 51 Allara Street, Canberra City

Australian Capital Territory

For further information contact the Murray-Darling Basin Authority office

Telephone (02) 6279 0100 international + 61 2 6279 0100

Facsimile (02) 6248 8053 international + 61 2 6248 8053

E-Mail [email protected]

Internet http://www.mdba.gov.au

MDBA Publication No: 35/12

ISBN: 978-1-922068-43-9 (online)

© Murray–Darling Basin Authority for and on behalf of the Commonwealth of Australia, 2012.

With the exception of the Commonwealth Coat of Arms, the MDBA logo, all photographs, graphics and trademarks, this publication is provided under a Creative Commons Attribution 3.0 Australia Licence.

http://creativecommons.org/licenses/by/3.0/au

The MDBA’s preference is that you attribute this publication (and any material sourced from it) using the following wording:

Title: Assessment of environmental water requirements for the proposed Basin Plan: Mid-Murrumbidgee River Wetlands

Source: Licensed from the Murray–Darling Basin Authority, under a Creative Commons Attribution 3.0 Australia Licence.

The MDBA provides this information in good faith but to the extent permitted by law, the MDBA and the Commonwealth exclude all liability for adverse consequences arising directly or indirectly from using any information or material contained within this publication.

Australian Government Departments and Agencies are required by the Disability Discrimination Act 1992 (Cth) to ensure that information and services can be accessed by people with disabilities. If you encounter accessibility difficulties or the information you require is in a format that you cannot access, please contact us

Page 3: Assessment of environmental water requirements … · Web viewBriggs, SV, Thornton, SA & Lawler WG 1997, ‘Relationships between hydrological control of river red gum wetlands and

Murrumbidgee Region

Assessment of the Mid-Murrumbidgee River Wetlands environmental water requirements

1. Introduction

The Water Act 2007 (Cwlth) established the Murray Darling Basin Authority (MDBA) and tasked it with ‐the preparation of a Basin Plan to provide for the integrated management of the Basin’s water resources. One of the key requirements of the Basin Plan is to establish environmentally sustainable limits on the quantities of surface water that may be taken for consumptive use, termed Sustainable Diversion Limits (SDLs). SDLs are the maximum long term annual average volumes of water that can be ‐taken from the Basin and they must represent an Environmentally Sustainable Level of Take (ESLT).

The method used to determine the ESLT is described in detail within ‘The proposed “environmentally sustainable level of take” for surface water of the Murray-Darling Basin: Method and Outcomes,’ (MDBA 2011). A summary of the main steps undertaken to determine the ESLT is presented in Figure 1. The assessment of environmental water requirements including specification of site-specific flow indicators at a subset of hydrologic indicator sites (Step 3 of the overall ESLT method) is the focus of this document.

The work described herein is the MDBA’s current understanding of the environmental water requirements of the Mid-Murrumbidgee River Wetlands. It is not expected that the environmental water requirements assessments will remain static, rather it is intended that they will evolve over time in response to new knowledge or implementation of environmental watering actions. Within this context, feedback is sought on the material presented within this document whether that be as part of the formal draft Basin Plan consultation phase or during the environmental watering implementation phase within the framework of the Environmental Watering Plan.

1.1. Method to determine site-specific flow indicators

Assessment of environmental water requirements for different elements of the flow regime using the hydrologic indicator site approach is one of the key lines of evidence that has informed the proposed SDLs. Effort focussed on regions and parts of the flow regime with greatest sensitivity to the scale of reduction in diversions necessary to achieve environmental objectives, an ESLT and a healthy working Basin.

Within the overall framework of the ESLT method (Figure 1) the MDBA used an iterative process to assess environmental water requirements and develop site-specific flow indicators.

The hydrologic indicator site approach uses detailed eco-hydrological assessment of environmental water requirements for a subset of the key environmental assets and key ecosystem functions across the Basin. Effort focused on high flow (freshes, bankfull flows and overbank flows) requirements reflecting the prioritisation of effort on parts of the flow regime that are most sensitive to the determination of the ESLT and SDLs. The Mid-Murrumbidgee River Wetlands are one of the key environmental assets where a detailed assessment of environmental water requirements was undertaken.

1

Page 4: Assessment of environmental water requirements … · Web viewBriggs, SV, Thornton, SA & Lawler WG 1997, ‘Relationships between hydrological control of river red gum wetlands and

Detailed environmental water requirement assessments lead to the specification of site-specific flow indicators to achieve site-specific ecological targets. Flow indicators were expressed at a hydrologic indicator site or sites. Environmental water requirements specified at hydrologic indicator sites are intended to represent the broader environmental flow needs of river valleys or reaches and thus the needs of a broader suite of ecological assets and functions.

Figure 1: Outline of method used to determine an Environmentally Sustainable Level of Take.(Source: MDBA 2011).

This report provides a description of the detailed eco-hydrological assessment of environmental water requirements for the Mid-Murrumbidgee River Wetlands including information supporting the development of site-specific flow indicators for the site (with reference to flows gauged on the Murrumbidgee River at Narrandera). More information on how the site-specific flow indicators for the Mid-Murrumbidgee River Wetlands were used within the Basin-wide modelling process to inform the

2

Page 5: Assessment of environmental water requirements … · Web viewBriggs, SV, Thornton, SA & Lawler WG 1997, ‘Relationships between hydrological control of river red gum wetlands and

ESLT (i.e. Step 5 and 6 in Figure 1) can be found in the report ‘Hydrologic modelling to inform the proposed Basin Plan: Methods and results’ (MDBA 2012).

A description of the detailed eco-hydrological assessments of environmental water requirements for other indicator sites are described in other documents in the series ‘Assessment of environmental water requirements for the proposed Basin Plan’.

1.2. Scope and purpose for setting site-specific flow indicators

The MDBA’s assessment of environmental water requirements and associated site-specific flow indicators at hydrologic indicator sites has been used to inform the development of SDLs. This enables the MDBA to estimate the amount of water that will be required by the environment over the long-term to achieve a healthy working Basin through the use of hydrological models. Accordingly, site-specific flow indicators are not intended to stipulate future use of environmental water. MDBA expects that the body of work undertaken to establish these site-specific flow indicators will provide valuable input to environmental watering but this watering will be a flexible and adaptive process guided by the framework of the Environmental Watering Plan and natural eco-hydrological cues. It will be up to the managers of environmental water, such as the Commonwealth Environmental Water Holder, State Government agencies, and local communities to decide how best to use the available environmental water during any one year to achieve environmental outcomes.

2. Site location and extent

The Mid-Murrumbidgee River Wetlands is formed around an assemblage of lagoons and billabongs located on the floodplain of the central Murrumbidgee River between Wagga Wagga and Carrathool (Figure 2).

The existence of extensive floodplains and remnants of a palaeo (old) river system has resulted in the formation of a large number of natural closed depressions on the mid-Murrumbidgee floodplain. Using satellite imagery of flood events between 1989 and 1997, approximately 1,600 floodplain wetlands were identified between Gundagai and Hay (Frazier 2001; Murray 2006), with most located between Wagga Wagga and Carrathool (Frazier and Page 2006). The total area of wetlands that periodically connected to the main channel between Wagga Wagga and Carrathool was around 5,000 ha (Frazier and Page 2006).

The MDBA has used the Australian Wetlands Database, as well as other scientific information, as a basis for defining the Mid-Murrumbidgee River Wetlands hydrologic indicator site. The directory’s dataset location (Department of the Environment, Water, Heritage and the Arts 2001), plus the work undertaken by Frazier and Page (2006), have been used to define the longitudinal extent of the asset. The lateral extent was based on mapped inundation extents determined by Kingsford et al. (1999) (Figure 2). Other spatial data used in this map is listed in Appendix A.

3

Page 6: Assessment of environmental water requirements … · Web viewBriggs, SV, Thornton, SA & Lawler WG 1997, ‘Relationships between hydrological control of river red gum wetlands and

Figure 2 Location and extent of hydrologic indicator site: Mid-Murrumbidgee River Wetlands

4

Page 7: Assessment of environmental water requirements … · Web viewBriggs, SV, Thornton, SA & Lawler WG 1997, ‘Relationships between hydrological control of river red gum wetlands and

3. Ecological values

Terrestrial vegetation of the Mid-Murrumbidgee River Wetlands is dominated by river red gum (Eucalyptus camaldulensis) which forms a continuous band along the river (Briggs et al. 1994). In the lower section of the mid-Murrumbidgee floodplain system black box woodlands (E. largiflorens) become a common feature on higher ground away from the river (Briggs et al. 1994). Lagoons and swamps occur along the river and fill from high flows. Aquatic vegetation occurs in these areas, especially when the lagoons and swamps are shallow (Briggs et al. 1994). These communities combine to form a variety of key habitats including:

a range of riparian and wetland vegetation communities that are critical to several fish species in the Murrumbidgee (Gilligan 2005);

approximately 45,000 ha of river red gum wetlands between Wagga Wagga and Hay Weir

(Thornton and Briggs 1994) which have been shown to be important areas for waterbirds including breeding of colonial nesting waterbirds (Briggs et al. 1994; Briggs et al. 1997; Briggs and Thornton 1999; Kingsford et al. 1997); and

habitat for a range of species and communities listed as threatened under both Commonwealth and state legislation.

These ecosystems support important species that are listed in international agreements and include vulnerable and endangered species. Appendix B provides a summary of the conservationally significant species recorded at the site.

The ecological values of the wetlands are reflected in MDBA’s assessment against the criteria used to identify key environmental assets within the Basin. The MDBA established five criteria to identify assets based on international agreements and broad alignment with the National Framework and Guidance for Describing the Ecological Character of Australian Ramsar Wetlands (Department of the Environment, Water, Heritage and the Arts 2008) and the draft criteria for identifying High Conservation Value Aquatic Ecosystems (SKM 2007).

Based on the ecological values identified at the Mid-Murrumbidgee River Wetlands, the site meets four of the key environmental asset criteria (Table 1).

Table 1 Assessment of the Mid-Murrumbidgee River Wetlands against MDBA key environmental asset criteria.

Criterion Ecological values that support the criterion

1. The water-dependent ecosystem is

formally recognised in international

agreements or, with environmental

watering, is capable of supporting

species listed in those agreements

The Mid-Murrumbidgee River Wetlands are formally recognised in, or are capable of

supporting species listed in the Japan–Australia Migratory Bird Agreement, the

China–Australia Migratory Bird Agreement or the Republic of Korea – Australia

Migratory Bird Agreement. For a full list of species listed under Commonwealth

legislation that have been recorded in the Mid-Murrumbidgee River Wetlands see

Appendix B.

2. The water-dependent ecosystem is

natural or near-natural, rare or

The Mid-Murrumbidgee River Wetlands site contains good examples of inland river

and lagoon wetlands and a selection of these are nationally important through their

5

Page 8: Assessment of environmental water requirements … · Web viewBriggs, SV, Thornton, SA & Lawler WG 1997, ‘Relationships between hydrological control of river red gum wetlands and

Criterion Ecological values that support the criterion

unique listing in the Australian Wetlands Database (Department of the Environment, Water,

Heritage and the Arts 1998). The listing describes the wetland system as being

dominated by communities of river red gum forests with marginal black box

woodlands. The wetland system also contains lagoons and billabongs (Department

of the Environment, Water, Heritage and the Arts 1998) containing open water

habitats of aquatic plants such as spike rush (Juncus spp. and Eleocharis spp.),

garland lily (Calostemma purpureum) and blanket fern (Pleurosorus rutiflolius)

(CSIRO 2008).

3. The water-dependent ecosystem

provides vital habitat

The wetlands and floodplain contain a range of riparian and wetland vegetation

communities that provide drought refuge when wetlands and floodplains in other

parts of the state are dry (Department of the Environment, Water, Heritage and the

Arts 1998). They also play an important role in the functioning of river ecosystems

and are critical to several fish species in the Murrumbidgee (Gilligan 2005). Appendix

B provides a list of conservationally significant species and communities found

throughout the Mid-Murrumbidgee River Wetlands.

In a survey of hydrological changes to wetlands of the Murrumbidgee River,

Thornton and Briggs (1994) identified that the Murrumbidgee River floodplain

between Wagga Wagga and Hay Weir contained around 45,000 ha of river red gum

wetlands.

In their assessment of significant Murray Darling Basin wetlands, Kingsford et al.

(1997) identified the section of the Murrumbidgee floodplain between Wagga Wagga

and the Lower Murrumbidgee Floodplain as an important area for waterbirds.

Coonancoocabil Lagoon is one of the larger wetlands in the system and is known as

an important site for waterbirds (Briggs et al. 1997), frogs (Wassens et al. 2004), and

supports high proportions of native fish (Baumgartner and Asmus 2009).

The Murrumbidgee River between Wagga Wagga and Hay has been identified as

supporting an important population of Murray cod (Maccullochella peelii peelii) (National Murray Cod Recovery Team 2010). This assessment was based on the

scale, size and integrity of the population.

4. Water-dependent ecosystems that

support Commonwealth, State or

Territory listed threatened species or

communities

Species and communities listed as threatened under both Commonwealth and state

legislation that have been recorded at the site are in Appendix B.

4. Hydrology

The natural flow regime of the Murrumbidgee River was characterised by low average flows in summer and autumn and higher average flows in winter and spring (Page et al. 2005). Flows in the

6

Page 9: Assessment of environmental water requirements … · Web viewBriggs, SV, Thornton, SA & Lawler WG 1997, ‘Relationships between hydrological control of river red gum wetlands and

Murrumbidgee River would have naturally been quite variable, with rainfall events in the upper- and mid-catchment creating flow pulses that would have travelled down the river for most of its length (Watts 2010).

A number of dams have been built on the Murrumbidgee River and its tributaries and this river regulation has considerably altered the flow regime in terms of total volume, seasonal patterns of discharge, magnitude and frequency of floods, and frequency and duration of floodplain inundation (Watts 2010).

A comparison of observed flows with modelled natural flows for the period 1970 to 1998 shows that river regulation has significantly reduced the magnitude of the smaller, relatively frequent floods (Read 2001). Flood discharges that would typically occur every two years have been reduced by between 29% and 37% from Gundagai downstream to Hay and by about 55% at Balranald. The reduction is less for floods that would typically occur every five years, ranging from a 16% reduction at Narrandera to a 36% reduction at Balranald.

Flow regulation has also affected the frequency and duration of floodplain inundation. Read (2001) demonstrated that the duration of bankfull flow has been reduced by regulation, and has resulted in an approximate halving of the duration of floodplain inundation. This conclusion is supported by Page et al. (2005) who found that between Gundagai and Balranald, regulation had, for flood return periods of 1.25 to 5 years, reduced discharges by 25–40%. The Murray–Darling Basin Sustainable Yields Project by CSIRO (2008) showed that the average period between events with peak flows greater than 26,800 ML/d at Narrandera had nearly doubled as a result of water resource development. In addition, they found that the maximum period between these events had more than tripled (from 2.8 to 9.7 years).

Whitten and Bennett (2000) found that the frequency of flows in excess of 35,000 ML/d at Wagga Wagga had been reduced while the number of years with no flows greater than 35,000 ML/d had increased significantly (Figure 3).

Figure 4 shows that the seasonal impact of water extraction on flows greater than 35,000 ML/d at Wagga Wagga is most pronounced between May and August (Whitten and Bennett 2000).

The changes to the flow regime in the central section of the Murrumbidgee River have had a significant impact on the hydrology of the Mid-Murrumbidgee River Wetlands. Wetlands influenced by weir pools, irrigation storage and effluent are now almost permanently inundated, and low-lying wetlands upstream of Berembed Weir are often inundated by summer irrigation releases (Frazier et al. 2003). However, the inundation frequency has halved for wetlands between Gundagai and Hay, with river connections higher than the level of irrigation flows (Frazier et al. 2003).

7

Page 10: Assessment of environmental water requirements … · Web viewBriggs, SV, Thornton, SA & Lawler WG 1997, ‘Relationships between hydrological control of river red gum wetlands and

0 1 2 3 4 5 6 7 8 9 10 11 120

5

10

15

20

25

30

Natural Actual

No. of floods > 35,000 ML/day at Wagga Wagga per year

Tim

es fl

oods

hav

e oc

curr

ed s

ince

191

3

Figure 3 Comparison of without-development and actual flows at Wagga Wagga, 1913–96: Mid-Murrumbidgee River Wetlands. (Source: reproduced from Whitten and Bennett 2000).

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Natural Actual

Flow

s gr

eate

r tha

n 35

GL/

d av

erag

ed o

ver a

ye

ar, W

agga

Wag

ga

Figure 4 Seasonal comparison of without-development and actual flows of >35,000 ML/d at Wagga Wagga: Mid-Murrumbidgee River Wetlands. (Source: reproduced from Whitten and Bennett 2000).

8

Page 11: Assessment of environmental water requirements … · Web viewBriggs, SV, Thornton, SA & Lawler WG 1997, ‘Relationships between hydrological control of river red gum wetlands and

5. Determining the site-specific flow indicators for the Mid-Murrumbidgee River Wetlands

5.1. Setting site-specific ecological targets

The objective setting framework used to determine the ESLT is outlined in the report ‘The proposed “environmentally sustainable level of take” for surface water of the Murray-Darling Basin: Method and Outcomes’ (MDBA 2011). In summary, the MDBA developed a set of Basin-wide environmental objectives and ecological targets, which were then applied at a finer scale to develop site-specific objectives for individual key environmental assets. Using these site-specific objectives, ecological targets that relate specifically to the Mid-Murrumbidgee River Wetlands were developed (Table 2). Information underpinning site-specific ecological targets is shown in Table 2.

Site-specific ecological targets formed the basis of an assessment of environmental water requirements and the subsequent determination of site-specific flow indicators for the Mid-Murrumbidgee River Wetlands, as described below.

Table 2 Site-specific ecological targets for the Mid-Murrumbidgee River Wetlands

Site-specific ecological targets Justification of targets

Provide a flow regime which ensures the current extent of native vegetation of the riparian, floodplain and wetland communities is sustained in a healthy, dynamic and resilient condition.

Provide a flow regime which supports recruitment opportunities for a range of native aquatic species (e.g. fish, frogs, turtles and invertebrates).

Provide a flow regime which supports key ecosystem functions, particularly those related to connectivity between the river and the floodplain.

Provide a flow regime which supports the habitat requirements of waterbirds and is conducive to successful breeding of colonial nesting waterbirds.

The number and extent of floodplain wetlands is a distinctive feature of the Mid-Murrumbidgee River Wetlands. Relatively intact flood-dependent vegetation communities are considered essential to support wetland processes and to provide crucial habitat for numerous conservationally significant fauna species.

Studies by Briggs et al. (1997), Briggs et al. (1994), Briggs and Thornton (1999) and Kingsford et al. (1997) have shown that the mid-Murrumbidgee is an important area for waterbirds including breeding of colonial nesting waterbirds.

The Mid-Murrumbidgee River Wetlands contain a range of riparian and wetland vegetation communities that are critical to several fish species in the Murrumbidgee (Gilligan 2005).

The variety of faunal groups that can be supported at individual sites is demonstrated by referring to Coonancoocabil Lagoon, one of the larger wetlands in the system. It is important for waterbirds (Briggs et al 1997), frogs (Wassens et al. 2004), and native fish (Baumgartner and Asmus 2009).

The site supports important habitat and species that are listed in international agreements, and include vulnerable and endangered species such as Murray cod (Maccullochella peelii peelii). Achieving the targets for floodplain wetlands and waterbirds will ensure inundation of breeding and feeding habitats considered key for a range of fish, amphibian and water-dependent reptile and invertebrate species.

Key ecosystem functions support fish, birds and invertebrates through habitat maintenance, energy transfer and facilitating connections between rivers and floodplains. Overbank flows supply the floodplains with nutrients and sediments from the river, accelerate the breakdown of organic matter and supply water to disconnected wetlands, billabongs and oxbow lakes. As the floodwaters recede, the floodplains provide the main river channel with organic matter.

The hydrological connection between watercourses and their associated floodplain provides for the exchange of carbon and nutrients (Thoms 2003). The connections are considered essential for the functioning and integrity of floodplain-river ecosystems.

9

Page 12: Assessment of environmental water requirements … · Web viewBriggs, SV, Thornton, SA & Lawler WG 1997, ‘Relationships between hydrological control of river red gum wetlands and

5.2. Determining site-specific flow indicators

The following section outlines the various lines of evidence (e.g. ecological, hydrological and geomorphological) and method used to determine the site-specific flow indicators of the Mid-Murrumbidgee River Wetlands to meet the site-specific ecological targets in Table 2.

5.2.1. Floodplain wetlands and vegetation

The Mid-Murrumbidgee River Wetlands are dominated by river red gum forest with marginal black box woodland. In addition to the forest and woodland communities, the system contains open water and spike rush covered semi-permanent and permanent wetlands. The environmental water requirements focus on increasing the frequency and duration of flows which inundate wetlands as well as surrounding forest and woodland communities. The flows specified cover a range of magnitudes from bankfull to moderate size overbankflow events.

Flow rates and thresholds

The MDBA has determined that the following flow rates will enable the current extent of native vegetation of the riparian, floodplain and wetland communities to be sustained in a healthy, dynamic and resilient condition:

63,000 ML/d at the Wagga Wagga gauge; 44,000 ML/d at Narrandera gauge; and 15,500 ML/d and 38,000 ML/d at Darlington Point gauge.

The specified flow rates correspond to flow thresholds that have been determined from work undertaken by Frazier and Page (2006) that analysed small in-channel freshes through to large overbank flooding events across six reaches of the Murrumbidgee River. Their aim was to define the flows required to achieve various extents of wetland inundation.

Figures 5, 6 and 7 plot the wetland inundation and river flow relationship identified by Frazier and Page (2006). These graphs focus on the three reaches within the mid-Murrumbidgee with the highest proportion of inundated wetlands.

In order to determine the flow rate at one location, the specified flows for Wagga Wagga and Darlington Point have been converted to reflect flow rates at the Narrandera gauge. The conversion is based on analysis undertaken by the Murrumbidgee Catchment Management Authority (2008).

10

Page 13: Assessment of environmental water requirements … · Web viewBriggs, SV, Thornton, SA & Lawler WG 1997, ‘Relationships between hydrological control of river red gum wetlands and

0

20,00

0

40,00

0

60,00

0

80,00

0

100,0

00

120,0

00

140,0

00

160,0

00

180,0

00

200,0

000

500

1,000

1,500

2,000

2,500

3,000

Flow at Wagga Wagga (ML/day)

Wet

land

inun

date

d (h

a)

Critical threshold = 63,000 ML/day

Figure 5 Relationship between river flow and wetland inundation at Wagga Wagga for the reach between Malebo range and Narrandera: Mid-Murrumbidgee River Wetlands

20,00

0

30,00

0

40,00

0

50,00

0

60,00

0

70,00

0

80,00

0

90,00

0

100,0

00

110,0

00

120,0

000

200

400

600

800

1,000

1,200

Flow at Narrandera (ML/day)

Wet

land

inun

date

d (h

a)

Critical threshold = 44,000 ML/day

Figure 6 Relationship between river flow and wetland inundation at Narrandera for the reach between Narrandera and Darlington Point: Mid-Murrumbidgee River Wetlands

11

Page 14: Assessment of environmental water requirements … · Web viewBriggs, SV, Thornton, SA & Lawler WG 1997, ‘Relationships between hydrological control of river red gum wetlands and

0 10,000 20,000 30,000 40,000 50,000 60,000 70,0000

200

400

600

800

1,000

1,200

1,400

1,600

Flow at Darlington Point (ML/day)

Wet

land

inun

date

d (h

a)

Critical threshold 1 = 15,500 ML/day

Critical threshold 2 = 38,000 ML/day

Figure 7 Relationship between river flow and wetland inundation at Darlington Point for the reach between Darlington Point and Carrathool: Mid-Murrumbidgee River Wetlands

Flow durations and inundation patterns

Proposed flow durations and inundation patterns to meet the target of ensuring the current extent of native vegetation of the riparian, floodplain and wetland communities is sustained in a healthy, dynamic and resilient condition have been based on existing studies.

The New South Wales Government established the Integrated Monitoring of Environmental Flows Program to monitor the ecological benefits provided by environmental flows. Data collected under the program have been used to analyse the effects of water flow on riparian habitat downstream of Burrinjuck Dam and in the larger billabongs of the Murrumbidgee floodplain. As part of the program, hydrometric gauges and water level loggers were installed in 17 river-fed billabongs along the Murrumbidgee River (Hardwick et al. 2001).

In 2000, 217 wetlands covering 1,278 ha were inundated as a result of different flow events (Hardwick et al. 2001) and included Sunshower, Yarradda and McKennas Lagoons, which are located upstream and downstream of Darlington Point. The flows which inundated these wetlands maintained a peak of around 27,000 ML/d for four days — as measured at the Narrandera gauge (NSW Department of Water and Energy 2009). Based on the hydrographs, Sunshower, Yarradda and McKennas Lagoons took 6-18 months to dry.

The Mid-Murrumbidgee River Wetlands are dominated by river red gum forests. The optimal water regime for these communities includes a flooding duration of about five to seven months (Roberts and Marston 2011). Roberts and Marston (2011) also noted that river red gums have mechanisms to avoid serious water deficit including a deep root system that allows them to access soil water and

12

Page 15: Assessment of environmental water requirements … · Web viewBriggs, SV, Thornton, SA & Lawler WG 1997, ‘Relationships between hydrological control of river red gum wetlands and

groundwater. There are also some spike rush covered lagoons with the wetlands complex and these species have optimal flooding durations of about four to six months (Roberts and Marston 2011).

The MDBA has considered the findings of Hardwick et al. (2001) and Roberts and Marston (2011) and concluded that flows of three to five days are sufficient to fill most of the mid-Murrumbidgee’s lagoons and billabongs, and that the water from these flows as well as water retained within the wetlands will provide suitable conditions for maintaining the dominant vegetation types in a healthy and resilient state.

Inundation frequency

The frequency with which a site is inundated is a key factor in determining environmental water requirements. Table 6 shows the number of years the specified flow thresholds and flow durations occurred under modelled without-development conditions and under modelled current-development conditions. Frequencies are shown for the entire model period (1895-2009).

The inundation frequency specified in Table 6 has been informed by the requirements of the dominant vegetation communities. Roberts and Marston (2011) indicate that a water regime for optimal growth of river red gum forest includes a frequency of flooding of between every one to three years and between every three to seven years for black box woodlands. For spike rush, the optimal frequency of flooding is every one to three years.

The concept of low uncertainty and a high-uncertainty frequency targets is further explained in the section below on proposed flow indicators.

5.2.2. Waterbirds

The Mid-Murrumbidgee River Wetlands are extensive (Thornton and Briggs 1994) and are recognised as being important for a range of conservationally significant waterbirds (Briggs et al. 1997; Kingsford et al. 1997).

Flow rates, thresholds and durations

Waterbird breeding occurring within flooded river red gum stands were surveyed at 10 floodplain wetland sites between Wagga Wagga and Hay during the period 1989-1994 by Briggs et al. (1994). The periods surveyed included April/May 1989 to June 1990, July 1991 to January 1992 and from August 1993 to April 1994 (Briggs et al. 1994) which corresponded to mid to large flooding events through the Murrumbidgee system.

Briggs and Thornton (1999) showed that the number of nests of waterbirds such as cormorants, herons, egrets, ibis, spoonbills, ducks and teals occurring within the Mid-Murrumbidgee River Wetlands were related to the area and duration of river red gum inundation. To enable waterbirds to complete breeding and fledge their young, river red gums need to be inundated for at least 5 and up to 10 months (Briggs and Thornton 1999). These authors also recommended that river red gum wetlands should be flooded in winter/spring with flows from the river.

Table 3 lists the key survey sites and provides an indication of their size, commence to flow threshold, hydrology and ecological composition. The general descriptions of the survey sites come from Briggs et al. (1994), while the flow thresholds specified for each location come from the Murrumbidgee Wetlands Resource Book (Murrumbidgee Catchment Management Authority 2008). Table 3 indicates that the

13

Page 16: Assessment of environmental water requirements … · Web viewBriggs, SV, Thornton, SA & Lawler WG 1997, ‘Relationships between hydrological control of river red gum wetlands and

commence to flow threshold for the wetlands surveyed by Briggs et al. (1994) and Briggs and Thornton (1999) is generally in the vicinity of 27,000 ML/d at Narrandera.

Table 3 Significant bird breeding wetlands and some key wetland characteristics

Wetland Area (ha)

Commence to flow (ML/d) Description

Wagga Narrandera

Bulls Run Swamp & Bulls Run Swamp South

168 >47,000

>47,000

>26,000 Hydrology

Usually receives water from local rainfall, also fills from high river flows.

Habitat

Open water 96 ha Aquatics 150 ha. 72 ha of river red gum (all living)

Boggy Creek 83 N/A N/A Hydrology

Receives water from local rainfall.

Habitat

Open water 43 ha Aquatics 78 ha. 40 ha of river red gum (5% dead)

Dixons Dam 242 47, 000 26,000 Hydrology

Receives water pumped from the river via a creek; water is retained by embankment.

Habitat

Open water 5 ha Aquatics 55 ha. 237 ha of river red gum (27% dead)

Cuba (Gooragool Lagoon)

390 47,000 26,000 Hydrology

Receives water from high river flows and from irrigation drainage, water is retained by regulators.

Habitat

Open water 32 ha Aquatics 0 ha. 358 ha of river red gum (11% dead)

Sunshower 177 >47,000 >26,000 Hydrology

Receives water from the river and a small amount of used irrigation water.

Habitat

Open water 11 ha Aquatics 70 ha. 166 ha of river red gum (no dead)

Uri

Uri East

181

47,000

26,000 Hydrology

Receives water from the river

14

Page 17: Assessment of environmental water requirements … · Web viewBriggs, SV, Thornton, SA & Lawler WG 1997, ‘Relationships between hydrological control of river red gum wetlands and

Wetland Area (ha)

Commence to flow (ML/d) Description

Uri Park Uri National Forest

Lagoon

>47,000

>47,000

Habitat

Open water 10 ha Aquatics 30 ha. 171 ha of river red gum (no dead)

Wowong 256 35, 000 19,500 Hydrology

Receives water from the river

Habitat

Open water 10 ha Aquatics 30 ha. 171 ha of river red gum (no dead)

Yarradda

Yarradda Lagoon Yarradda SF

Lagoon 1 Yarradda SF

Lagoon 2 Scroll Swale

Yarradda Lagoon

297

35,000

35,000

35,000

35,000

19,500 Hydrology

Receives water from the river, water is retained by a low bank.

Habitat

Open water 48 ha Aquatics 15 ha. 249 ha of river red gum (no dead)

Webbs

Webbs Lagoon West End

Webbs Lagoon West

139

35,000

35,000

19,500 Hydrology

Receives water from the river through a regulator, water is retained by a low bank.

Habitat

Open water 1 ha Aquatics 0 ha. 138 ha of river red gum (no dead)

Mckennas 212 47,000 26,000 Hydrology

Receives water from the river and small amounts of irrigation drainage.

Habitat

Open water 23 ha Aquatics 75 ha. 189 ha of river red gum (no dead)

Table 4 shows the relationships between durations of flooding (months) and the number of nests/broods of waterbirds such as cormorants, herons, egrets, ibis, spoonbills, ducks and teals for the three flood periods surveyed by Briggs et al. (1994).

Table 4 Relationship between durations of flooding (months) and numbers of nests/broods of waterbirds for identified flood periods. (Source Briggs et al. 1994).

Wetland 1989/90 1991/92 1993/94

Duration of Flooding

Number of Nests/

Duration of Flooding

Number of Nests/

Duration of Flooding

Number of Nests/

15

Page 18: Assessment of environmental water requirements … · Web viewBriggs, SV, Thornton, SA & Lawler WG 1997, ‘Relationships between hydrological control of river red gum wetlands and

(months) Broods (months) Broods (months) Broods

Bulls Run Swamp & Bulls Run Swamp South

10.2 247 6.7 27 6.5 91

Boggy Creek N/A 202 7.0 31 11.9 162

Dixons Dam 9.8 931 6.0 177 11.8 894

Cuba (Gooragool Lagoon) 10.1 520 4.0 116 4.2 419

Sunshower 5.9 63 3.1 10 6.3 26

Uri

Uri East Uri Park Uri National Forest

Lagoon

N/A N/A 2.7 14 3.9 9

Wowong 9.6 214 4.5 22 6.5 35

Yarradda

Yarradda Lagoon Yarradda SF Lagoon 1 Yarradda SF Lagoon 2 Scroll Swale Yarradda

Lagoon

N/A N/A 6.9 99 12.9 526

Webbs

Webbs Lagoon West End

Webbs Lagoon West

7.5 27 3.6 4 7.1 6

Mckennas 8.8 183 5.8 49 10.1 39

Analysis of the gauged flows at Narrandera for the period July 1988 to July 1994 (the period of investigation by Briggs et al. (1994), Briggs and Thornton (1999)) shows that five broad flow events occurred above a threshold of 27,000 ML/d (Figure 8).

16

Page 19: Assessment of environmental water requirements … · Web viewBriggs, SV, Thornton, SA & Lawler WG 1997, ‘Relationships between hydrological control of river red gum wetlands and

1/7/1988 1/7/1989 1/7/1990 1/7/1991 30/6/1992 30/6/1993 30/6/19940

27000

54000

81000

108000

135000

Flo

w (M

L/d)

Figure 8 - Gauged Flow – Murrumbidgee River at Narrandera (July 1988 – July 1994)

These periods and the total duration above a threshold of 27,000 ML/d are shown in Table 5.

The observed flows during the period July 1988 to June 1994 indicate that rates exceeding 27,000 ML/d for a total of around 45 days will inundate river red gums at the surveyed sites for at least 5 and up to 10 months, and provide sufficient duration of inundation to achieve successful bird breeding outcomes.

Table 5 Duration of Flow above Critical Threshold

Period Total No. of Days above 27,000 ML/d (Gauged flow @ Narrandera)

3 April to 5 September 1989 85

6 July to 26 September 1990 81

16 July to 1 October 1991 41

4 September to 19 November 1992 46

30 July to 17 October 1993 43

Inundation frequency

Two key factors dictate that waterbirds do not need to breed every year on the same river system (Scott 1997). Firstly, Australian waterbirds are highly mobile and their mobility over large spatial scales is a defining characteristic (Scott 1997; Overton et al. 2009). Most of the 80 odd species of (non-vagrant) Murray-Darling Basin waterbirds that use inland wetlands have broad Australia-wide distributions and it is believed that individuals of most species are capable of dispersing at the scale of the continent (Overton et al. 2009). As such, prior to river regulation at least some individuals of the more mobile waterbird species have would have been able to seek suitable conditions for successfully breeding somewhere within the Basin in most years (Scott 1997).

17

Page 20: Assessment of environmental water requirements … · Web viewBriggs, SV, Thornton, SA & Lawler WG 1997, ‘Relationships between hydrological control of river red gum wetlands and

Secondly, it is not essential for waterbirds to breed every year to maintain sustainable populations as they are generally long-lived (Scott 1997). Waterbirds become sexually mature at the age of one to two years and have a life expectancy ranging generally from 3-4 years for ducks and up to 8 years for larger birds such as ibis (Scott 1997).

These two key factors have informed the frequency of events for site-specific flow indicators intended to support the habitat requirements of waterbirds, including provision of conditions conducive to successful breeding of colonial nesting waterbirds. Specifically, it is desirable to provide multiple opportunities for successful waterbird breeding within the range of their life expectancy. The proposed flow indicators are consistent with this rationale.

5.2.3. Native Fish

The environments present within the mid-Murrumbidgee River, including the Mid-Murrumbidgee River Wetlands, have been identified as supporting populations of native fish (Morris et al. 2001, Gilligan 2005, Baumgartner and Asmus 2009). For example, the conservationally significant silver perch (Bidyanus bidyanus) has been found in inundated floodplain habitats near the Murrumbidgee River between Narrandera and Wagga Wagga (Gehrke et al. 1999, as seen in Morris et al. 2001).

There is still debate in the scientific literature as to the relative role of flooding to fish community dynamics, and an understanding of the nature of ‘fish ecology’-‘river flow’ interactions is by no means clear (Humphries et al. 1999, Mallen-Cooper and Stuart 2003, Graham and Harris 2004; King et al. 2009). For example, it has been suggested that some fish species, such as golden perch (Macquaria ambigua) and silver perch, which have been recorded in the mid-Murrumbidgee (Morris et al. 2001), require flow pulses or floods for spawning i.e. flood recruitment hypothesis (Humphries et al. 1999). This is partly supported by King et al. (2009) who suggest that flow is one environmental variable, although not always the key environmental variable, identified explaining the occurrence and abundance of spawning of golden perch, silver perch and Murray cod at Barmah-Millewa Forest. Other factors such water temperature and day length, or the interaction of a range of environmental variables including flow, are suggested to also be important for native fish recruitment (King et al. 2009).

Despite the ongoing debate regarding the link between hydrology and fish ecology, available evidence suggests that provision of flows that connect the river channel to the floodplain ( e.g. Beesley et al. 2011), as well as in-channel flow variability, are important to sustaining key ecological features such as native fish populations. Flow indicators described herein for the bankfull and overbank elements of the flow regime primarily based on the water requirements of flood dependent vegetation communities and waterbirds are expected to be sufficient to support life-cycle and habitat requirements of native fish including provision of cues for spawning and migration and access to food sources.

5.2.4. Other biota

There is little in the way of studies in the mid-Murrumbidgee examining flow-ecology relationships of other faunal groups. Nevertheless, the MDBA is confident that the specified environmental water requirements for floodplain wetlands and waterbirds will have valuable beneficial effects on the life-cycle and habitat requirements of amphibians, and water-dependent reptiles and invertebrates. Key ecosystem functions associated with river and floodplain connectivity will also be enhanced.

18

Page 21: Assessment of environmental water requirements … · Web viewBriggs, SV, Thornton, SA & Lawler WG 1997, ‘Relationships between hydrological control of river red gum wetlands and

5.2.5. Proposed flow indicators

Based on the hydrology described in Section 4 and the environmental water requirements described in Sections 5.1 and 5.2, the MDBA has proposed five flow indicators for the Mid-Murrumbidgee River Wetlands (Table 6). The site-specific flow indicators for the wetlands represent an amalgam of information within existing literature, checked against analysis of modelled without development and baseline flow data. Site-specific flow indicators are expressed at Narrandera on the Murrumbidgee River which generally represents flow through the mid section of the Murrumbidgee.

Flow indicators as specified for the bankfull and overbank elements of the flow regime attempt to strike a balance between desirable flow threshold, duration and timing with desirable frequency and represent a variable flow regime that is consistent with the “without development” hydrology of the site. Where a discrepancy exists between literature and inundation / hydrology modelling, an analysis of modelled without development flows has been used to guide the determination of site-specific flow indicators, particularly to ensure that the recommended flows are achievable and not greater than without development flows.

The site-specific flow indicators specified for the Mid-Murrumbidgee River Wetlands should be read in their entirety to understand the environmental water requirements as multiple flow indicators will contribute to achieving each ecological target. This approach has been used because it not possible to define a single flow threhold for each vegetation community. The flood dependent vegetation communities cover a wide range of flows and a single indicator would be misleading.

Generally, the flow indicator metric with the greatest level of uncertainty across the Basin is the definition of the desirable frequency of inundation, expressed as the proportion of years an event is required. This uncertainty is due to a number of reasons. Firstly, it is likely that there are thresholds for many plants and animals beyond which their survival or ability to reproduce is lost, but the precise details of those thresholds are mostly unknown or where there is information (for instance river red gum communities) our knowledge is evolving. Secondly, vegetation communities are located across the floodplain and would have experienced significant variability in their inundation frequency under pre-development conditions which subsequently makes specification of a single frequency metric deceptively certain. For many species and ecological communities the relationship between water provisions and environmental outcomes may not be threshold based, rather there could be a linear relationship between flow and the extent of environmental outcomes or the condition of a particular ecological species/community.

Recognising the degree of confidence in specifying a desirable frequency, ‘low–uncertainty’ and ‘high–uncertainty’ frequency of flow events have been specified (Table 6). For the low uncertainty frequency,‐ there is a high likelihood that the environmental objectives and targets will be achieved. The lower boundary of the desired range is referred to here as the high uncertainty frequency. This is effectively the best estimate of the threshold, based on current scientific understanding, which, if not met, may lead to the loss of health or resilience of ecological communities, or the inability of species to reproduce frequently enough to sustain populations. The high–uncertainty frequencies attempt to define critical ecological thresholds. The high uncertainty frequency is considered to indicate a level beyond which the ecological targets may not be achieved.

For the Mid-Murrumbidgee River Wetlands, a number of key sources of information were used to inform the high and low uncertainty frequencies. Documents such as Roberts and Marston (2011)

19

Page 22: Assessment of environmental water requirements … · Web viewBriggs, SV, Thornton, SA & Lawler WG 1997, ‘Relationships between hydrological control of river red gum wetlands and

express the desired frequency as a range and the high and low uncertainty frequency flow indicator metrics attempt to encapsulate the broad water requirements represented by this range. Modelled flow data was used to verify if recommended frequencies were achievable and not greater than without development flows.

It is recognised that periods between inundation events are an important consideration when trying to determine ecosystem resilience or thresholds of irreversible change. When investigating the environmental water requirements for the various sites, consideration was given to specifying a maximum period between events or metrics related to maximum dry. However, the literature regarding the tolerance of various floodplain ecosystems to dry periods is limited. In addition where this information exists, recommended maximum dry intervals often conflict with the maximum dry experienced under modelled without development conditions.

Considering these issues, MDBA has not proposed a maximum dry period with the exception of a small number of sites across the Basin, which does not include the Mid-Murrumbidgee River Wetlands. Even so, the importance of maximum dry periods and their role in maintaining ecosystem resilience is recognised. Maximum dry periods between successful events are reported for hydrological modelling associated with the Mid-Murrumbidgee River Wetlands hydrologic indicator site (see MDBA 2012) despite reducing the maximum period between events not being the primary objective of the modelling process.

20

Page 23: Assessment of environmental water requirements … · Web viewBriggs, SV, Thornton, SA & Lawler WG 1997, ‘Relationships between hydrological control of river red gum wetlands and

Table 6 Site-specific ecological targets and associated flow indicators for the Mid-Murrumbidgee River Wetlands

Site-Specific Ecological Targets

Site-Specific Flow Indicators Without-development and baseline event frequencies

Flow rate required (measured at Narrandera- ML/d)

Flow Duration Timing

Frequency-proportion of years event required to achieve ecological target (%)

Proportion of years event occurred under modelled without-development conditions (%)

Proportion of years event occurred under modelled baseline conditions (%)

Low uncertainty

High uncertainty

Provide a flow regime which ensures the current extent of native vegetation of the riparian, floodplain and wetland communities is sustained in a healthy, dynamic and resilient condition

Provide a flow regime which supports recruitment opportunities for a range of native aquatic species (e.g. fish, frogs, turtles and invertebrates)

Provide a flow regime which supports key ecosystem functions, particularly those related to connectivity between the river and the floodplain

26,850 5 days

June to

November

60 50 67 46

34,650 5 days 40 35 57 29

44,000 3 days 35 30 44 22

63,250 3 days 15 11 21 11

Provide a flow regime which supports the habitat requirements of waterbirds and is conducive to successful breeding of colonial nesting waterbirds.

26,850

45 days in

total (with a 1

day

minimum)

July to

November25 20 28 11

Note: Multiplication of the flow rate by the duration and frequency (proportion of years event required) does not translate into the additional volume of water the site needs to be environmentally sustainable. This is because part of the required flow is already provided under baseline conditions. Additional environmental water required is the amount over and above the baseline flows.

21

Page 24: Assessment of environmental water requirements … · Web viewBriggs, SV, Thornton, SA & Lawler WG 1997, ‘Relationships between hydrological control of river red gum wetlands and

6. Flow Delivery Constraints

Basin wide environmental objectives have been developed within the context of being deliverable in a working river system that contains public and private storages and developed floodplains. To understand and assess the implications of key constraints on the ability to achieve flow indicators specified for the Mid-Murrumbidgee River Wetlands, MDBA has drawn upon a combination of existing information (e.g. Water Sharing Plans, operating rules of water agencies, flood warning levels) and practical knowledge of river operators supported by testing using hydrological modelling.

The NSW Water Sharing Plan for the Murrumbidgee places the following operational constraints on maximum flows:

9,000 ML/d in the Tumut River at Oddys Bridge; 9,300 ML/d in the Tumut River at Tumut; releases from Burrinjuck and Blowering Dams are limited to a combined flow of

32,000 ML/d at Gundagai (this is based on the risk of flooding Gundagai and Mundarlo Bridge); and

1,400 ML/d in Yanco Creek at the Offtake.

To accurately reflect channel constraints and minimise the risk of flooding infrastructure, a maximum flow constraint of 30,000 ML/d at Gundagai has been included in the baseline hydrologic model for the Murrumbidgee system.

Release capacities as specified in the baseline model are 27,000 ML/d for Burrinjuck Dam and 9,250 ML/d for Blowering Dam. Flows downstream of Blowering Dam are limited to 9,000 ML/d to minimise bed and bank erosion.

The MDBA has a vision of a healthy working Basin that has vibrant communities, productive and resilient industries, and healthy and diverse ecosystems. The delivery of environmental flows as a managed watering event within a healthy working Basin is highly dependent on existing system constraints, accordingly the site-specific flow indicators have been classified into three broad types (Table 7). Consistent with this rationale, within the hydrological modelling process used by the MDBA to assess the achievement of site-specific flow indicators, orders for environmental flows have been limited to be within the constraints represented by the baseline model. This limits the delivery of regulated flows to the Mid-Murrumbidgee River Wetlands.

Based on the information above, it is likely that site-specific flow indicators with thresholds greater than 25,000–30,000 ML/d at Narrandera will be difficult to support with only regulated releases from dams. To achieve flows in excess of 30,000 ML/d at Narrandera, regulated releases will need to supplement unregulated tributary inflows, which may limit the duration of environmental flows that can be supplied.

22

Page 25: Assessment of environmental water requirements … · Web viewBriggs, SV, Thornton, SA & Lawler WG 1997, ‘Relationships between hydrological control of river red gum wetlands and

Table 7 Site-specific flow indicators for the Mid-Murrumbidgee River Wetlands and the effect of system constraints

Site-specific ecological targets Site-specific flow indicators

Provide a flow regime which ensures the current extent of native vegetation of the riparian, floodplain and wetland communities is sustained in a healthy, dynamic and resilient condition.

Provide a flow regime which supports the habitat requirements of waterbirds and is conducive to successful breeding of colonial nesting waterbirds.

Provide a flow regime which supports recruitment opportunities for a range of native aquatic species (e.g. fish, frogs, turtles and invertebrates).

Provide a flow regime which supports key ecosystem functions, particularly those related to connectivity between the river and the floodplain.

26,850 ML/d for a total duration of 45 days between July and November between 20 to 25% of years

26,850 ML/d for 5 consecutive days between June and November between 50 to 60% of years

34,650 ML/d for 5 consecutive days between June and November between 35 to 40% of years

44,000 ML/d for 3 consecutive days between June and November between 30 to 35% of years

63,250 ML/d for 3 consecutive days between June and November between 12 to 15% of years

Key

Achievable under current operating conditionsFlow indicators highlighted in blue are considered deliverable as mostly regulated flows under current operating conditions.

Achievable under some conditions (constraints limit delivery at some times)Flow indicators highlighted in yellow are considered achievable when delivered in combination with tributary inflows and/or unregulated flow events. They may not be achievable in every year or in some circumstances, and the duration of flows may be limited to the duration of tributary inflows.

Difficult to influence achievement under most conditions (constraints limit delivery at most times)Flow indicators highlighted in brown require large flows that cannot be regulated by dams and it is not expected that these flows can currently be influenced by river operators due to the river operating constraints outlined above.

7. Summary and conclusion

The Mid-Murrumbidgee River Wetlands is a key environmental asset within the Basin and is an important site for the determination of the environmental water requirements of the Basin. MDBA has undertaken a detailed eco-hydrological assessment of the Mid-Murrumbidgee River Wetlands environmental water requirements. Specified flow indicators are indicative of a long-term flow regime required to enable the achievement of site-specific ecological targets at the Mid-Murrumbidgee River Wetlands and for the broader river valley and reach. Along with other site-specific flow indicators developed across the Basin at other hydrologic indicator sites, these environmental flow requirements were integrated within hydrological models to inform the ESLT. This process, including consideration of a range of constraints such as those outlined in Section 6, is described in further detail within the companion report on the modelling process ‘Hydrologic modelling to inform the proposed Basin Plan: Methods and results’ (MDBA 2012).

23

Page 26: Assessment of environmental water requirements … · Web viewBriggs, SV, Thornton, SA & Lawler WG 1997, ‘Relationships between hydrological control of river red gum wetlands and

The flow indicators in this report are used to assess potential Basin Plan scenarios. MDBA (2012) summarises how the proposed draft Basin Plan released in November 2011 performs against flow indicators for the Mid-Murrumbidgee River Wetlands.

24

Page 27: Assessment of environmental water requirements … · Web viewBriggs, SV, Thornton, SA & Lawler WG 1997, ‘Relationships between hydrological control of river red gum wetlands and

References

Baumgartner, L & Asmus, M 2009, An assessment of the fish community in Coonancoocabil Lagoon, NSW Department of Primary Industries, Narrandera, New South Wales.

Beesley, L, Price, A, King, A, Gawne, B, Nielsen, D, Koehn, J, Meredith, S, Vilizzi, L & Hladyz, S 2011, Watering floodplain wetlands in the Murray–Darling Basin for native fish, Waterlines report, National Water Commission, Canberra.

Briggs, SV & Thornton, SA 1999, ‘Management of water regimes in river red gum Eucalyptus camaldulensis wetlands for waterbird breeding’, Australian Zoologist, vol. 31, pp. 187–197.

Briggs, SY, Thornton, SA & Lawler WG 1994, Management of Red Gum wetlands for waterbirds. Report to Murray-Darling Basin Commission, Canberra. National Parks and Wildlife Service: Sydney.

Briggs, SV, Thornton, SA & Lawler WG 1997, ‘Relationships between hydrological control of river red gum wetlands and waterbird breeding’, Emu, vol. 97, pp. 31–42.

CSIRO 2008, Water availability in the Murrumbidgee, a report to the Australian Government from the CSIRO Murray–Darling Basin Sustainable Yields Project, CSIRO, Australia.

Department of the Environment, Water, Heritage and the Arts 1998, Australian wetlands database, information sheet for the mid-Murrumbidgee Wetlands, viewed 22 April 2010, <www.environment.gov.au/cgi-bin/wetlands/search.pl?smode=DOIW>.

Department of the Environment, Water, Heritage and the Arts 2001, A directory of important wetlands in Australia, Australian wetlands database — spatial data, viewed November 2008, <asdd.ga.gov.au/asdd>.

Department of the Environment, Water, Heritage and the Arts 2008, National framework andguidance for describing the ecological character of Australian Ramsar wetlands, module 2 of thenational guidelines for Ramsar wetlands — implementing the Ramsar Convention in Australia,viewed 5 January 2010,www.environment.gov.au/water/publications/environmental/wetlands/module 2 framework.html‐ ‐Frazier, P 2001, River flow/wetland inundation relationships for the mid-Murrumbidgee River: Gundagai to Hay, Charles Sturt University, Riverina, New South Wales.

Frazier, P, Page, K, Louis, J, Briggs, S & Robertson, A 2003, ‘Relating wetland inundation to river flow using LandsatTM data’, International Journal of Remote Sensing, vol. 24, pp. 3755–3770.

Frazier, P & Page, K 2006, ‘The effect of river regulation on floodplain wetland inundation, Murrumbidgee River, Australia’, Marine and Freshwater Research, vol. 57, pp. 133–141.

Gilligan, DM 2005, Fish communities of the Murrumbidgee catchment: status and trends, report to the Murrumbidgee Catchment Management Authority, NSW Department of Primary Industries, Cronulla, New South Wales.

Graham, R & Harris, JH 2004, Floodplain inundation and fish dynamics in the Murray-Darling Basin. Current concepts and future research: a scoping study. CRC for Freshwater Ecology, Canberra.

Hardwick, L, Maguire, J & Foreman, M 2001, Providing water to Murrumbidgee billabongs — maximising ecological value, viewed 2 December 2009, <www.water.nsw.gov.au>.

25

Page 28: Assessment of environmental water requirements … · Web viewBriggs, SV, Thornton, SA & Lawler WG 1997, ‘Relationships between hydrological control of river red gum wetlands and

Humphries, P, King, AJ and Koehn, JD 1999, ‘Fish, flows and flood plains: links between freshwater fishes and their environment in the Murray-Darling River system, Australia’. Environmental Biology of Fishes 56, 129-151.

King, AJ, Ramsey, D, Baumgartner, L, Humphries, P, Jones, M, Koehn, J, Lyon, J, Mallen-Cooper, M, Meredith, S, Vilizzi, L, Ye, Q & Zampatti, B 2009, Environmental requirements for managing successful fish recruitment in the Murray River Valley – Review of existing knowledge, Arthur Rylah Institute for Environmental Research Technical Report Series No. 197, Department of Sustainability and Environment, Heidelberg.Kingsford,RT, Thomas, RF & Wong, PS 1997, Significant wetlands for waterbirds in the Murray-Darling Basin. Report to the Murray Darling Basin Commission. NSW National Parks and Wildlife Service, Hurstville.

Kingsford, RT, Thomas, RF & Knowles, E 1999, Wetland GIS of the Murray–Darling Basin, NSW National Parks and Wildlife Service & Murray–Darling Basin Commission, Canberra.

Mallen-Cooper, M & Stuart, IG 2003, ‘Age, growth and non-flood recruitment of two potamodromous fishes in a large semi-arid/temperate river system’. River research and applications 19: 697-719.

MDBA (Murray-Darling Basin Authority) 2011, The proposed “environmentally sustainable level of take” for surface water of the Murray-Darling Basin: Method and Outcomes. Murray-Darling Basin Authority, Canberra.

MDBA (Murray-Darling Basin Authority) 2012, Hydrological modelling to inform the Basin Plan. Murray-Darling Basin Authority, Canberra.

Morris, SA, Pollard, DA, Gehrke, PC & Pogonoski, JJ, 2001, Threatened and potentially threatened freshwater fishes of coastal New South Wales and the Murray-Darling Basin, NSW Fisheries Final Report Series No. 33. Sydney, NSW.

Murray, PA 2006, ‘Wetlands of the Murrumbidgee River Catchment, New South Wales’, in P Murray & I Taylor (eds), Wetlands of the Murrumbidgee River catchment — practical management in an altered environment, Fivebough and Tuckerbil Trust, Leeton, New South Wales, pp. 4–11.

Murrumbidgee Catchment Management Authority 2008, Murrumbidgee Wetlands Resource Book, Murrumbidgee Catchment Management Authority, Wagga Wagga, New South Wales.

National Murray Cod Recovery Team 2010, ‘National Recovery Plan for the Murray Cod Maccullochella peelii peelii’. Department of Sustainability and Environment, Melbourne.

NSW Department of Environment, Climate Change and Water 2009, Atlas of NSW wildlife, viewed October 2009, <www.wildlifeatlas.nationalparks.nsw.gov.au/wildlifeatlas/watlas.jsp>.

NSW Department of Water and Energy 2009, NSW water information — NSW provisional river data, viewed 10 November 2009, <www.waterinfo.nsw.gov.au/>.

NSW Primary Industries 2012, Threatened species conservation, viewed March 2012,

http://www.dpi.nsw.gov.au/fisheries/species-protection/conservation/what-current.

Overton, IC, Colloff, MJ, Doody, TM, Henderson, B & Cuddy, SM (eds) 2009, Ecological outcomes of flow regimes in the Murray–Darling Basin, report prepared for the National Water Commission by CSIRO Water for a Healthy Country Flagship, CSIRO, Canberra.

26

Page 29: Assessment of environmental water requirements … · Web viewBriggs, SV, Thornton, SA & Lawler WG 1997, ‘Relationships between hydrological control of river red gum wetlands and

Page, KJ, Read, A, Frazier, P & Mount, N 2005, ‘The effect of altered flow regime on the frequency and duration of bankfull discharge: Murrumbidgee River, Australia’, River Research and Applications, vol. 21, no. 5, pp. 567–578.

Read, A 2001, ‘Floodplain inundation frequency response to river regulation: Murrumbidgee River, Australia’, unpublished Honours thesis, Charles Sturt University, Wagga Wagga, New South Wales.

Roberts, J & Marston, F 2011, Water regime for wetland and floodplain plants. A source book for the Murray–Darling Basin. National Water Commission, Canberra.

Scott, A 1997, Relationship between waterbird ecology and environmental flows in the Murray–Darling Basin, CSIRO Land and Water technical report 5–97, Canberra.

SKM 2007, High Conservation Value Aquatic Ecosystems project identifying, categorising and‐managing HCVAE, Final report, Department of the Environment and Water Resources, 16March 2007. www.environment.gov.au/water/publications/environmental/ecosystems/hcvae.html

Thoms, M 2003 Floodplain-river ecosystems: lateral connections and the implications of human interference. Geomorphology 56: pp. 335–349.

Thornton, S & Briggs, S 1994, A survey of hydrological changes to wetlands of the Murrumbidgee River, Wetlands (Australia), Vol 13, 1-13

Wassens, S, Sass, S, Swan, G & Thompson, L 2004, Frog diversity in the Murrumbidgee Irrigation Area: A baseline survey, prepared for Murrumbidgee Irrigation Pty Ltd, Charles Sturt University, Wagga Wagga, New South Wales.

Watts, R 2010, ‘Ecosystem response modelling in the Murrumbidgee River’, in N Saintilan & I Overton (eds), Ecosystem response modelling in the Murray–Darling Basin, CSIRO Publishing, Collingwood, Victoria, pp. 197–211.

Whitten, SM & Bennett, JW 2000, Potential wetland management strategies — Murrumbidgee Floodplain: Wagga Wagga to Hay, Private and social values of wetlands research report no. 6, University College, University of New South Wales, Canberra.

27

Page 30: Assessment of environmental water requirements … · Web viewBriggs, SV, Thornton, SA & Lawler WG 1997, ‘Relationships between hydrological control of river red gum wetlands and

Appendix A

Data used in producing hydrologic indicator site maps

Data Dataset name Sourcea

Basin Plan regions Draft Basin Plan Areas 25 May 2010 Murray–Darling Basin Authority (2010)

Dam walls/barrages GEODATA TOPO 250K Series 3 Topographic Data Geoscience Australia 2006

Gauges 100120 Master AWRC Gauges

Icon sites Living Murray Indicative Icon Site Boundaries Murray–Darling Basin Commission

(2007)

Irrigation areas Combined Irrigation Areas of Australia Dataset Bureau of Rural Sciences (2008)

Lakes GEODATA TOPO 250K Series 3 Topographic Data Geoscience Australia (2006)

Maximum wetland

extents

Wetlands GIS of the Murray–Darling Basin Series 2.0

(Kingsford)

Murray–Darling Basin Commission

(1993)

National parks/nature

reserves

Digital Cadastral Database New South Wales Department of Lands

(2007)

National parks/nature

reserves

Collaborative Australian Protected Areas Database —

CAPAD 2004

Department of the Environment, Water,

Heritage and the Arts (2004)

Nationally important

wetlands

Directory of Important Wetlands in Australia Spatial

Database

Department of the Environment, Water,

Heritage and the Arts (2001)

Ocean and landmass GEODATA TOPO 250K Series 3 Topographic Data Geoscience Australia (2006)

Ramsar sites Ramsar wetlands in Australia Department of the Environment, Water,

Heritage and the Arts (2009)

Rivers Surface Hydrology (AUSHYDRO version 1-6) Geoscience Australia (2010)

Roads GEODATA TOPO 250K Series 3 Topographic Data Geoscience Australia (2006)

State border GEODATA TOPO 250K Series 3 Topographic Data Geoscience Australia (2006)

State forests Digital Cadastral Database New South Wales Department of Lands

(2007)

Towns GEODATA TOPO 250K Series 3 Topographic Data Geoscience Australia (2006)

Weirs Murray–Darling Basin Weir Information System Murray–Darling Basin Commission

(2001)

Weirs 2 River Murray Water Main Structures Murray–Darling Basin Authority (2008)

a Agency listed is custodian of relevant dataset; year reflects currency of the data layer.

28

Page 31: Assessment of environmental water requirements … · Web viewBriggs, SV, Thornton, SA & Lawler WG 1997, ‘Relationships between hydrological control of river red gum wetlands and

Appendix B

Species relevant to criteria 1 and 4: Mid-Murrumbidgee River Wetlands

Species Recognised in international agreement(s)1

Environment Protection and Biodiversity Conservation Act 1999 (Cwlth)

Fisheries Management Act 2004 (NSW)

Threatened Species Conservation Act 1995 (NSW)

Amphibians and reptiles

Southern bell frog (Litoria raniformis)3 V E

Birds

Barking owl (Ninox connivens)4 V

Black-chinned honeyeater (eastern subspecies) (Melithreptus gularis

gularis)4

V

Blue-billed duck (Oxyura australis)3 V

Brolga (Grus rubicundus)3 V

Brown treecreeper (Climacteris picumnus)4 V

Cattle egret (Ardea ibis)3 Diamond firetail (Stagonopleura guttata)4 V

Eastern great egret (Ardea modesta)3 Freckled duck (Stictonetta naevosa)3 V

Gilbert’s whistler (Pachycephala inornata)3 V

Glossy ibis (Plegadis falcinellus)3 Grey-crowned babbler (eastern subspecies) (Pomatostomus temporalis

temporalis)4

V

Latham’s snipe (Gallinago hardwickii)3 Painted honeyeater (Grantiella picta)4 V

Plains-wanderer (Pedionomus torquatus)4 V E

Speckled warbler (Chthonicola sagittata)4 V

Superb parrot (Polytelis swainsonii)3 V V

Turquoise parrot (Neophema pulchella)4 V

White-bellied sea-eagle (Haliaeetus leucogaster)3 Fish

Trout cod (Maccullochella macquariensis)2 E E

Mammals

29

Page 32: Assessment of environmental water requirements … · Web viewBriggs, SV, Thornton, SA & Lawler WG 1997, ‘Relationships between hydrological control of river red gum wetlands and

Species Recognised in international agreement(s)1

Environment Protection and Biodiversity Conservation Act 1999 (Cwlth)

Fisheries Management Act 2004 (NSW)

Threatened Species Conservation Act 1995 (NSW)

Inland forest bat (Vespadelus baverstocki)4 V

Koala (Phascolarctos cinereus)4 V

Southern myotis (Myotis macropus)4 V

Plants

Floating swamp wallaby-grass (Amphibromus fluitans)4 V V

Mossgiel Daisy (Brachycome papillosa) 3 V

Peppercress (Lepidium hyssopifolium) 3 E

Slender Darling Pea (Swainsona murrayana) 3 V

Western water-starwort (Callitriche cyclocarpa)4 V

Communities

Lower Murray endangered ecological community2 E

E = endangered V = vulnerable

1 Japan–Australia Migratory Bird Agreement, China–Australia Migratory Bird Agreement, or Republic of Korea – Australia Migratory Bird Agreement

2 NSW Primary Industries (2012)

3 Department of the Environment, Water, Heritage and the Arts (1998)

4 NSW Department of Environment, Climate Change and Water (2009)

30